Skip to main content

The Phase Space Route to the Hydrodynamic Equations

  • Chapter
  • 2124 Accesses

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 28))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Takabayasi, The formulation of quantum mechanics in terms of an ensemble in phase space, Prog. Theor. Phys. 11, 341 (1954).

    Article  MATH  MathSciNet  Google Scholar 

  2. G.J. Iafrate, H.L. Grubin, and D.K. Ferry, Utilization of quantum distribution functions for ultra-submicron device transport, J. de Physique Colloq. 42, 307 (1981).

    Google Scholar 

  3. W.R. Frensley, Boundary conditions for open quantum systems driven far from equilibrium, Rev. Mod. Phys. 62, 745 (1990).

    Article  Google Scholar 

  4. C.L. Gardner, The quantum hydrodynamic model for semiconductor devices, SIAM J. Appl. Math. 54, 409 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  5. I. Gasser and P.A. Markowich, Quantum hydrodynamics, Wigner transforms and the classical limit, Asym. Anal. 14, 97 (1997).

    MathSciNet  MATH  Google Scholar 

  6. C.L. Gardner and C. Ringhofer, Numerical simulation of the smooth quantum hydrodynamic model for semiconductor devices, Comp. Methods Appl. Mech. Eng. 181, 393 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  7. W.P. Schleich, Quantum Optics in Phase Space (Wiley-VCH, Berlin, 2001).

    MATH  Google Scholar 

  8. J.G. Muga, R. Sala, and R.F. Snider, Comparison of classical and quantal evolution of phase space distribution functions, Physica Scripta 47, 732 (1993).

    Google Scholar 

  9. I. Burghardt and L.S. Cederbaum, Hydrodynamic equations for mixed quantum states. I. General formulation, J. Chem. Phys. 115, 10303 (2001).

    Article  Google Scholar 

  10. I. Burghardt and L.S. Cederbaum, Hydrodynamic equations for mixed quantum states. II. Coupled electronic states, J. Chem. Phys. 115, 10312 (2001).

    Article  Google Scholar 

  11. I. Burghardt and K.B. Moller, Quantum dynamics for dissipative systems, J. Chem. Phys. 117, 7409 (2002).

    Article  Google Scholar 

  12. E.P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40, 749 (1932).

    Article  MATH  Google Scholar 

  13. I. Bialynicki-Birula, M. Cieplak, and J. Kaminski, Theory of Quanta (Oxford University Press, New York, 1992), Ch. 13.

    Google Scholar 

  14. M. Hillery, R.F. O’Connell, M.O. Scully, and E.P. Wigner, Distribution functions in physics: Fundamentals, Phys. Rep. 106, 121 (1984).

    Article  MathSciNet  Google Scholar 

  15. P. Carruthers and F. Zachariasen, Quantum collision theory with phase-space distributions, Rev. Mod. Phys. 55, 245 (1983).

    Article  MathSciNet  Google Scholar 

  16. J.E. Moyal, Quantum mechanics as a statistical theory, Proc. Camb. Phil. Soc. 45, 99 (1949).

    Article  MATH  MathSciNet  Google Scholar 

  17. J.V. Lill, M.I. Haftel, and G.H. Herling, Semiclassical limits in quantum-transport theory, Phys. Rev. A 39, 5832 (1989).

    Article  MathSciNet  Google Scholar 

  18. M. Ploszajczak and M.J. Rhodes-Brown, Approximation scheme for the quantum Liouville equation using phase-space distribution functions, Phys. Rev. Lett, 55, 147(1985).

    Article  Google Scholar 

  19. M. Tabor, Chaos and integrability in nonlinear dynamics (Wiley, New York, 1989).

    MATH  Google Scholar 

  20. J.B. Maddox and E.R. Bittner, Quantum dissipation in the hydrodynamic moment hierarchy: A semiclassical truncation strategy, J. Phys. Chem. B 106, 7981 (2002).

    Article  Google Scholar 

  21. E.R. Bittner, J.B. Maddox, and I. Burghardt, Relaxation of quantum hydrodynamic modes, Int. J. Quantum Chem. 89, 313 (2002).

    Article  Google Scholar 

  22. P. Degond and C. Ringhofer, Quantum moment hydrodynamics and the entropy principle, J. Stat. Phys. 112, 587 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  23. F. McLafferty, On quantum trajectories and an approximation to the Wigner path integral, J. Chem. Phys. 83, 5043 (1985).

    Article  MathSciNet  Google Scholar 

  24. M. Belloni, M.A. Doncheski, and R.W. Robinett, Wigner quasi-probability distribution for the infinite square well: Energy eigenstates and time-dependent wave packets, Am. J. Phys. 72, 1183 (2004).

    Article  Google Scholar 

  25. R.E. Walkup, A local-Gaussian approximation for the propagation of a classical distribution, J. Chem. Phys. 95, 6440 (1991).

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2005). The Phase Space Route to the Hydrodynamic Equations. In: Quantum Dynamics with Trajectories. Interdisciplinary Applied Mathematics, vol 28. Springer, New York, NY. https://doi.org/10.1007/0-387-28145-2_3

Download citation

Publish with us

Policies and ethics