Skip to main content

Plasticity of Retinotopic Maps in Visual Cortex of Cats and Monkeys After Lesions of the Retina or Primary Visual Cortex

  • Chapter
Plasticity in the Visual System

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albright TD, Stoner GR. 2002. Contextual influences on visual processing. Annu Rev Neurosci 25:339–379.

    Article  CAS  PubMed  Google Scholar 

  • Allman JM, Kaas JH. 1971. A representation of a visual field in the caudal third of the middle temporal gyrus of the owl monkey (Aotus trivirgatus). Brain Research 31:85–105.

    Article  CAS  PubMed  Google Scholar 

  • Angelucci A, Levitt JB, Walton EJ, Hupe JM, Bullier J, Lund JS. 2002. Circuits fro local and global signal integration in primary visual cortex. J Neurosci 22:8633–8646.

    CAS  PubMed  Google Scholar 

  • Arckens L, Eysel UT, Vanderhaeghen J-J, Orban GA, Vandesande F. 1998. Effect of sensory deafferentation on the GABAergic circuitry of the adult cat visual system. Neurosci 83:381–391.

    CAS  Google Scholar 

  • Bair W, Cavanaugh JR, Movshon JA. 2003. Time course and time-distance relationships for surrond suppression in macaque V1 neurons. J Neurosci 23:7690–7701.

    CAS  PubMed  Google Scholar 

  • Baisden RH, Polley EH, Goodman DC, Wolf ED. 1980. Absence of sprouting by retinogeniculate axons after chronic focal lesions in the adult cat retina. Neurosci Lett 17:33–38.

    Article  CAS  PubMed  Google Scholar 

  • Barbur JL, Watson JDG, Frackowiak RSJ, Zeki SM. 1993. Conscious visual perception without V1. Brain 116:1293–1302.

    PubMed  Google Scholar 

  • Bender DB. 1983. Visual activation of neurons in the primate pulvinar depends on cortex but not colliculus. Brain Res 279:258–261.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Bringuier V, Chavane F, Glaeser L, Fregnac Y. 1999. Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science 283: 695–699.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Bullier J. 2004. Hierarchies of cortical areas, in: The Primate Visual System, J.H. Kaas, C.E. Collins, eds., CRC Press, Boca Raton, pp. 181–204.

    Google Scholar 

  • Bullier J, Girard P, Salin P-A. 1994, The role of area 17 in the transfer of information to extrastriate visual cortex, in: Cerebral Cortex, A. Peters, K. S. Rockland, eds., Plenum Press, New York, pp. 301–330.

    Google Scholar 

  • Calford M, Schmid LM, Rosa MG. 1999, Monocular focal retinal lesions induce short-term topographic plasticity in adult cat visual cortex. Proc Royal Soc Lond B Biol Sci 266:499–507.

    CAS  Google Scholar 

  • Calford M, Wang C, Taglianetti V, Waleszezyk RJ, Burke W, Dreher B. 2000, Plasticity in adult cat visual cortex (area 17) following circumscribed monocular lesions of all retinal layers, J Physiol 524:587–605.

    Article  CAS  PubMed  Google Scholar 

  • Calford MB, Wright LI, Metha AB, Taglianetti V. 2003. Topographic plasticity in primary visual cortex is mediated by local corticocortical connections. J Neurosci. 23:6434–6442.

    CAS  PubMed  Google Scholar 

  • Casagrande VA, Kaas JH. 1994. The afferent, intrinsic, and efferent connections of primary visual cortex in primates, in: A. Peters, K. S. Rockland, eds., Cerebral Cortex, Plenum Press, New York, pp. 201–259.

    Google Scholar 

  • Cavanaugh JR, Bair W, Movshon JA. 2002a, Nature and interaction of signals from the receptive field center and surround in maca1ue V1 neurons, J Neurophysiol 88:2530–2546.

    PubMed  Google Scholar 

  • Cavanaugh JR, Bair W, Movshon JA. 2002b. Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons. J Neurophysiol 88:2547–2556.

    PubMed  Google Scholar 

  • Chapman B, Stone LS. 1996. Turning a blind eye to cortical receptive fields. Neuron 16:9–12.

    Article  CAS  PubMed  Google Scholar 

  • Chino Y, Smith EL, Zhang B, Matsuura K, Mori T, Kaas JH. 2001. Recovery of binocular responses by cortical neurons after early monocular lesions. Nat Neurosci 4:689–690.

    Article  CAS  PubMed  Google Scholar 

  • Chino YM, Kaas JH, Smith EL, III., Langston AL, Cheng H. 1992. Rapid reorganization of cortical maps in adult cats following restricted deafferentation in retina. Vis Res 32:789–796.

    CAS  PubMed  Google Scholar 

  • Chino YM, Smith EL, Kaas JH, Sasaki Y, Cheng H. 1995. Receptive-field properties of deafferentated visual cortical neurons after topographic map reorganization in adult cats. J Neurosci 15:2417–2433.

    CAS  PubMed  Google Scholar 

  • Chowdhury SR, Rasmusson DD. 2003. Corticocortical inhibition of peripheral inputs within primary somatosensory cortex: The role of GABAA and GABAB receptors. J Neurophysiol 90:851–856.

    CAS  PubMed  Google Scholar 

  • Collins CE, Lyon DC, Kaas JH. 2003. Responses of neurons in the middle temporal visual area after long-standing lesions of the primary visual cortex in adult new world monkeys. J Neurosci 23:2251–2264.

    CAS  PubMed  Google Scholar 

  • Collins CE, Xu X, Khaytin I, Kaskan PM, Casagrande VA, Kaas JH. 2005. Optical imaging of visually evoked responses in the middle temporal area after deactivation of primal visual cortex in adult primates. Proc.Natl.Acad. Sci. USA 102:5594–5599.

    CAS  ADS  PubMed  Google Scholar 

  • Cotman CW, Nieto-Sampedro M. 1982. Brain function, synapse renewal, and plasticity. Annu Rev Psych 33:371–401.

    CAS  Google Scholar 

  • Cowey A, Stoerig P. 1993. Insights into blindsight. Curr Biol 3:236–238.

    Article  CAS  PubMed  Google Scholar 

  • Cusick CG, Gould HJI, Kaas JH. 1984. Interhemispheric connections of visual cortex of owl monkeys (Aotus trivirgatus), marmosets (Callithrix jacchus), and galagos (Galago crassicaudatus). J Comp Neurol 230:311–336.

    Article  CAS  PubMed  Google Scholar 

  • Cusick CG, Kaas JH. 1988. Surface view patterns of intrinsic and extrinsic cortical connections of area 17 in a prosimian primate. Brain Res 458:383–388.

    CAS  PubMed  Google Scholar 

  • Darian-Smith C, Gilbert CD. 1994. Axonal sprouting accompanies functional reorganization in adult cat striate cortex. Nature 368:737–740.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Darian-Smith C, Gilbert CD. 1995. Topographic reorganization in the striate cortex of the adult cat and monkey is cortically mediated. J Neurosci 15:1631–1647.

    CAS  PubMed  Google Scholar 

  • Das A, Gilbert CD. 1995. Long-range horizontal connections and their role in cortical reorganization revealed by optical recording of cat primary visual cortex. Nature 375:780–784.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Davis KD, Kiss ZHT, Luo L, Tasker RR, Lozano AM, Dostrovsky JO. 1998. Phantom sensations generated by thalamic microstimulation. Nature 391:385–387.

    CAS  ADS  PubMed  Google Scholar 

  • De Angelis GC, Anzai A, Ohzawa I, Freeman RD. 1995. Receptive field structure in the visual cortex: Does selective stimulation induce plasticity? Proc Natl Acad Sci U S A 92:9682–9686.

    ADS  Google Scholar 

  • De Weerd P, Gattass R, Desimone R, Ungerleider LG. 1995. Responses of cells in monkey visual cortex during perceptual filling-in of an artifical scotoma. Nature 377:731–734.

    Article  ADS  PubMed  Google Scholar 

  • Dykes RW. 1997. Mechanisms controlling neuronal plasticity in somatosensory cortex. Can J Physiol Pharm 75:535–545.

    Article  CAS  Google Scholar 

  • Ergenzinger ER, Glasier MM, Hahm JO, Pons TP. 1998. Cortically induced thalamic plasticity in the primate somatosensory system. Nat Neurosci 1:226–229.

    Article  CAS  PubMed  Google Scholar 

  • Eyding D, Schweigart G, Eysel UT. 2002. Spatio-temporal plasticity of cortical receptive fields in response to repetitive visual stimulation in the adult cat. Neurosci 112: 195–215.

    Article  CAS  Google Scholar 

  • Eysel UT. 1982. Functional reconnections without new axonal growth in a partially denervated visual relay nucleus. Nature 299:442–444.

    Article  CAS  PubMed  Google Scholar 

  • Eysel UT, Schweigart G. 1999. Increased receptive field size in the surround of chronic lesions in the adult cat visual cortex. Cereb Cortex 9:101–109.

    Article  CAS  PubMed  Google Scholar 

  • Eysel UT, Gonzalez-Aguillar F, Mayer U. 1980. A functional sign of reorganization in the visual system of adult cats: lateral geniculate neurons with displaced receptive fields after lesions of the nasal retina. Brain Res 191:285–300.

    Google Scholar 

  • Eysel UT, Eyding D, Schweigart G. 1998. Receptive optical stimulation elicits fast receptive field changes in mature visual cortex. NeuroReport 9:949–954.

    CAS  PubMed  Google Scholar 

  • Felleman DJ, Van Essen DC. 1991. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47.

    CAS  PubMed  Google Scholar 

  • Fendrich R, Wessinger CM, Gazzaniga MS. 1992. Residual vision in a scotoma: implications for blindsight. Science 258:1489–1491.

    CAS  ADS  PubMed  Google Scholar 

  • Florence SL, Wall JT, Kaas JH. 1989. Somatotopic organization of inputs from the hand to the spinal gray and cuneate nucleus of monkeys with observations on the cuneate nucleus of humans. J Comp Neurol 286:48–70.

    Article  CAS  PubMed  Google Scholar 

  • Florence SL, Taub HB, Kaas JH. 1998. Large-scale sprouting of cortical connections after peripheral injury in adult macaque monkeys. Science 282:1117–1121.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Frahm HD, Zilles K, Schleicher A, Stephan H. 1998. The size of the middle temporal visual area in primates. J Hirnforsch 39:45–54.

    CAS  PubMed  Google Scholar 

  • Garraghty PE, LaChica EA, Kaas JH. 1991. Injury-induced reorganization of somatosensory cortex is accompanied by reductions in GABA staining. Somatosens Mot Res 8:347–354.

    CAS  PubMed  Google Scholar 

  • Gattass R, Gross CG. 1981. Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque. J Neurophysiol 3:621–638.

    Google Scholar 

  • Gerrits HJ, Timmerman GJ. 1969. The filling-in process in patients with retinal scotomata. Vis Res 9:439–442.

    CAS  PubMed  Google Scholar 

  • Gilbert CD, Wiesel TN. 1989. Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J Neurosci 9:2432–2442.

    CAS  PubMed  Google Scholar 

  • Gilbert CD, Wiesel TN. 1992. Receptive field dynamics in adult primary visual cortex. Nature 356:150–152.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Girard P, Salin P-A, Bullier J. 1991. Visual activity in areas V3a and V3 during reversible inactivation of area V1 in the macaque monkey. J Neurophysiol 66:1492–1503.

    Google Scholar 

  • Girard P, Salin P-A, Bullier J. 1992. Response selectivity of neurons in area MT of the macaque monkey during reversible inactivation of area V1. J Neurophysiol 67:1437–1446.

    CAS  PubMed  Google Scholar 

  • Heinen SJ, Skavenski AA. 1991. Recovery of visual responses in foveal V1 neurons following bilateral foveal lesions in adult monkey. Exp Brain Res 83:670–674.

    Article  CAS  PubMed  Google Scholar 

  • Hess G, Donoghue JP. 1994. Long-term potentiation of horizontal connections provides a mechanism to reorganize cortical motor maps. J Neurophysiol 71:2543–2547.

    CAS  PubMed  Google Scholar 

  • Horton JC, Hocking D. 1998. Monocular core zones and binocular border strips in primate striate cortex revealed by the contrasting effects of enucleation, eyelid suture, and retinal laser lesions on cytochrome oxidase activity. J Neurosci 18:5433–5455.

    CAS  PubMed  Google Scholar 

  • Hupe JM, James AC, Payne BR, Lomber SG, Girard P, Bullier J. 1998. Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature 394:784–787.

    CAS  ADS  PubMed  Google Scholar 

  • Hupe JM, James AC, Girard P, Bullier J. 2001a. Response modulations by static texture surround in area V1 of the macaque monkey do not depend on feedback connections from V2. J Neurophysiol 85:146–163.

    CAS  PubMed  Google Scholar 

  • Hupe JM, James AC, Girard P, Lomber SG, Payne BR, Bullier J. 2001b. Feedback connections act on the early part of the responses in monkey visual cortex. J Neurophysiol 85:134–145.

    CAS  PubMed  Google Scholar 

  • Jain N, Florence SL, Qi H-X, Kaas JH. 2000. Growth of new brain stem connections in adult monkeys with massive sensory loss. Proc Natl Acad Sci USA 97:5546–5550.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Jenkins WM, Merzenich MM. 1987. Reorganization of neocortical representations after brain injury: a neurophysiological model of the bases of recovery from stroke. Prog Brain Res 71:249–266.

    CAS  PubMed  Google Scholar 

  • Jones EG. 1993. GABAergic neurons and their role in cortical plasticity in primates. Cereb Cortex 3:361–372.

    CAS  PubMed  Google Scholar 

  • Kaas JH, Collins CE. 2003. Anatomic and functional reorganization of somatosensory cortex in mature primates after peripheral nerve and spinal cord injury. Adv Neurol 93:87–95.

    PubMed  Google Scholar 

  • Kaas JH, Florence SL. 2001. Reorganization of sensory and motor systems in adult mammals after injury. In: Kaas JH, ed.. The Mutable Brain. Amsterdam: Harwood Academic Publishers.

    Google Scholar 

  • Kaas JH, Lyon DC. 2001. Visual cortex organization in primates: theories of V3 and adjoining visual areas. Prog Brain Res 134:285–295.

    CAS  PubMed  Google Scholar 

  • Kaas JH, Krubitzer LA, Chino YM, Langston AL, Polley EH, Blair N. 1990. Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. Science 248:229–231.

    CAS  ADS  PubMed  Google Scholar 

  • Kaas JH, Krubitzer LA. 1992. Area 17 lesions deactivate area MT in owl monkeys. Vis. Neurosci. 9:399–407.

    CAS  PubMed  Google Scholar 

  • Kasten E, Wust S, Behrens-Baumann W, Sabel BA. 1998. Computer-based training for the treatment of partial blindness. Nat Med 9:1083–1087.

    Google Scholar 

  • Komatsu H, Kinoshita M, Murakami I. 2000. Neural responses in the retinotopic representation of the blind spot in the macaque V1 to stimuli for perceptual fillingin. J Neurosci 20:9310–9319.

    CAS  PubMed  Google Scholar 

  • Krubitzer LA, Kaas JH. 1990. Cortical connections of MT in four species of primates: Areal, modular, and retinotopic patterns. Vis Neurosci 5:165–204.

    CAS  PubMed  Google Scholar 

  • Matsuura K, Zhang B, Mori T, Smith EL, 3rd, Kaas JH, Chino Y. 2002. Topographic map reorganization in cat area 17 after early monocular retinal lesions. Vis Neurosci 19:85–96.

    Article  PubMed  Google Scholar 

  • Maunsell JHR, Nealey TA, DePriest DD. 1990. Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey. J Neurosci 10:3322–3334.

    Google Scholar 

  • McLean J, Palmer LA. 1998. Plasticity of neuronal response properties in adult cat striate cortex. Vis Neurosci 15:177–196.

    Article  CAS  PubMed  Google Scholar 

  • Merzenich MM, Kaas JH, Wall J, Nelson RJ, Sur M, Felleman D. 1983a. Topographic reorganization of somatosensory cortical areas 3b and 1 in adult monkeys following restricted deafferentation. Neurosci 8:33–55.

    Article  CAS  Google Scholar 

  • Merzenich MM, Kaas JH, Wall JT, Sur M, Nelson RJ, Felleman DJ. 1983b. Progression of change following median nerve section in the cortical representation of the hand in areas 3b and 1 in adult owl and squirrel monkeys. Neurosci 10:639–665.

    Article  CAS  Google Scholar 

  • Moore T, Rodman HR, Gross CG. 1998. Man, monkey, and blindsight. The Neuroscientist 4:227–230.

    Google Scholar 

  • Obata S, Obata J, Das A, Gilbert CD. 1999. Molecular correlates of topographic reorganization in primary visual cortex following retinal lesions. Cereb Cortex 9:238–248.

    Article  CAS  PubMed  Google Scholar 

  • Pernberg J, Jirmann KU, Eysel UT. 1998. Structure and dynamics of receptive fields in the visual cortex of the cat (area 18) and the influence of GABAergic inhibition. Eur J Neurosci 10:3596–3606.

    Article  CAS  PubMed  Google Scholar 

  • Pettet MW, Gilbert CD. 1992. Dynamic changes in receptive field size in cat primary visual cortex. Proc Natl Acad Sci USA 89:8366–8370.

    CAS  ADS  PubMed  Google Scholar 

  • Rockland KS. 2004. Feedback connections: splitting the arrow. In: Kaas JH, Collins CE, eds., The Primate Visual System. Boca Raton: CRC Press. p 387–405.

    Google Scholar 

  • Rodman HR, Gross CG, Albright TD. 1989. Afferent basis of visual response properties in area MT of the macaque: I. Effects of striate cortex removal. J. Neurosci 9:2033–2050.

    CAS  PubMed  Google Scholar 

  • Rodman HR, Gross CG, Albright TD. 1990. Afferent basis of visual response properties in area MT of the macaque. II: Effects of superior colliculus removal. J Neurosci 10:1154–1164.

    CAS  PubMed  Google Scholar 

  • Rosa MGP, Tweedale R. 2004. Maps of the visual field in the cerebral cortex of primates: functional organization and significance. In: Kaas JH, Collins CE, eds., The Primate Visual System. Boca Raton: CRC Press. p 261–288.

    Google Scholar 

  • Rosa MGP, Tweedale R, Elston GN. 2000. Visual responses of neurons in the middle temporal area of New World monkeys after lesions of striate cortex. J Neurosci 20:5552–5563.

    CAS  PubMed  Google Scholar 

  • Rosier AM, Arckens L, Demeulemeester H, Orban GA, Eysel UT, Wu YJ, Vandesande F. 1995. Effect of sensory deafferentation on immunoreactivity of GABAergic cells and on GABA receptors in the adult cat visual cortex. J Comp Neurol 359:476–489.

    Article  CAS  PubMed  Google Scholar 

  • Rushmore RJ, Payne BR. 2003. Bilateral impact of unilateral visual cortex lesions on the superior colliculus. Exp Brain Res 151:542–547.

    Article  PubMed  Google Scholar 

  • Sceniak MP, Hawken MJ, Shapley R. 2001. Visual spatial characterization of macaque V1 neurons. J Neurophysiol 85:1873–1887.

    CAS  PubMed  Google Scholar 

  • Schiller PH, Malpeli JG. 1977. The effect of striate cortex cooling on area 18 cells in the monkey. Brain Res 126:366–369.

    Article  CAS  PubMed  Google Scholar 

  • Schmid LM, Rosa MGP, Calford MB. 1995. Retinal detachment induces massive immediate reorganization in visual cortex. NeuroReport 6:1349–1353.

    CAS  PubMed  Google Scholar 

  • Schmid LM, Rosa MGP, Calford MB, Ambler JS. 1996. Visuotopic reorganization in the primary visual cortex of adult cats following monocular and binocular retinal lesions. Cereb Cortex 6:388–405.

    CAS  PubMed  Google Scholar 

  • Schweigart G, Eysel UT. 2002. Activity-dependent receptive field changes in the surround of adult cat visual cortex lesions. Eur J Neurosci 15:1585–1596.

    Article  PubMed  Google Scholar 

  • Sergent J. 1988. An investigation into perceptual completion in blind areas of the visual field. Brain 111:347–373.

    PubMed  Google Scholar 

  • Stelzner DJ, Keating EG. 1977. Lack of intralaminar sprouting of retinal axons in monkey LGN. Brain Res 126:201–221.

    Article  CAS  PubMed  Google Scholar 

  • Stepniewska I, Kaas JH. 1996. Topographic patterns of V2 cortical connections in macaque monkeys. J Comp Neurol 371:129–152.

    Article  CAS  PubMed  Google Scholar 

  • Stepniewska I, Qi H-X, Kaas JH. 1999. Do superior colliculus projection zones in the inferior pulvinar project to MT in primates? J Eur Neurosci 11:469–480.

    CAS  Google Scholar 

  • Stepniewska I, Sakai ST, Qi H-X, Kaas JH. 2003. Somatosensory input to the ventrolateral thalamic region (VL) in the macaque monkey. A potential substrate for Parkinsonian tremor. J Comp Neurol 455:378–395.

    Article  PubMed  Google Scholar 

  • Stettler DD, Das A, Bennett J, Gilbert CD. 2002. Lateral connectivity and contextual interactions in macaque primary visual cortex. Neuron 36:739–750.

    Article  CAS  PubMed  Google Scholar 

  • Toth LJ, Rao SC, Kim DS, Somers D, Sur M. 1996. Subthreshold facilitation and suppression in primary visual cortex revealed by intrinsic signal imaging. Proc Natl Acad Sci U S A 93:9869–9874.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Tucker TR, Fitzpatrick D. 2003. Contributions of vertical and horizontal circuits to the response properties of neurons in primary visual cortex. In: The Visual Neurosciences. Cambridge, MA: MIT Press. p 733–764.

    Google Scholar 

  • Tusa RJ, Palmer LA, Rosenquest AC. 1978. The retinotopic organization of area 17 (striate cortex) in the cat. J Comp Nuerol 177:213–236.

    CAS  Google Scholar 

  • Van Essen DC, Maunsell JH, Bixby JL. 1981. The middle temporal visual area in the macaque: myeloarchitecture, connections, functional properties and topographic organization. J Comp Neurol 199:293–326.

    PubMed  Google Scholar 

  • Wall PD. 1977. The presence of ineffective synapses and the circumstances which unmask them. Phil Trans B Royal Soc, London 278:361–372.

    CAS  ADS  Google Scholar 

  • Weiskrantz L. 1986. Blindsight: A case study and implications. Oxford: Oxford Univ Press.

    Google Scholar 

  • Weiskrantz L, Cowey A. 1967. Comparison of the effects of striate cortex and retinal lesions in visual acuity in the monkey. Science 155:104–106.

    CAS  ADS  PubMed  Google Scholar 

  • Weller RE, Kaas JH. 1983. Retinotopic patterns of connections of area 17 with visual areas V–II and MT in macaque monkeys. J Comp Neurol 220:253–279.

    Article  CAS  PubMed  Google Scholar 

  • Wessinger CM, Fendrich R, Gazzaniga MS. 1997. Islands of residual vision in hemianopic patients. J Cogn Neurosci 9:203–221.

    Google Scholar 

  • Wolff JR, Missler M. 1992. Synaptic reorganization in developing and adult nervous systems. Ann Anat 174:393–403.

    CAS  PubMed  Google Scholar 

  • Wu CW, Kaas JH. 2002. The effects of long-standing limb loss on anatomical reorganization of the somatosensory afferents in the brainstem and spinal cord. Somatosens Mot Res 19:153–163.

    Article  PubMed  Google Scholar 

  • Zepeda A, Saengpiel F, Guagnelli MA, Vaca L, Arias C. 2004. Functional reorganization of visual cortex maps after ischemic lesions is accompanied by changes in expression of cytoskeletal proteins and NMDA and GABAA receptor subunits. J Neurosci 24:1812–1821.

    Article  CAS  PubMed  Google Scholar 

  • Ziemann U, Corwell B, Cohen LG. 1998. Modulation of plasticity in human motor cortex after forearm ischemic nerve block. J Neurosci 18:1115–1123.

    CAS  PubMed  Google Scholar 

  • Zihl J, von Cramon D. 1985. Visual field recovery from scotoma in patients with postgeniculate damage. Brain 108:335–365.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Kaas, J.H., Collins, C.E., Chino, Y.M. (2006). Plasticity of Retinotopic Maps in Visual Cortex of Cats and Monkeys After Lesions of the Retina or Primary Visual Cortex. In: Pinaud, R., Tremere, L.A., De Weerd, P. (eds) Plasticity in the Visual System. Springer, Boston, MA. https://doi.org/10.1007/0-387-28190-8_10

Download citation

Publish with us

Policies and ethics