Skip to main content

Structure, Phosphorylation, and Biological Function of the HIV-1 Specific Virus Protein U (Vpu)

  • Chapter
Viral Membrane Proteins: Structure, Function, and Drug Design

Part of the book series: Protein Reviews ((PRON,volume 1))

Abstract

Knowledge describing the structure and function of the small regulatory human immunodeficiency virus type 1 (HIV-1) viral protein U (Vpu) has increased significantly over the last decade. Vpu is an 81 amino acid class I oligomeric integral-membrane phosphoprotein that is encoded exclusively by HIV-1. It can therefore be anticipated, that Vpu might contribute to the increased pathogenic potential of HIV-1 when compared with HIV-2 that has so far had a lower impact on the acquired immune deficiency syndrome (AIDS) pandemic. Various biological functions have been ascribed to Vpu: first, in the endoplasmic reticulum (ER) Vpu induces degradation of CD4 in a process involving the ubiquitin-proteasome pathway and phosphorylation of its cytoplasmic tail. In addition, there is also evidence that Vpu interferes with major histocompatibility complex (MHC) class I antigen presentation and regulates Fas mediated apoptosis. Second, Vpu augments virus release from a post ER compartment by a cation-selective ion channel activity mediated by its transmembrane (TM) anchor. The phosphorylation of the molecule is mediated by the ubiquitous protein kinase caseinkinase 2 (CK-2) within a central conserved dodecapeptide at positions Ser52 and Ser56 located in a flexible hinge region between two helical domains. Structural information, provided experimentally mainly by solution- and solid-state nuclear magnetic resonance (NMR) spectroscopy and made possible through the availability of synthetic and recombinant material, have shown that the biological activities of Vpu are localized in two distinct domains that are mainly confined to the C-terminal cytoplasmic and N-terminal TM domains, respectively. Similar to other small viral proteins that interact with membranes Vpu is a very flexible molecule whose structure is exceptionally environment dependent. It assumes it’s most structured form in the hydrophobic environment in or at the membrane. An initial 20–23 residue α-helix in the N-terminus adopts a TM alignment while the cytoplasmic tail forms an α-helix-flexible-α-helix-turn motif, of which at least a part is bound parallel to the membrane surface. Details of the arrangement of oligomeric forms of the molecule that are presumably required for the ion channel activity, are emerging from recent theoretical calculations, while this particular function is currently the area of pharmaceutical interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldrovandi, G.M., and Zack, J.A. (1996). Replication and pathogenicity of human immunodeficiency virus type 1 accessory gene mutants in SCID-hu Mice. J. Virol. 70, 1505–1511.

    PubMed  CAS  Google Scholar 

  • Barre-Sinoussi, F., Cherman, J.C., Rey, F., Nugeyre, M.T., Chamaret, S., Gruest, J. et al. (1983). Isolation of a T-lympohotropic retrovirus from a patient at risk for acquired immunodeficiency syndrome (AIDS). Science 220, 868–870.

    Article  PubMed  CAS  Google Scholar 

  • Buck, M. (1998). Trifluoroethanol and colleagues: Cosolvents come of age. Recent studies with peptides and proteins. Q. Rev. Biophys. 31, 297–355.

    Article  PubMed  CAS  Google Scholar 

  • Brünger, A.T. (1992). X-PLOR, Version 3.1, A system for X-ray crystallography and NMR. Yale University Press, New Haven and London.

    Google Scholar 

  • Casella, C.R., Rapaport, E.L., and Finkel, T.H. (1999). Vpu increases susceptibility of human immunodeficiency virus type 1-infected cells to fas killing. J. Virol. 73, 92–100.

    PubMed  CAS  Google Scholar 

  • Chen, M.Y., Maldarelli, F., Karczewski, M.K., Willey, R.L., and Strebel, K. (1993). Human immunodeficiency virus type 1 Vpu protein induces degradation of CD4 in vitro: The cytoplasmic domain of CD4 contributes to Vpu sensitivity. J. Virol. 67, 3877–3884.

    PubMed  CAS  Google Scholar 

  • Coadou, G., Evrard-Todeschi, N., Gharbi-Benarous, J., Benarous, R., and Girault, J.P. (2002). HIV-1 encoded virus protein U (Vpu) solution structure of the 41–62 hydrophilic region containing the phosphorylated sites Ser52 and Ser56. Int. J. Biol. Macromol. 30, 23–40.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, E.A., Terwilliger, E.F., Sodroski, J.G., and Haseltine, W.A. (1988). Identification of a protein encoded by the vpu gene of HIV-1. Nature 334, 532–534.

    Article  PubMed  CAS  Google Scholar 

  • Cordes, F.S., Tustian, A.D., Sansom, M.S., Watts, A., and Fischer, W.B. (2002). Bundles consisting of extended transmembrane segments of Vpu from HIV-1: Computer simulations and conductance measurements. Biochemistry 41, 7359–7365.

    Article  PubMed  CAS  Google Scholar 

  • Ewart, G.D., Mills, K., Cox, G.B., and Gage, P.W. (2002). Amiloride derivatives block ion channel activity and enhancement of virus-like particle budding caused by HIV-1 protein Vpu. Eur. Biophys. J. 31, 26–35.

    Article  PubMed  CAS  Google Scholar 

  • Ewart, G.D., Sutherland, T, Gage, P.W., and Cox, G.B. (1996). The Vpu protein of human immunodeficiency virus type 1 forms cation-selective ion channels. J. Virol. 70, 7108–7115

    PubMed  CAS  Google Scholar 

  • Federau, T., Schubert, U., Flossdorf, J., Henklein, P., Schomburg, D., and Wray, V. (1996). Solution structure of the cytoplasmic domain of the human immunodeficiency virus type 1 encoded virus protein U (Vpu). Int. J. Pept. Protein Res. 47, 297–310.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, W.B. and Sansom, M.S. (2002). Viral ion channels: Structure and function. Biochim. Biophys. Acta 1561, 27–45.

    Article  PubMed  CAS  Google Scholar 

  • Friborg, J., Ladha, A. Goettlinger, H., Haseltine, W.A., and Cohen, E.A. (1995). Functional analysis of the phosphorylation sites on the human immunodeficiency virus type 1 Vpu protein. J. Acquired Immune Def. Syndr. Hum. Retrovir. 8, 10–22.

    CAS  Google Scholar 

  • Fujita, K., Omura, S., and Silver, J. (1997). Rapid degradation of CD4 in cells expressing HIV-1 Env and Vpu is blocked by proteasome inhibitors. J. Gen. Virol. 78, 619–625.

    PubMed  CAS  Google Scholar 

  • Gonzalez, M.E. and Carrasco, L. (1998). The human immunodeficiency virus type 1 Vpu protein enhances membrane permeability. Biochemistry 37, 13710–13719.

    Article  PubMed  CAS  Google Scholar 

  • Henklein, P., Schubert, U., Kunert, O., Klabunde, S., Wray, V., Kloppel, K.D. et al. (1993). Synthesis and characterization of the hydrophilic C-terminal domain of the human immunodeficiency virus type 1-encoded virus protein U (Vpu). Pept. Res. 6, 79–87.

    PubMed  CAS  Google Scholar 

  • Henklein, P., Kinder, R., Schubert, U., and Bechingerm, B. (2000). Membrane interactions and alignment of structures within the HIV-1 Vpu cytoplasmic domain: Effect of phosphorylation of serines 52 and 56. FEBS Lett. 482, 220–224.

    Article  PubMed  CAS  Google Scholar 

  • Ho Park, S., Mrse, A.A., Nevzorov, A.A., Mesleh, M.F., Oblatt-Montal, M., Montal, M. et al. (2003). Three-dimensional structure of the channel-forming transmembrane domain of virus protein “u” (Vpu) from HIV-1. J. Mol. Biol. 333, 409–424.

    Article  CAS  Google Scholar 

  • Huet, T., Cheynier, R., Meyerhans, A., Roelants, G., and Wain-Hobson, S. (1990). Genetic organization of a chimpanzee lentivirus related to HIV-1. Nature 345, 356–359.

    Article  PubMed  CAS  Google Scholar 

  • Kanki, P.J., Travers, K.U., MBoup, S., Hsieh, C.C., Marlink, R.G., Gueye-Ndiaye, A. et al. (1994). Slower heterosexual spread of HIV-2 than HIV-1. Lancet 343, 943–946.

    Article  PubMed  CAS  Google Scholar 

  • Klimkait, T., Strebel, K., Hoggan, M.D., Martin, M.A., and Orenstein, J.M. (1990). The human immunodeficiency virus type 1-specific protein vpu is required for efficient virus maturation and release. J. Virol. 64, 621–629.

    PubMed  CAS  Google Scholar 

  • Kerkau, T., Bacik, I., Bennink, J.R., Yewdell, J.W., Hunig, T. et al. (1997). The human immunodeficiency virus type 1 (HIV-1) Vpu protein interferes with an early step in the biosynthesis of major histocompatibility complex (MHC) class I molecules. J. Exp. Med. 185, 1295–1305.

    Article  PubMed  CAS  Google Scholar 

  • Kukol, A. and Arkin, I.T. (1999). Vpu transmembrane peptide structure obtained by site-specific fourier transform infrared dichroism and global molecular dynamics searching. Biophys J. 77, 1594–1601.

    PubMed  CAS  Google Scholar 

  • Lama, J., Mangasarian, A., and Trono, D. (1999). Cell-surface expression of CD4 reduces HIV-1 infectivity by blocking Env incorporation in a Nef-and Vpu-inhibitable manner. Curr. Biol. 9, 622–631.

    Article  PubMed  CAS  Google Scholar 

  • Lamb, R.A. and Pinto, L.H. (1997). Do Vpu and Vpr of human immunodeficiency virus type 1 and NB of influenza B virus have ion channel activities in the viral life cycles? Virology 229, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Li, J.T., Halloran, M., Lord, C.I., Watson, A., Ranchalis, J., Fung, M. et al. (1995). Persistent infection of macaques with simian-human immunodeficiency viruses. J. Virol. 69, 7061–7067.

    PubMed  CAS  Google Scholar 

  • Lopez, C.F., Montal, M., Blasie, J.K., Klein, M.L., and Moore, P.B. (2002). Molecular dynamics investigation of membrane-bound bundles of the channel-forming transmembrane domain of viral protein U from the human immunodeficiency virus HIV-1. Biophys. J. 83, 1259–1267.

    PubMed  CAS  Google Scholar 

  • Ma, C., Marassi, F.M., Jones, D.H., Straus, S.K., Bour, S., Strebel, K. et al. (2002). Expression, purification, and activities of full-length and truncated versions of the integral membrane protein Vpu from HIV-1. Protein Sci. 11, 546–557.

    Article  PubMed  CAS  Google Scholar 

  • Maldarelli, F., Chen, M.-Y., Willey, R.L., and Strebel, K. (1993). Human immunodeficiencyvirus type 1 Vpu protein is an oligomeric type 1 integral membrane protein. J. Virol. 67, 5056–5061

    PubMed  CAS  Google Scholar 

  • Marassi, F.M., Ma, C., Gratkowski, H., Straus, S.K., Strebel, K., Oblatt-Montal, M. et al. (1999). Correlation of the structural and functional domains in the membrane protein Vpu from HIV-1. Proc. Natl. Acad. Sci. USA 96, 14336–14341.

    Article  PubMed  CAS  Google Scholar 

  • Margottin, F., Bour, S.P., Durand, H., Selig, L., Benichou, S., Richard, V. et al. (1998). A novel human WD protein, h-beta TrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif. Mol. Cell 1, 565–574.

    Article  PubMed  CAS  Google Scholar 

  • Marlink, R., Kanki, P., Thior, I., Travers, K., Eisen, G., Siby, T. et al. (1994). Reduced rate of disease development after HIV-2 infection as compared to HIV-1. Science 265, 1587–1590.

    Article  PubMed  CAS  Google Scholar 

  • Miller, R. and Sarver, N. (1997). HIV accessory proteins as therapeutic targets. Nature Med. 3, 389–394.

    Article  PubMed  CAS  Google Scholar 

  • Niefind, K. and Schomburg, D. (1991). Amino acid similarity coefficients for protein modelling and sequence alignment derived from main chain folding angles. J. Mol. Biol. 219, 481–497.

    Article  PubMed  CAS  Google Scholar 

  • Paul, M. and Jabbar, M.A. (1997). Phosphorylation of both phosphoacceptor sites in the HIV-1 Vpu cytoplasmic domain is essential for Vpu-mediated ER degradation of CD4. Virology 232, 207–216.

    Article  PubMed  CAS  Google Scholar 

  • Schubert, U., Anton, L.C., Bacik, I., Cox, J.H., Bour, S., Bennink, J.R. et al (1998). CD4 glycoprotein degradation induced by human immunodeficiency virus type 1 Vpu protein requires the function of proteasomes and the ubiquitin conjugating pathway. J. Virol. 72, 2280–2288.

    PubMed  CAS  Google Scholar 

  • Schubert, U., Bour, S., Ferrer-Montiel, A.V., Montal, M., Maldarelli, F., and Strebel, K. (1996a). The two biological activities of human immunodeficiency virus type 1 Vpu protein involve two separable structural domains. J. Virol. 70, 809–819.

    PubMed  CAS  Google Scholar 

  • Schubert, U., Ferrer-Montiel, A.V., Oblatt-Montal, M., Henklein, P., Strebel, K., and Montal, M. (1996b). Identification of an ion channel activity of the Vpu transmembrane domain and its involvement in the regulation of virus release from HIV-1-infected cells. FEBS Lett. 398, 12–8.

    Article  PubMed  CAS  Google Scholar 

  • Schubert, U., Henklein, P., Boldyreff, B., Wingender, E., Strebel, K., and Porstmann, T. (1994). The human immunodeficiency virus type 1 encoded Vpu protein is phosphorylated by casein kinase-2 (CK-2) at positions Ser52 and Ser56 within a predicted alpha-helix-turn-alpha-helix-motif. J. Mol. Biol. 236, 16–25.

    Article  PubMed  CAS  Google Scholar 

  • Schubert, U., Schneider, T., Henklein, P., Hoffmann, K., Berthold, E., Hauser, H. et. al. (1992). Human-immunodeficiency-virus-type-1-encoded Vpu protein is phosphorylated by casein kinase II. Eur. J. Biochem. 204, 875–883.

    Article  PubMed  CAS  Google Scholar 

  • Schubert, U. and Strebel, K. (1994). Differential activities of the human immunodeficiency virus type-1 encoded Vpu protein are regulated by phosphorylation and occur in different cellular compartments. J. Virol. 68, 2260–2271.

    PubMed  CAS  Google Scholar 

  • Sramala, I., Lemaitre, V., Faraldo-Gomez, J.D., Vincent, S., Watts, A., and Fischer, W.B. (2003). Molecular dynamics simulations on the first two helices of Vpu from HIV-1. Biophys. J. 84, 3276–3284.

    PubMed  CAS  Google Scholar 

  • Strebel, K., Klimkait, T., and Martin, M.A. (1988). A novel gene of HIV-1, vpu, and its 16-kilodalton product. Science 241, 1221–1223.

    Article  PubMed  CAS  Google Scholar 

  • Strebel, K., Klimkait, T., Maldarelli, F., and Martin, M.A. (1989). Molecular and biochemical analyses of human immunodeficiency virus type 1 vpu protein. J. Virol. 63, 3784–3791.

    PubMed  CAS  Google Scholar 

  • Vincent, M. J. and Jabbar, M.A. (1995). The human immunodeficiency virus type 1 Vpu protein: A potential regulator of proteolysis and protein transport in the mammalian secretory pathway. Virology 213, 639–649.

    Article  PubMed  CAS  Google Scholar 

  • Willbold, D., Hoffmann, S. and Rosch, P. (1997). Secondary structure and tertiary fold of the human immunodeficiency virus protein U (Vpu) cytoplasmic domain in solution. Eur. J. Biochem. 245, 581–588.

    Article  PubMed  CAS  Google Scholar 

  • Wray, V., Federau, T., Henklein, P., Klabunde, S., Kunert, O., Schomburg, D. et al. (1995). Solution structure of the hydrophilic region of HIV-1 encoded virus protein U (Vpu) by CD and 1H NMR spectroscopy. Int. J. Pept. Protein Res. 45, 35–43.

    Article  PubMed  CAS  Google Scholar 

  • Wray, V., Kinder, R., Federau, T., Henklein, P., Bechinger, B., and Schubert, U. (1999). Solution structure and orientation of the transmembrane anchor domain of the HIV-1-encoded virus protein U by high-resolution and solid-state NMR spectroscopy. Biochemistry 38, 5272–5282.

    Article  PubMed  CAS  Google Scholar 

  • Wüthrich, K. (1986). NMR of Proteins and Nucleic Acids. Wiley, New York.

    Google Scholar 

  • Yao, X.J., Garzon, S., Boisvert, F., Haseltine, W.A., and Cohen, E.A. (1993). The effect of vpu on HIV-1-induced syncytia formation. J. Acq. Immune. Defic. Syndr. 6, 135–141.

    CAS  Google Scholar 

  • Zheng, S., Strzalka, J., Ma, C., Opella, S.J., Ocko, B.M., and Blasie, J.K. (2001). Structural studies of the HIV-1 accessory protein Vpu in langmuir monolayers: Synchrotron X-ray reflectivity. Biophys. J. 80, 1837–1850.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Wray, V., Schubert, U. (2005). Structure, Phosphorylation, and Biological Function of the HIV-1 Specific Virus Protein U (Vpu). In: Fischer, W.B. (eds) Viral Membrane Proteins: Structure, Function, and Drug Design. Protein Reviews, vol 1. Springer, Boston, MA. https://doi.org/10.1007/0-387-28146-0_12

Download citation

Publish with us

Policies and ethics