Skip to main content

Introduction to Quantum Trajectories

  • Chapter
Quantum Dynamics with Trajectories

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 28))

  • 2241 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.E. Wyatt and E.R. Bittner, Using quantum trajectories and adaptive grids to solve quantum dynamical problems, Computing in Science and Engineering 5, 22 (2003).

    Google Scholar 

  2. B.-G. Englert, M.O. Scully, G. Sussman, and H. Walther, Surrealistic Bohm trajectories, Z. Naturforsch. 47 a, 1175 (1992).

    Google Scholar 

  3. C. Dewdney, L. Hardy, and E.J. Squires, How late measurements of quantum trajectories can fool a detector, Phys. Lett. A 184, 6 (1993).

    Article  Google Scholar 

  4. M.O. Scully, Do Bohm trajectories always provide a trustworthy physical picture of particle motion? Physica Scripta, T 76, 41 (1998).

    Article  MathSciNet  Google Scholar 

  5. M.O. Terra Cunha, What is surrealistic about Bohm trajectories? arXiv:quantph/9809006 (3 Sept. 1998).

    Google Scholar 

  6. Y. Aharonov, B.-G. Englert and M.O. Scully, Protective measurements and Bohm trajectories, Phys. Lett. A 263, 137 (1999).

    Article  MathSciNet  Google Scholar 

  7. C. Philippidis, D. Bohm, and R.D. Kaye, The Aharonov-Bohm effect and the quantum potential, Il Nuovo Cimento, 71 B, 75 (1982).

    MathSciNet  Google Scholar 

  8. R.E. Kastner, Geometrical phase effect and Bohm’s quantum potential, Am. J. Phys. 61, 852 (1993).

    Article  Google Scholar 

  9. A. Mostafazadeh, Quantum adiabatic approximation, quantum action, and Berry’s phase, arXiv:quant-ph/9606021 (19 June 1996).

    Google Scholar 

  10. H.R. Brown, E. Sjoqvist, and G. Bacciagaluppi, Remarks on identical particles in de Broglie-Bohm theory, Phys. Lett. A 251, 229 (1999).

    Article  MathSciNet  Google Scholar 

  11. J.I. Usera, An approach to measurement by quantum-stochastic-parameter averaged Bohmian mechanics, arXiv:quant-ph/0001054 (18 Jan 2000).

    Google Scholar 

  12. J. Berger, Extension of the de Broglie-Bohm theory to the Ginsburg-Landau equation, arXiv:quant-ph/0309143 (19 Sep 2003).

    Google Scholar 

  13. M. Brack and R.J. Bhaduri, Semiclassical Physics (Addison-Wesley, Reading, MA, 1997).

    Google Scholar 

  14. Z.S. Wang, G.R. Darling, and S. Holloway, Dissociation dynamics from a de Broglie-Bohm perspective, J. Chem. Phys. 115, 10373 (2001).

    Article  Google Scholar 

  15. A.S. Sanz, F. Borondo, and S. Miret-Artes, Causal trajectories description of atom diffraction by surfaces, Phys. Rev. B 61, 7743 (2000).

    Article  Google Scholar 

  16. G.E. Bowman, Bohmian mechanics as a heuristic device: Wave packets in the harmonic oscillator, Am. J. Phys. 70, 313 (2002).

    Article  Google Scholar 

  17. F. McLafferty, On quantum trajectories and an uncertainty relation, J. Chem. Phys. 117, 10474 (2002).

    Article  Google Scholar 

  18. B. Poirier, Using wavelets to extend quantum dynamics calculations to ten or more degrees of freedom, J. Theoret. Comp. Chem. 2, 65 (2003).

    Article  MathSciNet  Google Scholar 

  19. B. Poirier and J.C. Light, Efficient distributed Gaussian basis for rovibrational spectroscopy calculation, J. Chem. Phys. 113, 211 (2000).

    Article  Google Scholar 

  20. H.-G. Yu, Two-layer Lanczos iteration approach to molecular spectroscopic calculation, J. Chem. Phys. 117, 8190 (2002).

    Article  Google Scholar 

  21. X.-G. Wang and T. Carrington, Jr., A contracted basis-Lanczos calculation of vibrational levels of methane: Solving the Schrödinger equation in nine dimensions, J. Chem. Phys. 119, 101 (2003).

    Article  Google Scholar 

  22. J.R. Barker, R. Akis, and D.K. Ferry, On the use of Bohm trajectories for interpreting quantum flows in quantum dot structures, Superlattices and Microstructures 27, 319 (2000).

    Article  Google Scholar 

  23. K. Berndl, M. Daumer, D. Dürr, S. Goldstein, and N. Zanghi, A survey of Bohmian mechanics, Il Nuovo Cimento 110B, 735 (1995).

    Google Scholar 

  24. R. Tumulka, Understanding Bohmian mechanics: A dialogue, Am. J. Phys. 79, 1220(2004).

    Article  Google Scholar 

  25. D. Dürr, Bohmsche Mechanik als Grundlage der Quantenmechanik (Springer, Berlin, 2001).

    Google Scholar 

  26. S.K. Ghosh and B.M. Deb, Densities, density-functionals, and electron fluids, Phys. Repts. 92, 1 (1982).

    Article  Google Scholar 

  27. B.M. Deb and S.K. Ghosh, Schrödinger fluid dynamics of many-electron systems in a time-dependent density-functional framework, J. Chem. Phys. 77, 342 (1982).

    Article  Google Scholar 

  28. S.K. Ghosh and M. Berkowitz, A classical fluid-like approach to the density-functional formalism of many-electron systems, J. Chem. Phys. 83, 2976 (1985).

    Article  Google Scholar 

  29. S. Kümmel and M. Brack, Quantum fluid dynamics from density-functional theory, Phys. Rev. A 64, 022506 (2001).

    Article  Google Scholar 

  30. Vikas and B.M. Deb, Ground-state electronic energies and densities of atomic systems in strong magnetic fields through a time-dependent hydrodynamical equation, Int. J. Quantum Chem. 97, 701 (2004).

    Article  Google Scholar 

  31. B.K. Dey and B.M. Deb, Stripped ion-helium atom collision dynamics within a time-dependent quantum fluid density functional theory, Int. J. Quantum Chem. 67, 251 (1998).

    Article  Google Scholar 

  32. A.K. Roy and S.-I Chu, Quantum fluid dynamics approach for strong-field processes: Application to the study of multiphoton ionization of high-order harmonic generation of He and Ne atoms in intense laser fields, Phys. Rev. A 65, 043402 (2002).

    Article  Google Scholar 

  33. P. Holland, Computing the wave function from trajectories: particle and wave pictures in quantum mechanics and their relation, Annals of Physics (NY), to be published.

    Google Scholar 

  34. D. Dürr, S. Goldstein, R. Tumulka, and N. Zanghi, Bohmian mechanics and quantum field theory, Phys. Rev. Lett. 93, 090402 (2004).

    Article  MathSciNet  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2005). Introduction to Quantum Trajectories. In: Quantum Dynamics with Trajectories. Interdisciplinary Applied Mathematics, vol 28. Springer, New York, NY. https://doi.org/10.1007/0-387-28145-2_1

Download citation

Publish with us

Policies and ethics