Skip to main content

The Dynamics and Properties of Quantum Trajectories

  • Chapter
Book cover Quantum Dynamics with Trajectories

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 28))

  • 2154 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.L. Lopreore and R.E. Wyatt, Quantum wave packet dynamics with trajectories, Phys. Rev. Lett. 82, 5190 (1999).

    Article  Google Scholar 

  2. F. Sales Mayor, A. Askar, and H.A. Rabitz, Quantum fluid dynamics in the Lagrangian representation and applications to photodissociation problems, J. Chem. Phys. 111, 2423 (1999).

    Article  Google Scholar 

  3. R.E. Wyatt, Quantum wave packet dynamics with trajectories: wave function synthesis along quantum paths, Chem. Phys. Lett. 313, 189 (1999).

    Article  Google Scholar 

  4. C.L. Lopreore and R.E. Wyatt, Quantum wave packet dynamics with trajectories: Reflections on a downhill ramp potential, Chem. Phys. Lett. 325, 73 (2001).

    Article  Google Scholar 

  5. E.R. Bittner and R.E. Wyatt, Integrating the quantum Hamilton-Jacobi equations by wave front expansion and phase space analysis, J. Chem. Phys. 113, 8888 (2001).

    Article  Google Scholar 

  6. R.E. Wyatt and E.R. Bittner, Quantum wave packet dynamics with trajectories: Implementation with adaptive Lagrangian grids, J. Chem. Phys. 113, 8898 (2001).

    Article  Google Scholar 

  7. C.L. Lopreore, R.E. Wyatt, and G. Parlant, Electronic transitions with quantum trajectories, J. Chem. Phys. 114, 5113 (2001).

    Article  Google Scholar 

  8. R.G. Brook, P.E. Oppenheimer, C.A. Weatherford, I. Banicescu, and J. Zhu, Solving the hydrodynamic formulation of quantum mechanics: A parallel MLS method, Int. J. Quantum Chem. 85, 263 (2001).

    Article  Google Scholar 

  9. R.K. Vadapalli, C.A. Weatherford, I. Banicescu, R.L. Carino, and J. Zhu, Transient effect of a free particle wave packet in the hydrodynamic formulation of the time-dependent Schrödinger equation, Int. J. Quantum Chem. 94, 1 (2003).

    Article  Google Scholar 

  10. C.D. Stodden and D.A. Micha, Generating wave functions from classical trajectory calculations: The divergence of streamlines, Int. J. Quantum Chem.: Symposium 21, 239 (1987).

    Article  Google Scholar 

  11. R.P. Feynman, Space-time approach to non-relativistic quantum mechanics, Rev. Mod. Phys. 30, 24 (1948).

    MathSciNet  Google Scholar 

  12. R.P. Feynman and A.R. Hibbs, Quantum mechanics and path integrals (Addison-Wesley, Reading MA, 1965).

    Google Scholar 

  13. F.D. Peat, Infinite Potential, The Life and Times of David Bohm (Addison-Wesley, Reading, Mass., 1997).

    Google Scholar 

  14. S. Garashchuk and V.A. Rassolov, Semiclassical dynamics based on quantum trajectories, Chem. Phys. Lett. 364, 562 (2002).

    Article  Google Scholar 

  15. S. Garashchuk and V.A. Rassolov, Semiclassical dynamics with quantum trajectories: formulation and comparison with the semiclassical initial value representation propagator, J. Chem. Phys. 118, 2482 (2003).

    Article  Google Scholar 

  16. P.R. Holland, The Quantum Theory of Motion (Cambridge Press, New York, 1993).

    Google Scholar 

  17. J.H. Weiner and Y. Partom, Quantum rate theory for solids. II. One-dimensional tunneling effects, Phys. Rev. 187, 187 (1969).

    Article  MathSciNet  Google Scholar 

  18. A. Askar and J.H. Weiner, Wave packet dynamics on two-dimensional quadratic potential surfaces, Am. J. Phys. 39, 1230 (1971).

    Article  Google Scholar 

  19. G. Terlecki, N. Grun, and W. Scheid, Solution of the time-dependent Schrödinger equation with a trajectory method and application to H+ + H scattering, Phys. Lett. A 88, 33 (1982).

    Article  Google Scholar 

  20. P. Zimmerer, M. Zimmermann, N. Grun, and W. Scheid, Trajectory method for the time-dependent Schrödinger and Thomas-Fermi equations, Comp. Phys. Comm. 63, 21 (1991).

    Article  Google Scholar 

  21. S. Konkel and A.J. Makowski, Regular and chaotic causal trajectories for the Bohm potential in a restricted space, Phys. Lett. A 238, 95 (1998).

    Article  MathSciNet  Google Scholar 

  22. H. Frisk, Properties of the trajectories in Bohmian mechanics, Phys. Lett. A 227, 139(1997).

    Article  MATH  MathSciNet  Google Scholar 

  23. P.K. Chattaraj and S. Sengupta, Quantum fluid dynamics of a classically chaotic oscillator, Phys. Lett. A 181, 225 (1993).

    Article  Google Scholar 

  24. U. Schwengelbeck and F.H.M. Faisel, Definition of Lyapunov exponents and KS entropy in quantum dynamics, Phys. Lett. A 199, 281 (1995).

    Article  MathSciNet  Google Scholar 

  25. G. Iacomelli and M. Pettini, Regular and chaotic quantum motions, Phys. Lett. A 212, 29 (1996).

    Article  MathSciNet  Google Scholar 

  26. S. Sengupta and P.K. Chattaraj, The quantum theory of motion and signatures of chaos in the quantum behavior of a classically chaotic system, Phys. Lett. A 215, 119 (1996).

    Article  Google Scholar 

  27. G.G. de Polavieja, Exponential divergence of neighboring quantal trajectories, Phys. Rev. A 53, 2059 (1996).

    Article  Google Scholar 

  28. O.F. de Alcantara Bonfim, J. Florencio, and F.C. Sa Barreto, Quantum chaos in a double square well: an approach based on Bohm’s view of quantum mechanics, Phys. Rev. E 58, 6851 (1998).

    Article  Google Scholar 

  29. O. F. de Alcantara Bonfim, J. Florencio, and F.C. Sa Barreto, Chaotic dynamics in billiards using Bohm’s quantum mechanics, Phys. Rev. E 58, R2693 (1998).

    Article  Google Scholar 

  30. D.A. Wisniacki, F. Borondo, and R.M. Benito, Dynamics of trajectories in chaotic systems, Europhys. Lett. 64, 441 (2003).

    Article  Google Scholar 

  31. R.H. Parmenter and R.W. Valentine, Deterministic chaos and the causal interpretation of quantum mechanics, Phys. Lett. A 201, 1 (1995).

    Article  MathSciNet  Google Scholar 

  32. F.H.M. Faisal and U. Schwengelbeck, Unified theory of Lyapunov exponents and a positive example of deterministic quantum chaos, Phys. Lett. A 207, 31 (1995).

    Article  MathSciNet  Google Scholar 

  33. B.V. Chirikov in W.D. Heiss (ed.), Chaos and Quantum Chaos (Springer, New York, 1992).

    Google Scholar 

  34. A. Blumel and W.P. Reinhardt, Chaos in Atomic Physics (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  35. N. Pinto-Neto and E. Santini, Must quantum spacetimes be Euclidean? Phys. Rev. D 59, 123517 (1999).

    Article  MathSciNet  Google Scholar 

  36. W.H. Miller, The semiclassical initial value representation: A potentially practical way of adding quantum effects to classical molecular dynamics, J. Phys. Chem. A 105, 2942 (2001).

    Article  Google Scholar 

  37. E.R. Bittner, Quantum initial value representations using approximate Bohmian trajectories, J. Chem. Phys. 119, 1358 (2003).

    Article  Google Scholar 

  38. Y. Zhao and N. Makri, Bohmian versus semiclassical description of interference phenomena, J. Chem. Phys. 119, 60 (2003).

    Article  Google Scholar 

  39. J. Liu and N. Makri, Monte Carlo Bohmian dynamics from trajectory stability properties, J. Phys. Chem. A 108, 5408 (2004).

    Article  Google Scholar 

  40. M.E. Tuckerman, Y. Liu, G. Ciccotti, and G.J. Martyna, Non-Hamiltonian molecular dynamics: Generalizing Hamiltonian phase space principles to non-Hamiltonian systems, J. Chem. Phys. 115, 1678 (2001).

    Article  Google Scholar 

  41. J.A. de Sales and J. Florencio, Quantum chaotic trajectories in integrable right triangular billiards, Phys. Rev. E 67, 016216 (2003).

    Article  MathSciNet  Google Scholar 

  42. S. Goldstein, Absence of chaos in Bohmian mechanics, Phys. Rev. E 60, 7578 (1999).

    Article  Google Scholar 

  43. H. Wu and D.W.L. Sprung, Quantum chaos in terms of Bohm trajectories, Phys. Lett. A 261, 150 (1999).

    Article  MathSciNet  Google Scholar 

  44. D. Dürr, S. Goldstein, and N. Zanghi, Quantum chaos, classical randomness, and Bohmian mechanics, J. Stat. Phys. 68, 259 (1992).

    Article  Google Scholar 

  45. M. Abolhasani and M. Golshani, The path integral approach in the frame work of causal interpretation, Annal. Found. L. de Broglie, 28, 1 (2003).

    MathSciNet  Google Scholar 

  46. P. Falsaperla and G. Fonte, On the motion of a single particle near a nodal line in the de Broglie-Bohm interpretation of quantum mechanics, Phys. Lett. A 316, 382(2003).

    Article  MathSciNet  Google Scholar 

  47. J.M. Finn and D. del-Castillo-Negrete, Lagrangian chaos and Eulerian chaos in shear flow dynamics, Chaos 11, 816 (2001).

    Article  MathSciNet  Google Scholar 

  48. A.J. Makowski, P. Peploswski, and S.T. Dembinski, Chaotic causal trajectories: the role of the phase of stationary states, Phys. Lett. A 266, 241 (2000).

    Article  MathSciNet  Google Scholar 

  49. J.M. Ottino, The Kinematics of Mixing: Stretching, Chaos, and Transport (Cambridge University Press, New York, 1989).

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2005). The Dynamics and Properties of Quantum Trajectories. In: Quantum Dynamics with Trajectories. Interdisciplinary Applied Mathematics, vol 28. Springer, New York, NY. https://doi.org/10.1007/0-387-28145-2_4

Download citation

Publish with us

Policies and ethics