Skip to main content

Conclusion: A Unified Theoretical Framework for Plasticity in Visual Circuitry

  • Chapter
Plasticity in the Visual System

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arckens L, Van Der Gucht E, Eysel UT, Orban GA, Vandesande F (2000) Investigation of cortical reorganization in area 17 and nine extrastriate visual areas through the detection of changes in immediate early gene expression as induced by retinal lesions. J Comp Neurol 425:531–544.

    Article  CAS  PubMed  Google Scholar 

  • Blitz DM, Foster KA, Regehr WG (2004) Short-term synaptic plasticity: a comparison of two synapses. Nat Rev Neurosci 5:630–640.

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Regehr WG (2000) Developmental remodeling of the retinogeniculate synapse. Neuron 28:955–966.

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Regehr WG (2003) Presynaptic modulation of the retinogeniculate synapse. J Neurosci 23:3130–3135.

    CAS  PubMed  Google Scholar 

  • Chen C, Blitz DM, Regehr WG (2002) Contributions of receptor desensitization and saturation to plasticity at the retinogeniculate synapse. Neuron 33:779–788.

    CAS  PubMed  Google Scholar 

  • Danek A, Fries W, Faul R (1991) Fibre divergence in the distal optic radiation: possible basis of functional plasticity in adult primate visual cortex. J Hirnforsch 32: 421–427.

    CAS  PubMed  Google Scholar 

  • Eysel UT, Shevelev IA, Lazareva NA, Sharaev GA (1998) Orientation tuning and receptive field structure in cat striate neurons during local blockade of intracortical inhibition. Neuroscience 84:25–36.

    Article  CAS  PubMed  Google Scholar 

  • Kaczmarek L, Chaudhuri A (1997) Sensory regulation of immediate-early gene expression in mammalian visual cortex: implications for functional mapping and neural plasticity. Brain Res Brain Res Rev 23:237–256.

    Article  CAS  PubMed  Google Scholar 

  • Pinaud R (2004) Experience-dependent immediate early gene expression in the adult central nervous system: evidence from enriched-environment studies. Int J Neurosci 114:321–333.

    Article  CAS  PubMed  Google Scholar 

  • Pinaud R, Vargas CD, Ribeiro S, Monteiro MV, Tremere LA, Vianney P, Delgado P, Mello CV, Rocha-Miranda CE, Volchan E (2003) Light-induced Egr-1 expression in the striate cortex of the opossum. Brain Res Bull 61:139–146.

    Article  CAS  PubMed  Google Scholar 

  • Ramoa AS, Paradiso MA, Freeman RD (1988) Blockade of intracortical inhibition in kitten striate cortex: effects on receptive field properties and associated loss of ocular dominance plasticity. Exp Brain Res 73:285–296.

    Article  CAS  PubMed  Google Scholar 

  • Rossi AF, Paradiso MA (2003) Surface completion: psychophysical and neurophysiological studies of brightness. In: Filling-in: from perceptual completion to cortical reorganization (Pessoa L, De Weerd P, eds), pp 59–80. San Francisco: Oxford University Press.

    Google Scholar 

  • Sillito AM (1975) The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. J Physiol 250:305–329.

    CAS  PubMed  Google Scholar 

  • Sillito AM (1977) Inhibitory processes underlying the directional specificity of simple, complex and hypercomplex cells in the cat’s visual cortex. J Physiol 271:699–720.

    CAS  PubMed  Google Scholar 

  • Sillito AM (1979) Inhibitory mechanisms influencing complex cell orientation selectivity and their modification at high resting discharge levels. J Physiol 289:33–53.

    CAS  PubMed  Google Scholar 

  • Taha S, Stryker MP (2002) Rapid ocular dominance plasticity requires cortical but not geniculate protein synthesis. Neuron 34:425–436.

    Article  CAS  PubMed  Google Scholar 

  • Temple MD, Worley PF, Steward O (2003) Visualizing changes in circuit activity resulting from denervation and reinnervation using immediate early gene expression. J Neurosci 23:2779–2788.

    CAS  PubMed  Google Scholar 

  • Thanos S (1997) Neurobiology of the regenerating retina and its functional reconnection with the brain by means of peripheral nerve transplants in adult rats. Surv Ophthalmol 42Suppl 1:S5–26.

    PubMed  Google Scholar 

  • Volkmar FR, Greenough WT (1972) Rearing complexity affects branching of dendrites in the visual cortex of the rat. Science 176:1145–1147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Tremere, L.A., De Weerd, P., Pinaud, R. (2006). Conclusion: A Unified Theoretical Framework for Plasticity in Visual Circuitry. In: Pinaud, R., Tremere, L.A., De Weerd, P. (eds) Plasticity in the Visual System. Springer, Boston, MA. https://doi.org/10.1007/0-387-28190-8_16

Download citation

Publish with us

Policies and ethics