Skip to main content

Neurogenesis

  • Chapter
Developmental Neurobiology

Summary

In this chapter, we have outlined the general steps of neurogenesis, and the mechanisms by which these steps occur. For over a hundred years, neurobiologists have described this process by making careful observations of the cellular events that occur as neuroepithelial cells mature into neurons. These observations provided much of the groundwork for later studies and correctly predicted many of the mechanisms that were subsequently discovered. Recently, advances in molecular techniques have allowed us to understand how genetic and biochemical events control the progression from stem cells into differentiated neurons. At this point, we can observe a single neuron and know many of the genes that regulate every step of its differentiation. One important next step is to recapitulate this process in vitro to see if we can direct the differentiation of stem cells or progenitors in a carefully controlled environment. If successful, this work has the potential to provide therapy for human nervous system injury and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akam, M., 1987, The molecular basis for metameric pattern in the Drosophila embryo, Development 101:1–22.

    CAS  PubMed  Google Scholar 

  • Alvarez-Buylla, A. and Kirn, J.R., 1997, Birth, migration, incorporation, and death of vocal control neurons in adult songbirds, J. Neurobiol. 33: 585–601.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, S.A., Eisenstat, D.D., Shi, L., and Rubenstein, J.L., 1997, Interneuron migration from basal forebrain to neocortex: Dependence on dlx genes, Science 278:474–476.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Angevine, J.B., 1965, Time of neuron origin in the hippocampal region: An autoradiographic study in the mouse, Exp. Neurol. Suppl. 2:1–70.

    Google Scholar 

  • Angevine, J.B., Jr. and Sidman, R.L., 1961, Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse, Nature 192:766–768.

    Article  PubMed  Google Scholar 

  • Appel, B., Korzh, V., Glasgow, E., Thor, S., Edlund, T., Dawid, I.B., and Eisen, J.S., 1995, Motoneuron fate specification revealed by patterned LIM homeobox gene expression in embryonic zebrafish, Development 121:4117–4125.

    CAS  PubMed  Google Scholar 

  • Artavanis-Tsakonas, S., Delidakis, C., Fehon, R., Hartley, D., Herndon, V., Johansen, K. et al., 1990, Notch and the molecular genetics of neuroblast segregation in Drosophila, Mol. Reprod. Dev. 27:23–27.

    Article  CAS  PubMed  Google Scholar 

  • Artavanis-Tsakonas, S., Rand, M.D., and Lake, R.J., 1999, Notch signaling: Cell fate control and signal integration in development, Science 284: 770–776.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Austin, C.P., Feldman, D.E., Ida, J.A., Jr., and Cepko, C.L., 1995, Vertebrate retinal ganglion cells are selected from competent progenitors by the action of Notch, Development 121:3637–3650.

    CAS  PubMed  Google Scholar 

  • Belliveau, M.J. and Cepko, C.L., 1999, Extrinsic and intrinsic factors control the genesis of amacrine and cone cells in the rat retina, Development 126:555–566.

    CAS  PubMed  Google Scholar 

  • Belliveau, M.J., Young, T.L., and Cepko, C.L., 2000, Late retinal progenitor cells show intrinsic limitations in the production of cell types and the kinetics of opsin synthesis, J. Neurosci. 20:2247–2254.

    CAS  PubMed  Google Scholar 

  • Bertrand, N., Castro, D.S., and Guillemot, F., 2002, Proneural genes and the specification of neural cell types, Nat. Rev. Neurosci. 3:517–530.

    Article  CAS  PubMed  Google Scholar 

  • Bhat, K.M., 1999, Segment polarity genes in neuroblast formation and identity specification during Drosophila neurogenesis, Bioessays 21: 472–485.

    Article  CAS  PubMed  Google Scholar 

  • Briscoe, J., Pierani, A., Jessell, T.M., and Ericson, J., 2000, A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube, Cell 101:435–445.

    Article  CAS  PubMed  Google Scholar 

  • Carr, V.M. and Simpson, S.B.J., 1978, Proliferative and degenerative events in the early development of chick dorsal root ganglia. I. Normal development, J. Comp. Neurol. 182:727–739.

    Article  CAS  PubMed  Google Scholar 

  • Cepko, C., 1988, Retroviruses and their applications in neurobiology, Neuron 1:345–353.

    Article  CAS  PubMed  Google Scholar 

  • Cepko, C.L., Austin, C.P., Yang, X., Alexiades, M., and Ezzeddine, D., 1996, Cell fate determination in the vertebrate retina, Proc. Natl. Acad. Sci. USA 93:589–595.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Chenn, A. and McConnell, S.K., 1995, Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis, Cell 82:631–641.

    Article  CAS  PubMed  Google Scholar 

  • Chitnis, A., Henrique, D., Lewis, J., Ish-Horowicz, D., and Kintner, C., 1995, Primary neurogenesis in Xenopus embryos regulated by a homologue of the Drosophila neurogenic gene delta, Nature 375:761–766.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Coffman, C.R., Skoglund, P., Harris, W.A., and Kintner, C.R., 1993, Expression of an extracellular deletion of xotch diverts cell fate in Xenopus embryos, Cell 73:659–671.

    Article  CAS  PubMed  Google Scholar 

  • Cubas, P., de Celis, J.F., Campuzano, S., and Modolell, J., 1991, Proneural clusters of achaete-scute expression and the generation of sensory organs in the Drosophila imaginal wing disc, Genes Dev. 5: 996–1008.

    Article  CAS  PubMed  Google Scholar 

  • Daga, A., Karlovich, C.A., Dumstrei, K., and Banerjee, U., 1996, Patterning of cells in the Drosophila eye by lozenge, which shares homologous domains with aml1, Genes Dev. 10:1194–1205.

    Article  CAS  PubMed  Google Scholar 

  • Dahmane, N. and Ruiz-i-Altaba, A., 1999, Sonic hedgehog regulates the growth and patterning of the cerebellum, Development 126:3089–3100.

    PubMed  Google Scholar 

  • Davis, R.L. and Turner, D.L., 2001, Vertebrate Hairy and Enhancer of split related proteins: Transcriptional repressors regulating cellular differentiation and embryonic patterning, Oncogene 20:8342–8357.

    Article  CAS  PubMed  Google Scholar 

  • Doe, C.Q. and Smouse, D.T., 1990, The origins of cell diversity in the insect central nervous system, Semin. Cell Biol. 1:211–218.

    CAS  PubMed  Google Scholar 

  • Dorsky, R.I., Chang, W.S., Rapaport, D.H., and Harris, W.A., 1997, Regulation of neuronal diversity in the Xenopus retina by Delta signaling, Nature 385:67–70.

    Article  CAS  PubMed  Google Scholar 

  • Dyer, M.A. and Cepko, C.L., 2000, P57(kip2) regulates progenitor cell proliferation and amacrine interneuron development in the mouse retina, Development 127:3593–3605.

    CAS  PubMed  Google Scholar 

  • Dyer, M.A. and Cepko, C.L., 2001, P27kip1 and p57kip2 regulate proliferation in distinct retinal progenitor cell populations, J. Neurosci. 21:4259–4271.

    CAS  PubMed  Google Scholar 

  • Erkman, L., McEvilly, R.J., Luo, L., Ryan, A.K., Hooshmand, F., O’Connell, S.M. et al., 1996, Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development, Nature 381:603–606.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Erkman, L., Yates, P.A., McLaughlin, T., McEvilly, R.J., Whisenhunt, T., O’Connell, S.M. et al., 2000, A POU domain transcription factor-dependent program regulates axon pathfinding in the vertebrate visual system, Neuron 28:779–792.

    Article  CAS  PubMed  Google Scholar 

  • Farah, M.H., Olson, J.M., Sucic, H.B., Hume, R.I., Tapscott, S.J., and Turner, D.L., 2000, Generation of neurons by transient expression of neural bHLH proteins in mammalian cells, Development 127:693–702.

    CAS  PubMed  Google Scholar 

  • Fekete, D.M., Perez-Miguelsanz, J., Ryder, E.F., and Cepko, C.L., 1994, Clonal analysis in the chicken retina reveals tangential dispersion of clonally related cells, Dev. Biol. 166:666–682.

    Article  CAS  PubMed  Google Scholar 

  • Fischer, A.J. and Reh, T.A., 2000, Identification of a proliferating marginal zone of retinal progenitors in postnatal chickens, Dev. Biol. 220:197–210.

    Article  CAS  PubMed  Google Scholar 

  • Fode, C., Gradwohl, G., Morin, X., Dierich, A., LeMeur, M., Goridis, C. et al., 1998, The bHLH protein Neurogenin 2 is a determination factor for epibranchial placode-derived sensory neurons, Neuron 20:483–494.

    Article  CAS  PubMed  Google Scholar 

  • Frantz, G.D. and McConnell, S.K., 1996, Restriction of late cerebral cortical progenitors to an upper-layer fate, Neuron 17:55–61.

    Article  CAS  PubMed  Google Scholar 

  • Frise, E., Knoblich, J.A., Younger-Shepherd, S., Jan, L.Y., and Jan, Y.N., 1996, The Drosophila Numb protein inhibits signaling of the Notch receptor during cell-cell interaction in sensory organ lineage, Proc. Natl. Acad. Sci. USA 93:11925–11932.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Gan, L., Wang, S.W., Huang, Z., and Klein, W.H., 1999, Pou domain factor Brn-3b is essential for retinal ganglion cell differentiation and survival but not for initial cell fate specification, Dev. Biol. 210: 469–480.

    Article  CAS  PubMed  Google Scholar 

  • Guan, W., Puthenveedu, M.A., and Condic, M.L., 2003, Sensory neuron subtypes have unique substratum preference and receptor expression before target innervation, J. Neurosci. 23:1781–1791.

    CAS  PubMed  Google Scholar 

  • Guillemot, F. and Joyner, A.L., 1993, Dynamic expression of the murine achaete-scute homologue mash-1 in the developing nervous system, Mech. Dev. 42:171–185.

    Article  CAS  PubMed  Google Scholar 

  • Haase, G., Dessaud, E., Garces, A., de Bovis, B., Birling, M., Filippi, P. et al., 2002, GDNF acts through Pea3 to regulate cell body positioning and muscle innervation of specific motor neuron pools, Neuron 35: 893–905.

    Article  CAS  PubMed  Google Scholar 

  • He, W., Ingraham, C., Rising, L., Goderie, S., and Temple, S., 2001, Multipotent stem cells from the mouse basal forebrain contribute GABAergic neurons and oligodendrocytes to the cerebral cortex during embryogenesis, J. Neurosci. 21:8854–8862.

    CAS  PubMed  Google Scholar 

  • Heitzler, P., Bourouis, M., Ruel, L., Carteret, C., and Simpson, P., 1996, Genes of the enhancer of split and achaete-scute complexes are required for a regulatory loop between Notch and Delta during lateral signalling in Drosophila, Development 122:161–171.

    CAS  PubMed  Google Scholar 

  • Henrique, D., Adam, J., Myat, A., Chitnis, A., Lewis, J., and Ish-Horowicz, D., 1995, Expression of a Delta homologue in prospective neurons in the chick, Nature 375:787–790.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Hirata, J., Nakagoshi, H., Nabeshima, Y., and Matsuzaki, F., 1995, Asymmetric segregation of the homeodomain protein prospero during Drosophila development, Nature 377:627–630.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Hirsch, M.R., Tiveron, M.C., Guillemot, F., Brunet, J.F., and Goridis, C., 1998, Control of noradrenergic differentiation and phox2a expression by Mash1 in the central and peripheral nervous system, Development 125:599–608.

    CAS  PubMed  Google Scholar 

  • Holt, C.E., Bertsch, T.W., Ellis, H.M., and Harris, W.A., 1988, Cellular determination in the Xenopus retina is independent of lineage and birth date, Neuron 1:15–26.

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi, M., Moriyoshi, K., Sasai, Y., Shiota, K., Nakanishi, S., and Kageyama, R., 1994, Persistent expression of helix-loop-helix factor Hes-1 prevents mammalian neural differentiation in the central nervous system, EMBO J. 13:1799–1805.

    CAS  PubMed  Google Scholar 

  • Isshiki, T., Pearson, B., Holbrook, S., and Doe, C.Q., 2001, Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny, Cell 106:511–521.

    Article  CAS  PubMed  Google Scholar 

  • Jan, Y.N. and Jan, L.Y., 2001, Asymmetric cell division in the Drosophila nervous system, Nat. Rev. Neurosci. 2:772–779.

    Article  CAS  PubMed  Google Scholar 

  • Jarman, A.P., Grell, E.H., Ackerman, L., Jan, L.Y., and Jan, Y.N., 1994. Atonal is the proneural gene for Drosophila photoreceptors, Nature 369:398–400.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Kageyama, R. and Ohtsuka, T., 1999, The Notch-Hes pathway in mammalian neural development, Cell Res. 9:179–188.

    Article  CAS  PubMed  Google Scholar 

  • Kalyani, A., Hobson, K., and Rao, M.S., 1997, Neuroepithelial stem cells from the embryonic spinal cord: Isolation, characterization, and clonal analysis, Dev. Biol. 186:202–223.

    Article  CAS  PubMed  Google Scholar 

  • Kalyani, A.J., Piper, D., Mujtaba, T., Lucero, M.T., and Rao, M.S., 1998, Spinal cord neuronal precursors generate multiple neuronal phenotypes in culture, J. Neurosci. 18:7856–7868.

    CAS  PubMed  Google Scholar 

  • Kalyani, A.J. and Rao, M.S., 1998, Cell lineage in the developing neural tube, Biochem. Cell Biol. 76:1051–1068.

    Article  CAS  PubMed  Google Scholar 

  • Knoblich, J.A., Jan, L.Y., and Jan, Y.N., 1995, Asymmetric segregation of Numb and Prospero during cell division, Nature 377:624–627.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Kuida, K., Haydar, T.F., Kuan, C.Y., Gu, Y., Taya, C., Karasuyama, H. et al., 1998, Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking Caspase 9, Cell 94:325–337.

    Article  CAS  PubMed  Google Scholar 

  • Kuida, K., Zheng, T.S., Na, S., Kuan, C., Yang, D., Karasuyama, H. et al., 1996, Decreased apoptosis in the brain and premature lethality in Cpp32-deficient mice, Nature 384:368–372.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Lavdas, A.A., Grigoriou, M., Pachnis, V., and Parnavelas, J.G., 1999, The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex, J. Neurosci. 19:7881–7888.

    CAS  PubMed  Google Scholar 

  • Le Douarin, N., 1973, A biological cell labeling technique and its use in experimental embryology, Dev. Biol. 30:217–222.

    Article  PubMed  Google Scholar 

  • Le Douarin, N., 1982, The Neural Crest, Cambridge University Press, New York.

    Google Scholar 

  • Leber, S.M. and Sanes, J.R., 1995, Migratory paths of neurons and glia in the embryonic chick spinal cord, J. Neurosci. 15:1236–1248.

    CAS  PubMed  Google Scholar 

  • Lee, J.E., Hollenberg, S.M., Snider, L., Turner, D.L., Lipnick, N., and Weintraub, H., 1995, Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein, Science 268:836–844.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Lee, S.K. and Pfaff, S.L., 2001, Transcriptional networks regulating neuronal identity in the developing spinal cord, Nat. Neurosci. 4(Suppl): 1183–1191.

    Article  CAS  PubMed  Google Scholar 

  • Letinic, K., Zoncu, R., and Rakic, P., 2002, Origin of GABAergic neurons in the human neocortex, Nature 417:645–649.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Levine, E.M., Close, J., Fero, M., Ostrovsky, A., and Reh, T.A., 2000, P27(kip1) regulates cell cycle withdrawal of late multipotent progenitor cells in the mammalian retina, Dev. Biol. 219:299–314.

    Article  CAS  PubMed  Google Scholar 

  • Liem, K.F., Jr., Tremml, G., Roelink, H., and Jessell, T.M., 1995, Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm, Cell 82:969–979.

    Article  CAS  PubMed  Google Scholar 

  • Livesey, F.J. and Cepko, C.L., 2001, Vertebrate neural cell-fate determination: Lessons from the retina, Nat. Rev. Neurosci. 2:109–118.

    Article  CAS  PubMed  Google Scholar 

  • Livet, J., Sigrist, M., Stroebel, S., De Paola, V., Price, S.R., Henderson, C.E. et al., 2002, Ets gene pea3 controls the central position and terminal arborization of specific motor neuron pools, Neuron 35:877–892.

    Article  CAS  PubMed  Google Scholar 

  • Lo, L., Tiveron, M.C., and Anderson, D.J., 1998, Mash1 activates expression of the paired homeodomain transcription factor Phox2a, and couples pan-neuronal and subtype-specific components of autonomic neuronal identity, Development 125:609–620.

    CAS  PubMed  Google Scholar 

  • Lois, C. and Alvarez-Buylla, A., 1993, Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia, Proc. Natl. Acad. Sci. USA 90:2074–2077.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Lois, C. and Alvarez-Buylla, A., 1994, Long-distance neuronal migration in the adult mammalian brain, Science 264:1145–1148.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Lu, B., Jan, L., and Jan, Y.N., 2000, Control of cell divisions in the nervous system: Symmetry and asymmetry, Annu. Rev. Neurosci. 23:531–556.

    Article  CAS  PubMed  Google Scholar 

  • Lyden, D., Young, A.Z., Zagzag, D., Yan, W., Gerald, W., O’Reilly, R. et al., 1999, Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts, Nature 401:670–677.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Ma, Q., Chen, Z., del Barco Barrantes, I., de la Pompa, J.L., and Anderson, D.J., 1998, Neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia, Neuron 20:469–482.

    Article  CAS  PubMed  Google Scholar 

  • Ma, Q., Fode, C., Guillemot, F., and Anderson, D.J., 1999, Neurogenin1 and Neurogenin2 control two distinct waves of neurogenesis in developing dorsal root ganglia, Genes Dev. 13:1717–1728.

    Article  CAS  PubMed  Google Scholar 

  • Ma, Q., Kintner, C., and Anderson, D.J., 1996, Identification of neurogenin, a vertebrate neuronal determination gene, Cell 87:43–52.

    Article  CAS  PubMed  Google Scholar 

  • Mayer-Proschel, M., Kalyani, A.J., Mujtaba, T., and Rao, M.S., 1997, Isolation of lineage-restricted neuronal precursors from multipotent neuroepithelial stem cells, Neuron 19:773–785.

    Article  CAS  PubMed  Google Scholar 

  • McConnell, S.K., 1988, Fates of visual cortical neurons in the ferret after isochronic and heterochronic transplantation, J. Neurosci. 8:945–974.

    CAS  PubMed  Google Scholar 

  • McConnell, S.K. and Kaznowski, C.E., 1991, Cell cycle dependence of laminar determination in developing neocortex, Science 254: 282–285.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Murre, C., McCaw, P.S., and Baltimore, D., 1989a, A new DNA binding and dimerization motif in immunoglobulin enhancer binding, Daughterless, MyoD, and Myc proteins, Cell 56:777–783.

    Article  CAS  PubMed  Google Scholar 

  • Murre, C., McCaw, P.S., Vaessin, H., Caudy, M., Jan, L.Y., Jan, Y.N. et al., 1989b, Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence, Cell 58:537–544.

    Article  CAS  PubMed  Google Scholar 

  • Nieto, M., Schuurmans, C., Britz, O., and Guillemot, F., 2001, Neural bhlh genes control the neuronal versus glial fate decision in cortical progenitors, Neuron 29:401–413.

    Article  CAS  PubMed  Google Scholar 

  • Nornes, H.O. and Carry, M., 1978, Neurogenesis in spinal cord of mouse: An auto radiographic analysis, Brain Res. 159:1–16.

    Article  CAS  PubMed  Google Scholar 

  • O’Rourke, N.A., Chenn, A., and McConnell, S.K., 1997, Postmitotic neurons migrate tangentially in the cortical ventricular zone, Development 124:997–1005.

    CAS  PubMed  Google Scholar 

  • O’Rourke, N.A., Sullivan, D.P., Kaznowski, C.E., Jacobs, A.A., and McConnell, S.K., 1995, Tangential migration of neurons in the developing cerebral cortex, Development 121:2165–2176.

    CAS  PubMed  Google Scholar 

  • Ohsako, S., Hyer, J., Panganiban, G., Oliver, I., and Caudy, M., 1994, Hairy function as a DNA-binding helix-loop-helix repressor of Drosophila sensory organ formation, Genes Dev. 8:2743–2755.

    Article  CAS  PubMed  Google Scholar 

  • Parnavelas, J.G., Anderson, S.A., Lavdas, A.A., Grigoriou, M., Pachnis, V., and Rubenstein, J.L., 2000, The contribution of the ganglionic eminence to the neuronal cell types of the cerebral cortex, Novartis Found. Symp. 228:129–139; discussion 139–147.

    Article  CAS  PubMed  Google Scholar 

  • Perron, M., Kanekar, S., Vetter, M.L., and Harris, W.A., 1998, The genetic sequence of retinal development in the ciliary margin of the Xenopus eye, Dev. Biol. 199:185–200.

    Article  CAS  PubMed  Google Scholar 

  • Petersen, P.H., Zou, K., Hwang, J.K., Jan, Y.N., and Zhong, W., 2002, Progenitor cell maintenance requires numb and numblike during mouse neurogenesis, Nature 419:929–934.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Pfaff, S.L., Mendelsohn, M., Stewart, C.L., Edlund, T., and Jessell, T.M., 1996, Requirement for LIM homeobox gene isl1 in motor neuron generation reveals a motor neuron-dependent step in interneuron differentiation, Cell 84:309–320.

    Article  CAS  PubMed  Google Scholar 

  • Qian, X., Shen, Q., Goderie, S.K., He, W., Capela, A., Davis, A.A. et al., 2000, Timing of CNS cell generation: A programmed sequence of neuron and glial cell production from isolated murine cortical stem cells, Neuron 28:69–80.

    Article  CAS  PubMed  Google Scholar 

  • Rao, M.S., 1999, Multipotent and restricted precursors in the central nervous system, Anat. Rec. 257:137–148.

    Article  CAS  PubMed  Google Scholar 

  • Rao, M.S., Noble, M., and Mayer-Proschel, M., 1998, A tripotential glial precursor cell is present in the developing spinal cord, Proc. Natl. Acad. Sci. USA 95:3996–4001.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Raymond, P.A. and Rivlin, P.K., 1987, Germinal cells in the goldfish retina that produce rod photoreceptors, Dev. Biol. 122:120–138.

    Article  CAS  PubMed  Google Scholar 

  • Reese, B.E., Harvey, A.R., and Tan, S.S., 1995, Radial and tangential dispersion patterns in the mouse retina are cell-class specific, Proc. Natl. Acad. Sci. USA 92:2494–2498.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Roelink, H., Porter, J.A., Chiang, C., Tanabe, Y., Chang, D.T., Beachy, P.A. et al., 1995, Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of Sonic hedgehog autoproteolysis, Cell 81:445–455.

    Article  CAS  PubMed  Google Scholar 

  • Roztocil, T., Matter-Sadzinski, L., Alliod, C., Ballivet, M., and Matter, J.M., 1997, NeuroM, a neural helix-loop-helix transcription factor, defines a new transition stage in neurogenesis, Development 124:3263–3272.

    CAS  PubMed  Google Scholar 

  • Sharma, K., Sheng, H.Z., Lettieri, K., Li, H., Karavanov, A., Potter, S. et al., 1998, Lim homeodomain factors Lhx3 and Lhx4 assign subtype identities for motor neurons, Cell 95:817–828.

    Article  CAS  PubMed  Google Scholar 

  • Sicinski, P., Donaher, J.L., Parker, S.B., Li, T., Fazeli, A., Gardner, H. et al., 1995, Cyclin D1 provides a link between development and oncogenesis in the retina and breast, Cell 82:621–630.

    Article  CAS  PubMed  Google Scholar 

  • Sidman, R.L., Miale, I.L., and Feder, N., 1959, Cell proliferation and migration in the primitive ependymal zone: An autoradiographic study of histogenesis in the nervous system, Exp. Neurol. 1:322–333.

    Article  CAS  PubMed  Google Scholar 

  • Skeath, J.B. and Carroll, S.B., 1991, Regulation of achaete-scute gene expression and sensory organ pattern formation in the Drosophila wing, Genes Dev. 5:984–995.

    Article  CAS  PubMed  Google Scholar 

  • Skeath, J.B. and Carroll, S.B., 1992, Regulation of proneural gene expression and cell fate during neuroblast segregation in the Drosophila embryo, Development 114:939–946.

    CAS  PubMed  Google Scholar 

  • Spana, E.P. and Doe, C.Q., 1995, The Prospero transcription factor is asymmetrically localized to the cell cortex during neuroblast mitosis in Drosophila, Development 121:3187–3195.

    CAS  PubMed  Google Scholar 

  • Spana, E.P. and Doe, C.Q., 1996, Numb antagonizes Notch signaling to specify sibling neuron cell fates, Neuron 17:21–26.

    Article  CAS  PubMed  Google Scholar 

  • Straznicky, K. and Gaze, R.M., 1971, The growth of the retina in Xenopus laevis: An autoradiographic study, J. Embryol. Exp. Morphol. 26:67–79.

    CAS  PubMed  Google Scholar 

  • Sun, Y., Nadal-Vicens, M., Misono, S., Lin, M.Z., Zubiaga, A., Hua, X. et al., 2001, Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms, Cell 104:365–376.

    Article  CAS  PubMed  Google Scholar 

  • Taghert, P.H., Doe, C.Q., and Goodman, C.S., 1984, Cell determination and regulation during development of neuroblasts and neurones in grasshopper embryo, Nature 307:163–165.

    Article  CAS  PubMed  Google Scholar 

  • Tan, S.S., Kalloniatis, M., Sturm, K., Tam, P.P., Reese, B.E., and Faulkner-Jones, B., 1998, Separate progenitors for radial and tangential cell dispersion during development of the cerebral neocortex, Neuron 21:295–304.

    Article  CAS  PubMed  Google Scholar 

  • Tanabe, Y., William, C., and Jessell, T.M., 1998, Specification of motor neuron identity by the MNR2 homeodomain protein, Cell 95:67–80.

    Article  CAS  PubMed  Google Scholar 

  • Taupin, P. and Gage, F.H., 2002, Adult neurogenesis and neural stem cells of the central nervous system in mammals, J. Neurosci. Res. 69:745–749.

    Article  CAS  PubMed  Google Scholar 

  • Thaler, J., Harrison, K., Sharma, K., Lettieri, K., Kehrl, J., and Pfaff, S.L., 1999, Active suppression of interneuron programs within developing motor neurons revealed by analysis of homeodomain factor HB9, Neuron 23:675–687.

    Article  CAS  PubMed  Google Scholar 

  • Thor, S., Andersson, S.G., Tomlinson, A., and Thomas, J.B., 1999, A LIM-homeodomain combinatorial code for motor-neuron pathway selection, Nature 397:76–80.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Thor, S. and Thomas, J.B., 1997, The Drosophila islet gene governs axon pathfinding and neurotransmitter identity, Neuron 18:397–409.

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson, A. and Struhl, G., 2001, Delta/Notch and Boss/Sevenless signals act combinatorially to specify the Drosophila R7 photoreceptor, Mol. Cell 7:487–495.

    Article  CAS  PubMed  Google Scholar 

  • Turner, D.L. and Cepko, C.L., 1987, A common progenitor for neurons and glia persists in rat retina late in development, Nature 328:131–136.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Turner, D.L., Snyder, E.Y., and Cepko, C.L., 1990, Lineage-independent determination of cell type in the embryonic mouse retina, Neuron 4:833–845.

    Article  CAS  PubMed  Google Scholar 

  • Van Doren, M., Ellis, H.M., and Posakony, J.W., 1991, The Drosophila Extramacrochaetae protein antagonizes sequence-specific DNA binding by Daughterless/Achaete-scute protein complexes, Development 113:245–255.

    PubMed  Google Scholar 

  • van Praag, H., Kempermann, G., and Gage, F.H., 1999, Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus, Nat. Neurosci. 2:266–270.

    Article  PubMed  Google Scholar 

  • von Ohlen, T. and Doe, C.Q., 2000, Convergence of Dorsal, DPP, and EGFR signaling pathways subdivides the Drosophila neuroectoderm into three dorsal-ventral columns, Dev. Biol. 224:362–372.

    Article  CAS  Google Scholar 

  • Wallace, V.A., 1999, Purkinje-cell-derived sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum, Curr. Biol. 9:445–448.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, C. and Cepko, C.L., 1988, Clonally related cortical cells show several migration patterns, Science 241:1342–1345.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Walsh, C. and Cepko, C.L., 1992, Widespread dispersion of neuronal clones across functional regions of the cerebral cortex, Science 255:434–440.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Wang, S.W., Mu, X., Bowers, W.J., Kim, D.S., Plas, D.J., Crair, M.C. et al., 2002, Brn3b/Brn3c double knockout mice reveal an unsuspected role for Brn3c in retinal ganglion cell axon outgrowth, Development 129:467–477.

    CAS  PubMed  Google Scholar 

  • Wechsler-Reya, R.J. and Scott, M.P., 1999, Control of neuronal precursor proliferation in the cerebellum by Sonic hedgehog, Neuron 22:103–114.

    Article  CAS  PubMed  Google Scholar 

  • Weisblat, D.A., Sawyer, R.T., and Stent, G.S., 1978, Cell lineage analysis by intracellular injection of a tracer enzyme, Science 239:1142–1145.

    Google Scholar 

  • Yoshida, H., Kong, Y.Y., Yoshida, R., Elia, A.J., Hakem, A., Hakem, R. et al., 1998, Apaf1 is required for mitochondrial pathways of apoptosis and brain development, Cell 94:739–750.

    Article  CAS  PubMed  Google Scholar 

  • Zhong, W., Feder, J.N., Jiang, M.M., Jan, L.Y., and Jan, Y.N., 1996, Asymmetric localization of a mammalian numb homolog during mouse cortical neurogenesis, Neuron 17:43–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic / Plenum Publishers, New York

About this chapter

Cite this chapter

Vetter, M.L., Dorsky, R.I. (2005). Neurogenesis. In: Rao, M.S., Jacobson†, M. (eds) Developmental Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/0-387-28117-7_5

Download citation

Publish with us

Policies and ethics