Skip to main content

Case Study: Leakage Reduction in the Intel Xscale Microprocessor

  • Chapter
Book cover Leakage in Nanometer CMOS Technologies

Part of the book series: Series on Integrated Circuits and Systems ((ICIR))

  • 1474 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Mudge, “Power: A first-class architectural design constraint,” Computer, 34(4), 52–57, (2001).

    Article  Google Scholar 

  2. T. Burd, T. Pering, A. Stratakos, and R. Broderson, “A dynamic voltage scaled microprocessor system,” IEEE J. Solid-State Circuits, 35(11), 1571–1580, (2000).

    Article  Google Scholar 

  3. L. Clark, et al., “An embedded 32b microprocessor core for low-power and high-performance applications,” IEEE J. Solid-State Circuits, 36(11), 1599–1608 (2001).

    Article  Google Scholar 

  4. Y. Taur and T. Ning, Fundamentals of Modern VLSI Devices (Cambridge University Press, Cambridge, UK, 1998).

    Google Scholar 

  5. N. Kim, et al., “Leakage current: Moore’s law meets static power,” Computer, 36(12), 68–75 (2003).

    Article  Google Scholar 

  6. H. Holma and A. Toskala, eds., WCDMA for UMTS: Radio Access for Third Generation Mobile Communications, (John Wiley and Sons, NY, 2001).

    Google Scholar 

  7. M. Morrow, “Microarchitecture uses a low power core,” Computer, 36(4), 55 (April, 2001).

    Google Scholar 

  8. Intel® 80200 Processor based on Intel® XScale™ Microarchitecture Data sheet. Available at http://www.intel.com.

    Google Scholar 

  9. M. Bohr, et al., “A high performance 180 nm generation logic technology,” IEDM Tech. Dig., 197–200 (1998).

    Google Scholar 

  10. Intel® PXA255 Processor Data sheet; http://www.intel.com.

    Google Scholar 

  11. S. Wolf, Silicon Processing for the VLSI Era: Volume 3 — The Submicron MOSFET, Lattice Press, Sunset Beach, CA, 1995.

    Google Scholar 

  12. S. Mutoh, T. Douseki, Y. Matsuya, S. Shigematsu, and J. Yamada, “1-V power supply high-speed digital circuit technology with multithreshold-voltage CMOS,” IEEE J. of Solid-state Circuits, 30(6), 847–854 (1995).

    Article  Google Scholar 

  13. L. Clark, N. Deutscher, F. Ricci, and S. Demmons, “Standby power management for a 0.18 nm microprocessor,” Proc. Int. Symp. Low Power Electronics and Design, 7–12 (2002).

    Google Scholar 

  14. B. McDaniel and L. Clark, U.S. Patent 6,166,985: “Integrated circuit low leakage power circuitry for use with an advanced CMOS process,” (2000).

    Google Scholar 

  15. K. Osada, Y. Saitoh, E. Ibe, and K. Ishibashi, “16.7 pA/cell tunnel-leakage-suppressed 16Mb SRAM for handling cosmic-ray-induced multi-errors,” Proc. Int. Solid-state Circuits Conf, 302–304 (2003).

    Google Scholar 

  16. S. Tyagi, et al. “A 130 nm generation logic technology featuring 70 nm transistors dual Vt transistors and 6 layers of Cu interconnects,” IEDM Tech. Dig., 567–570 (2000).

    Google Scholar 

  17. R. Krishnamurthy, A. Alvandpour, V. De, and S. Borkar, “High-performance and low-power challenges for sub-70nm microprocessor circuits,” IEEE Custom Int. Circuits Conf. Proc, 125–128 (2002).

    Google Scholar 

  18. L. Clark, D. McCarroll, and E. Bawolek, “Characterization and debug of reverse body bias low power modes,” Electronic Device Failure Analysis, 6(1), 13–21 (2004).

    Google Scholar 

  19. L. Clark, M. Morrow, and W. Brown, “Reverse Body Bias and Supply Collapse for Low Effective Standby Power,” IEEE Trans, on VLSI Systems, 12(9), 947–956 (2004).

    Article  Google Scholar 

  20. S. Zhao, et al., “Transistor optimization for leakage power management in a 65 nm CMOS technology for wireless and mobile applications,” VLSI Symp. Tech. Dig., 1–15 (2004).

    Google Scholar 

  21. S. Shigematsu, S. Mutoh, Y. Matsuya, Y. Tanabe, and J. Yamada, “A 1-V High-speed MTCMOS Circuit Scheme for Power-Down Application Circuits,” IEEE Journal of Solid-state Circuits, 32(6), 861–870 (1997).

    Article  Google Scholar 

  22. L. Clark and F. Ricci, US Patent #6,639,827: “Low Standby Power using Shadow Storage,” 10/28/03.

    Google Scholar 

  23. L. Clark, R. Patel, and T. Beatty, “Managing Standby and Active Mode Leakage Power in Deep Sub-micron Design,” Proc. Int. Symp. Low Power Electronics and Design, 274–279 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Clark, L. (2006). Case Study: Leakage Reduction in the Intel Xscale Microprocessor. In: Leakage in Nanometer CMOS Technologies. Series on Integrated Circuits and Systems. Springer, Boston, MA. https://doi.org/10.1007/0-387-28133-9_11

Download citation

  • DOI: https://doi.org/10.1007/0-387-28133-9_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25737-2

  • Online ISBN: 978-0-387-28133-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics