Skip to main content

Intra-cortical Inhibition in the Regulation of Receptive Field Properties And Neural Plasticity in the Primary Visual Cortex

  • Chapter
Plasticity in the Visual System
  • 578 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akhtar ND, Land PW (1991) Activity-dependent regulation of glutamic acid decarboxylase in the rat barrel cortex: effects of neonatal versus adult sensory deprivation. J Comp Neurol 307:200–213.

    Article  CAS  PubMed  Google Scholar 

  • Albin RL, Sakurai SY, Makowiec RL, Higgins DS, Young AB, Penney JB (1991) Excitatory amino acid, GABA(A), and GABA(B) binding sites in human striate cortex. Cereb Cortex 1:499–509.

    Article  CAS  PubMed  Google Scholar 

  • Allison JD, Kabara JF, Snider RK, Casagrande VA, Bonds AB (1996) GABAB-receptor-mediated inhibition reduces the orientation selectivity of the sustained response of striate cortical neurons in cats. Vis Neurosci 13:559–566.

    Article  CAS  PubMed  Google Scholar 

  • Barnard EA (1995) The molecular biology of GABAA receptors and their structural determinants. Adv Biochem Psychopharmacol 48:1–16.

    CAS  PubMed  Google Scholar 

  • Benevento LA, Creutzfeldt OD, Kuhnt U (1972) Significance of intracortical inhibition in the visual cortex. Nat New Biol 238:124–126.

    Article  CAS  PubMed  Google Scholar 

  • Benevento LA, Bakkum BW, Cohen RS (1995) gamma-Aminobutyric acid and somatostatin immunoreactivity in the visual cortex of normal and dark-reared rats. Brain Res 689:172–182.

    Article  CAS  PubMed  Google Scholar 

  • Blakemore C, Tobin EA (1972) Lateral inhibition between orientation detectors in the cat’s visual cortex. Exp Brain Res 15:439–440.

    Article  CAS  PubMed  Google Scholar 

  • Blakemore C, Garey LJ, Vital-Durand F (1978) The physiological effects of monocular deprivation and their reversal in the monkey’s visual cortex. J Physiol 283: 223–262.

    CAS  PubMed  Google Scholar 

  • Bolz J, Gilbert CD (1986) Generation of end-inhibition in the visual cortex via interlaminar connections. Nature 320:362–365.

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Yang C, Mower GD (2001) Developmental changes in the expression of GABA(A) receptor subunits (alpha(1), alpha(2), alpha(3)) in the cat visual cortex and the effects of dark rearing. Brain Res Mol Brain Res 88:135–143.

    Article  CAS  PubMed  Google Scholar 

  • Choi SY, Morales B, Lee HK, Kirkwood A (2002) Absence of long-term depression in the visual cortex of glutamic Acid decarboxylase-65 knock-out mice. J Neurosci 22:5271–5276.

    CAS  PubMed  Google Scholar 

  • Chowdhury SA, Rasmusson DD (2002) Effect of GABAB receptor blockade on receptive fields of raccoon somatosensory cortical neurons during reorganization. Exp Brain Res 145:150–157.

    Article  CAS  PubMed  Google Scholar 

  • Creutzfeldt OD, Kuhnt U, Benevento LA (1974) An intracellular analysis of visual cortical neurones to moving stimuli: response in a co-operative neuronal network. Exp Brain Res 21:251–274.

    CAS  PubMed  Google Scholar 

  • Doetsch GS, Norelle A, Mark EK, Standage GP, Lu SM, Lin RC (1993) Immunoreactivity for GAD and three peptides in somatosensory cortex and thalamus of the raccoon. Brain Res Bull 31:553–563.

    Article  CAS  PubMed  Google Scholar 

  • Duffy FH, Burchfiel JL, Conway JL (1976) Bicuculline reversal of deprivation amblyopia in the cat. Nature 260:256–257.

    Article  CAS  PubMed  Google Scholar 

  • Eysel UT, Shevelev IA, Lazareva NA, Sharaev GA (1998) Orientation tuning and receptive field structure in cat striate neurons during local blockade of intracortical inhibition. Neuroscience 84:25–36.

    Article  CAS  PubMed  Google Scholar 

  • Eysel UT, Schweigart G, Mittmann T, Eyding D, Qu Y, Vandesande F, Orban G, Arckens L (1999) Reorganization in the visual cortex after retinal and cortical damage. Restor Neurol Neurosci 15:153–164.

    CAS  PubMed  Google Scholar 

  • Fairen A, DeFelipe J, Regidor J (1984) Non pyramidal neurons: general account. In: Cellular components of the cerebral cortex (Peters A, Jones EG, eds), pp 201–253. New York: Plenum Press.

    Google Scholar 

  • Foster KH, Gaska JP, Nagler M, Pollen DA (1985) Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey. J Physiol 365:331–363.

    CAS  PubMed  Google Scholar 

  • Freund TF, Meskenaite V (1992) gamma-Aminobutyric acid-containing basal forebrain neurons innervate inhibitory interneurons in the neocortex. Proc Natl Acad Sci U S A 89:738–742.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Gabbott PL, Somogyi P (1986) Quantitative distribution of GABA-immunoreactive neurons in the visual cortex (area 17) of the cat. Exp Brain Res 61:323–331.

    CAS  PubMed  Google Scholar 

  • Gahwiler BH, Brown DA (1985) GABAB-receptor-activated K+ current in voltageclamped CA3 pyramidal cells in hippocampal cultures. Proc Natl Acad Sci U S A 82:1558–1562.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Grieve KL, Sillito AM (1991) A re-appraisal of the role of layer VI of the visual cortex in the generation of cortical end inhibition. Exp Brain Res 87:521–529.

    Article  CAS  PubMed  Google Scholar 

  • Gritti I, Mainville L, Jones BE (1993) Codistribution of GABA-with acetylcholinesynthesizing neurons in the basal forebrain of the rat. J Comp Neurol 329:438–457.

    Article  CAS  PubMed  Google Scholar 

  • Gritti I, Manns ID, Mainville L, Jones BE (2003) Parvalbumin, calbindin, or calretinin in cortically projecting and GABAergic, cholinergic, or glutamatergic basal forebrain neurons of the rat. J Comp Neurol 458:11–31.

    Article  PubMed  Google Scholar 

  • Hendrickson A, March D, Richards G, Erickson A, Shaw C (1994) Coincidental appearance of the alpha 1 subunit of the GABA-A receptor and the type I benzodiazepine receptor near birth in macaque monkey visual cortex. Int J Dev Neurosci 12:299–314.

    Article  CAS  PubMed  Google Scholar 

  • Hendry SH, Schwark HD, Jones EG, Yan J (1987) Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. J Neurosci 7:1503–1519.

    CAS  PubMed  Google Scholar 

  • Hendry SH, Fuchs J, deBlas AL, Jones EG (1990) Distribution and plasticity of immunocytochemically localized GABAA receptors in adult monkey visual cortex. J Neurosci 10:2438–2450.

    CAS  PubMed  Google Scholar 

  • Hendry SH, Huntsman MM, Vinuela A, Mohler H, de Blas AL, Jones EG (1994) GABAA receptor subunit immunoreactivity in primate visual cortex: distribution in macaques and humans and regulation by visual input in adulthood. J Neurosci 14:2383–2401.

    CAS  PubMed  Google Scholar 

  • Hensch TK, Fagiolini M, Mataga N, Stryker MP, Baekkeskov S, Kash SF (1998) Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282:1504–1508.

    Article  CAS  PubMed  Google Scholar 

  • Hicks TP, Albus K, Kaneko T, Baumfalk U (1993) Examination of the effects of cholecystokinin 26-33 and neuropeptide Y on responses of visual cortical neurons of the cat. Neuroscience 52:263–279.

    Article  CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154.

    CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1965) Receptive Fields and Functional Architecture in Two Nonstriate Visual Areas (18 and 19) of the Cat. J Neurophysiol 28:229–289.

    CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195:215–243.

    CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1972) Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. J Comp Neurol 146:421–450.

    Article  CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN, LeVay S (1977) Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond B Biol Sci 278:377–409.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Huntsman MM, Isackson PJ, Jones EG (1994) Lamina-specific expression and activity-dependent regulation of seven GABAA receptor subunit mRNAs in monkey visual cortex. J Neurosci 14:2236–2259.

    CAS  PubMed  Google Scholar 

  • Jones EG (1993) GABAergic neurons and their role in cortical plasticity in primates. Cereb Cortex 3:361–372.

    Article  CAS  PubMed  Google Scholar 

  • Jones KA, Borowsky B, Tamm JA, Craig DA, Durkin MM, Dai M, Yao WJ, Johnson M, Gunwaldsen C, Huang LY, Tang C, Shen Q, Salon JA, Morse K, Laz T, Smith KE, Nagarathnam D, Noble SA, Branchek TA, Gerald C (1998) GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature 396:674–679.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Kaupmann K, Malitschek B, Schuler V, Heid J, Froestl W, Beck P, Mosbacher J, Bischoff S, Kulik A, Shigemoto R, Karschin A, Bettler B (1998) GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature 396:683–687.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Krnjevic K (1984) Some functional consequences of GABA uptake by brain cells. Neurosci Lett 47:283–287.

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Schliebs R (1993) Postnatal ontogeny of GABAA and benzodiazepine receptors in individual layers of rat visual cortex and the effect of visual deprivation. Neurochem Int 23:99–106.

    Article  CAS  PubMed  Google Scholar 

  • Kuner R, Kohr G, Grunewald S, Eisenhardt G, Bach A, Kornau HC (1999) Role of heteromer formation in GABAB receptor function. Science 283:74–77.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Luddens H, Korpi ER, Seeburg PH (1995) GABAA/benzodiazepine receptor heterogeneity: neurophysiological implications. Neuropharmacology 34:245–254.

    Article  CAS  PubMed  Google Scholar 

  • Luscher C, Jan LY, Stoffel M, Malenka RC, Nicoll RA (1997) G protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron 19:687–695.

    Article  CAS  PubMed  Google Scholar 

  • Macdonald RL, Olsen RW (1994) GABAA receptor channels. Annu Rev Neurosci 17:569–602.

    CAS  PubMed  Google Scholar 

  • Misgeld U, Bijak M, Jarolimek W (1995) A physiological role for GABAB receptors and the effects of baclofen in the mammalian central nervous system. Prog Neurobiol 46:423–462.

    Article  CAS  PubMed  Google Scholar 

  • Mody I, De Koninck Y, Otis TS, Soltesz I (1994) Bridging the cleft at GABA synapses in the brain. Trends Neurosci 17:517–525.

    Article  CAS  PubMed  Google Scholar 

  • Molotchnikoff S, Durand V, Casanova C (1994) Visual cortical neuron responses to drifting sine-wave gratings in rabbits. Int J Neurosci 77:99–115.

    Article  CAS  PubMed  Google Scholar 

  • Morales B, Choi SY, Kirkwood A (2002) Dark rearing alters the development of GABAergic transmission in visual cortex. J Neurosci 22:8084–8090.

    CAS  PubMed  Google Scholar 

  • Mower GD, Christen WG, Burchfiel JL, Duffy FH (1984) Microiontophoretic bicuculline restores binocular responses to visual cortical neurons in strabismic cats. Brain Res 309:168–172.

    Article  CAS  PubMed  Google Scholar 

  • Munoz A, DeFelipe J, Jones EG (2001) Patterns of GABA(B)R1a,b receptor gene expression in monkey and human visual cortex. Cereb Cortex 11:104–113.

    Article  CAS  PubMed  Google Scholar 

  • Peters A, Jones EG (1984) Cellular components of the cerebral cortex. New York: Plenum Press.

    Google Scholar 

  • Prieto JJ, Peterson BA, Winer JA (1994a) Laminar distribution and neuronal targets of GABAergic axon terminals in cat primary auditory cortex (AI). J Comp Neurol 344:383–402.

    Article  CAS  PubMed  Google Scholar 

  • Prieto JJ, Peterson BA, Winer JA (1994b) Morphology and spatial distribution of GABAergic neurons in cat primary auditory cortex (AI). J Comp Neurol 344:349–382.

    Article  CAS  PubMed  Google Scholar 

  • Qian H, Pan Y, Zhu Y, Khalili P (2005) Picrotoxin accelerates relaxation of GABAC receptors. Mol Pharmacol 67:470–479.

    Article  CAS  PubMed  Google Scholar 

  • Ramoa AS, Paradiso MA, Freeman RD (1988) Blockade of intracortical inhibition in kitten striate cortex: effects on receptive field properties and associated loss of ocular dominance plasticity. Exp Brain Res 73:285–296.

    Article  CAS  PubMed  Google Scholar 

  • Rosier AM, Arckens L, Demeulemeester H, Orban GA, Eysel UT, Wu YJ, Vandesande F (1995) Effect of sensory deafferentation on immunoreactivity of GABAergic cells and on GABA receptors in the adult cat visual cortex. J Comp Neurol 359:476–489.

    Article  CAS  PubMed  Google Scholar 

  • Rothe T, Schliebs R (1989) Laminar distribution of benzodiazepine receptors in visual cortex of adult rat. Gen Physiol Biophys 8:371–380.

    CAS  PubMed  Google Scholar 

  • Schliebs R, Rothe T (1988) Development of GABAA receptors in the central visual structures of rat brain. Effect of visual pattern deprivation. Gen Physiol Biophys 7:281–291.

    CAS  PubMed  Google Scholar 

  • Shatz CJ, Stryker MP (1978) Ocular dominance in layer IV of the cat’s visual cortex and the effects of monocular deprivation. J Physiol 281:267–283.

    CAS  PubMed  Google Scholar 

  • Shaw C, Needler MC, Cynader M (1984) Ontogenesis of muscimol binding sites in cat visual cortex. Brain Res Bull 13:331–334.

    Article  CAS  PubMed  Google Scholar 

  • Shaw C, Cameron L, March D, Cynader M, Zielinski B, Hendrickson A (1991) Preand postnatal development of GABA receptors in Macaca monkey visual cortex. J Neurosci 11:3943–3959.

    CAS  PubMed  Google Scholar 

  • Sillito AM (1975a) The effectiveness of bicuculline as an antagonist of GABA and visually evoked inhibition in the cat’s striate cortex. J Physiol 250:287–304.

    CAS  PubMed  Google Scholar 

  • Sillito AM (1975b) The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. J Physiol 250:305–329.

    CAS  PubMed  Google Scholar 

  • Sillito AM (1977) Inhibitory processes underlying the directional specificity of simple, complex and hypercomplex cells in the cat’s visual cortex. J Physiol 271:699–720.

    CAS  PubMed  Google Scholar 

  • Sillito AM (1979) Inhibitory mechanisms influencing complex cell orientation selectivity and their modification at high resting discharge levels. J Physiol 289:33–53.

    CAS  PubMed  Google Scholar 

  • Sillito AM, Versiani V (1977) The contribution of excitatory and inhibitory inputs to the length preference of hypercomplex cells in layers II and III of the cat’s striate cortex. J Physiol 273:775–790.

    CAS  PubMed  Google Scholar 

  • Sillito AM, Kemp JA, Patel H (1980) Inhibitory interactions contributing to the ocular dominance of monocularly dominated cells in the normal cat striate cortex. Exp Brain Res 41:1–10.

    Article  CAS  PubMed  Google Scholar 

  • Somogyi P, Cowey A, Halasz N, Freund TF (1981) Vertical organization of neurons accumulating 3H-GABA in visual cortex of rhesus monkey. Nature 294: 761–763.

    Article  CAS  PubMed  Google Scholar 

  • Tremere L, Hicks TP, Rasmusson DD (2001a) Expansion of receptive fields in raccoon somatosensory cortex in vivo by GABA(A) receptor antagonism: implications for cortical reorganization. Exp Brain Res 136:447–455.

    Article  CAS  PubMed  Google Scholar 

  • Tremere L, Hicks TP, Rasmusson DD (2001b) Role of inhibition in cortical reorganization of the adult raccoon revealed by microiontophoretic blockade of GABA(A) receptors. J Neurophysiol 86:94–103.

    CAS  PubMed  Google Scholar 

  • Tremere LA, Pinaud R, De Weerd P (2003) Contributions of inhibitory mechanisms to perceptual completion and cortical reorganization. In: Filling-in: from perceptual completion to cortical reorganization (Pessoa L, De Weerd P, eds), pp 295–322. New York: Oxford University Press.

    Google Scholar 

  • Wegelius K, Pasternack M, Hiltunen JO, Rivera C, Kaila K, Saarma M, Reeben M (1998) Distribution of GABA receptor rho subunit transcripts in the rat brain. Eur J Neurosci 10:350–357.

    Article  CAS  PubMed  Google Scholar 

  • White JH, Wise A, Main MJ, Green A, Fraser NJ, Disney GH, Barnes AA, Emson P, Foord SM, Marshall FH (1998) Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature 396:679–682.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Wiesel TN, Hubel DH (1963) Single-Cell Responses in Striate Cortex of Kittens Deprived of Vision in One Eye. J Neurophysiol 26:1003–1017.

    CAS  PubMed  Google Scholar 

  • Xing J, Gerstein GL (1996a) Networks with lateral connectivity. I. dynamic properties mediated by the balance of intrinsic excitation and inhibition. J Neurophysiol 75:184–199.

    CAS  PubMed  Google Scholar 

  • Xing J, Gerstein GL (1996b) Networks with lateral connectivity. III. Plasticity and reorganization of somatosensory cortex. J Neurophysiol 75:217–232.

    CAS  PubMed  Google Scholar 

  • Zhang D, Pan ZH, Awobuluyi M, Lipton SA (2001) Structure and function of GABA(C) receptors: a comparison of native versus recombinant receptors. Trends Pharmacol Sci 22:121–132.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Tremere, L.A., Pinaud, R. (2006). Intra-cortical Inhibition in the Regulation of Receptive Field Properties And Neural Plasticity in the Primary Visual Cortex. In: Pinaud, R., Tremere, L.A., De Weerd, P. (eds) Plasticity in the Visual System. Springer, Boston, MA. https://doi.org/10.1007/0-387-28190-8_11

Download citation

Publish with us

Policies and ethics