Skip to main content

Cell Proliferation in the Developing Mammalian Brain

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, R.J., 1996, Metaphase spindles rotate in the neuroepithelium of rat cerebral cortex, J. Neurosci. 16:7610–7618.

    CAS  PubMed  Google Scholar 

  • Alexiades, M.R. and Cepko, C., 1996, Quantitative analysis of proliferation and cell cycle length during development of the rat retina, Dev. Dyn. 205:293–307.

    Article  CAS  PubMed  Google Scholar 

  • Altman, J. and Bayer, S.A., 1990, Vertical compartmentation and cellular transformations in the germinal matrices of the embryonic rat cerebral cortex, J. Exp. Neurol. 107:23–35.

    Article  CAS  Google Scholar 

  • Alvarez-Buylla, A. and Garcia-Verdugo J.M., 2002, Neurogenesis in adult subventricular zone, J. Neurosci. 22: 629–634.

    CAS  PubMed  Google Scholar 

  • Anderson, S.A., Kaznowski, C.E., Horn, C., Rubenstein, J.L., and McConnell, S.K., 2002, Distinct origins of neocortical projection neurons and interneurons in vivo, Cereb. Cortex 12:702–709.

    Article  PubMed  Google Scholar 

  • Angevine, J.B., Jr., 1965, Time of neuron origin in the hippocampal region: An autoradiographic study in the mouse, Exp. Neurol. Suppl. 2:1–71.

    Google Scholar 

  • Angevine, J.B.J., 1964, Autoradiographic study of histogenesis in the area dentata of the cerebral cortex in the mouse, Anat. Rec. 148:255–.

    Google Scholar 

  • Angevine, J.B.J. and Sidman, R.L., 1961, Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse, Nature 192:766–768.

    Article  PubMed  Google Scholar 

  • Bayer, S.A., 1982, Changes in the total number of dentate granule cells in juvenile and adult rats: A correlated volumetric and 3H-thymidine autoradiographic study, Exp. Brain. Res. 46:315–323.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Bayer, S.A. and Altman, J., 1975, Radiation-induced interference with postnatal hippocampal cytogenesis in rats and its long-term effects on the acquisition of neurons and glia, J. Comp. Neurol. 163:1–20.

    Article  Google Scholar 

  • Bayer S.A., Yackel J.W., and Puri P.S., 1982, Neurons in the rat dentate gyrus granular layer substantially increase during juvenile and adult life. Science 216:890–892.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Bhide, P.G., 1996, Cell cycle kinetics in the embryonic mouse corpus striatum, J. Comp. Neurol. 374:506–522.

    Article  CAS  PubMed  Google Scholar 

  • Blau, H.M., Brazelton, T.R., and Weimann, J.M., 2001, The evolving concept of a stem cell: Entity or function? Cell 105:829–841.

    Article  CAS  PubMed  Google Scholar 

  • Blaschke, A.J., Staley, K., and Chun, J., 1996, Widespread programmed cell death in proliferative and postmitotic regions of the fetal cerebral cortex, Development 122:1165–1174.

    CAS  PubMed  Google Scholar 

  • Boulder Committee, 1970, Embryonic vertebrate central nervous system: Revised terminology, Anat. Rec. 166:257–262.

    Article  Google Scholar 

  • Brazel, C.Y., Romanko, M.J., Rothstein, R.P., and Levison, S.W., 2003, Roles of the mammalian subventricular zone in brain development, Prog. Neurobiol. 69:49–69.

    Article  PubMed  Google Scholar 

  • Cai, L., Hayes, N.L., and Nowakowski, R.S., 1997a, Synchrony of clonal cell proliferation and contiguity of clonally related cells: Production of mosaicism in the ventricular zone of developing mouse neocortex, J. Neurosci. 17:2088–2100.

    CAS  PubMed  Google Scholar 

  • Cai, L., Hayes, N.L., and Nowakowski, R.S., 1997b, Local homogeneity of cell cycle length in developing mouse cortex, J. Neurosci. 17:2079–2087.

    CAS  PubMed  Google Scholar 

  • Cameron, H.A. and McKay, R.D., 2001, Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus, J. Comp. Neurol. 435:406–417.

    Article  CAS  PubMed  Google Scholar 

  • Cameron, H.A., Tanapat, P., and Gould, E. 1998, Adrenal steroids and N-methyl-D-aspartate receptor activation regulate neurogenesis in the dentate gyrus of adult rats through a common pathway, Neuroscience 82:349–354.

    Article  CAS  PubMed  Google Scholar 

  • Caviness, V., Takahashi, T., and Nowakowski, R., 1995, Numbers, time and neocortical neuronogenesis: A general developmental and evolutionary model, Trends Neurosci. 18:379–383.

    Article  CAS  PubMed  Google Scholar 

  • Caviness, V.S. and Rakic, P., 1978, Mechanisms of cortical development: A view from mutations in mice, Annu. Rev. Neurosci. 1:297–326.

    Article  PubMed  Google Scholar 

  • Caviness, V.S. and Sidman, R.L., 1973, Time of origin of corresponding cell classes in the cerebral cortex of normal and reeler mutant mice: An autoradiographic analysis, J. Comp. Neurol. 148:141–152.

    Article  PubMed  Google Scholar 

  • Chenn, A. and McConnell, S., 1995, Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis, Cell 82:631–641.

    Article  CAS  PubMed  Google Scholar 

  • Chenn, A., Zhang, Y.A., Chang, B.T., and McConnell, S.K., 1998, Intrinsic polarity of mammalian neuroepithelial cells, Mol. Cell Neurosci. 11:183–193.

    Article  CAS  PubMed  Google Scholar 

  • Corbin, J.G., Nery, S., and Fishell, G., 2001, Telencephalic cells take a tangent: Non-radial migration in the mammalian forebrain, Nat. Neurosci. 4Suppl:1177–1182.

    Article  CAS  PubMed  Google Scholar 

  • Corcoran, R.B. and Scott, M.P., 2001, A mouse model for medulloblastoma and basal cell nevus syndrome, J. Neurooncol. 53:307–318.

    Article  CAS  PubMed  Google Scholar 

  • Crandall, J.E. and Caviness, V.S.,1984, Axon strata of the cerebral wall in embryonic mice, Dev. Brain. Res. 14:185–195.

    Article  Google Scholar 

  • Crespo, D., Stanfield, B.B., and Cowan, W.M., 1986, Evidence that late-generated ganule cells do not simply replace earlier formed neurons in the rat dentate gyrus, Exp. Brain. Res. 62:541–548.

    Article  CAS  PubMed  Google Scholar 

  • Dehay, C., Giroud, P., Berland, M., Smart, I., and Kennedy, H., 1993, Modulation of the cell cycle contributes to the parcellation of the primate visual cortex, Nature 366:464–466.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Eisch, A.J., Barrot, M., Schad, C.A., Self, D.W., and Nestler, E.J., 2000, Opiates inhibit neurogenesis in the adult rat hippocampus, Proc. Natl. Acad. Sci. USA 97:7579–7584.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Eriksson, P.S., Perfilieva, E., Bjork-Eriksson, T., Alborn, A.M., Nordborg, C., Peterson, D.A. et al., 1998, Neurogenesis in the adult human hippocampus [see comments], Nat. Med. 4:1313–1317.

    Article  CAS  PubMed  Google Scholar 

  • Essick, C.R., 1907, The corpus ponto-bulbare—A hitherto undescribed nuclear mass in the human hindbrain, Am. J. Anat. 7:119–135.

    Article  Google Scholar 

  • Essick, C.R., 1909, On the embryology of the corpus ponto-bulbare and its relationship to the development of the pons, Anat. Rec. 3:254–257.

    Google Scholar 

  • Essick, C.R., 1912, The development of the nuclei pontis and the nucleus arcuatus in man, Am. J. Anat. 13:25–54.

    Article  Google Scholar 

  • Finlay, B.L. and Pallas, S.L., 1989, Control of cell number in the developing mammalian visual system, Prog. Neurobiol. 32:207–234.

    Article  CAS  PubMed  Google Scholar 

  • Finlay, B.L. and Slattery, M., 1983, Local differences in the amount of early cell death in neocortex predict adult local specializations, Science 219:1349–1351.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Fishell, G., Mason, C.A., and Hatten, M.E., 1993, Dispersion of neural progenitors within the germinal zones of the forebrain [published erratum appears in Nature 1993 May 20; 363 (6426):286] [see comments], Nature 362:636–638.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Garcia-Verdugo, J.M., Doetsch, F., Wichterle, H., Lim, D.A., and Alvarez-Buylla, A.,1998, Architecture and cell types of the adult subventricular zone: In search of the stem cells, J. Neurobiol. 36:234–248.

    Article  CAS  PubMed  Google Scholar 

  • Gilmore, E.C., Nowakowski, R.S., Caviness, V.S., Jr., and Herrup, K., 2000, Cell birth, cell death, cell diversity and DNA breaks: How do they all fit together? Trends. Neurosci. 23:100–105.

    Article  CAS  PubMed  Google Scholar 

  • Goldman, J.E., 1995, Lineage, migration, and fate determination of postnatal subventricular zone cells in the mammalian CNS, J. Neurooncol. 24:61–64.

    Article  CAS  PubMed  Google Scholar 

  • Gould, E. and Tanapat, P., 1999, Stress and hippocampal neurogenesis, Biol. Psychiatry 46:1472–1479.

    Article  CAS  PubMed  Google Scholar 

  • Halliday, A.L. and Cepko, C.L.,1992, Generation and migration of cells in the developing striatum, Neuron 9:15–26.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton, E. and Dobbin, J., 1983a, The percentage labeled mitosis technique shows the mean cell cycle time to be half its true value in Carcinoma TY. 1. [H3]thymidine and vincristine studies, Cell Tissue Kinet. 16: 473–482.

    CAS  PubMed  Google Scholar 

  • Hamilton, E. and Dobbin, J., 1983b, The percentage labeled mitoses technique shows the mean cell cycle time to be half its true value in Carcinoma NT. II. [3H]deoxyuridine studies, Cell Tissue Kinet. 16:483–492.

    CAS  PubMed  Google Scholar 

  • Harkmark, W., 1954, Cell migrations from the rhombic lip to the inferior olive, the nucleus raphe and the pons. A morphological and experimental investigation on chick embryos, J. Comp. Neurol. 100:115–209.

    Article  CAS  PubMed  Google Scholar 

  • Hayes, N.L. and Nowakowski, R.S., 2000, Exploiting the dynamics of S-phase tracers in developing brain: Interkinetic nuclear migration for cells entering versus leaving the S-phase, Dev. Neurosci. 22:44–55.

    Article  CAS  PubMed  Google Scholar 

  • Hayes, N.L. and Nowakowski, R.S., 2002, Dynamics of cell proliferation in the adult dentate gyrus of two inbred strains of mice, Brain Res. Dev. Brain Res. 134:77–85.

    Article  CAS  PubMed  Google Scholar 

  • Heumann, D. and Leuba, G., 1983, Neuronal death in the development and aging of the cerebral cortex of the mouse, Neuropathol. Appl. Neurobiol. 9:297–311.

    Article  CAS  PubMed  Google Scholar 

  • Hinds, J.W., 1968a, Autoradiographic study of histogenesis in the mouse olfactory bulb. I. Time of origin of neurons and neuroglia, J. Comp. Neurol. 134:287–304.

    Article  CAS  PubMed  Google Scholar 

  • Hinds, J.W., 1968b, Autoradiographic study of histogenesis in the mouse olfactory bulb. II. Cell proliferation and migration. J. Comp. Neurol. 134:305–322.

    Article  CAS  PubMed  Google Scholar 

  • His, W., 1889, Die Neuroblasten und deren Entstehung im embryonalen Mark, Abh Kgl Sachs Ges Wiss Math-phys Cl 15:313–372.

    Google Scholar 

  • His, W., 1897, Address upon the development of the brain, Trans. Roy. Acad. Med. Ireland 15:1–21.

    Article  Google Scholar 

  • His, W., 1904, Die Entwicklung des Menschlichen Gehirns wahrend der ersten Monate, von S. Hirzel, Leipzig.

    Google Scholar 

  • Hoshino, K., Matsuzawa, T., and Murakami, U., 1973, Characteristic of the cell cycle of matrix cells in the mouse embryo during histogenesis of telencephalon, Exp. Cell Res. 77:89–94.

    Article  CAS  PubMed  Google Scholar 

  • Jacobson, M., 1991, Developmental Neurobiology, 3rd edn, Plenum Press: New York & London.

    Google Scholar 

  • Kaplan, M.S. and Hinds, J.W., 1977, Neurogenesis in the adult rat: Electron microscopic analysis of light radioautographs, Science 197:1092–1094.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Kaufmann, S.L., 1968, Lengthening of the generation cycle during embryonic differentiation of the mouse neural tube, Exp. Cell Res. 49:420–424.

    Article  Google Scholar 

  • Kempermann, G., Brandon, E.P., and Gage, F.H., 1998a, Environmental stimulation of 129/SvJ mice causes increased cell proliferation and neurogenesis in the adult dentate gyrus, Curr. Biol. 8: 939–942.

    Article  CAS  PubMed  Google Scholar 

  • Kempermann, G., Kuhn, H.G., and Gage, F.H., 1997, Genetic influence on neurogenesis in the dentate gyrus of adult mice, Proc. Nat. Acad. Sci. USA 94:10409–10414.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Kempermann, G., Kuhn, H.G., and Gage, F.H., 1998b, Experience-induced neurogenesis in the senescent dentate gyrus, J. Neurosci. 18:3206–3212.

    CAS  PubMed  Google Scholar 

  • Kennedy, H. and Dehay, C., 1993, The importance of developmental timing in cortical specification, Perspect. Dev. Neurobiol. 1:93–99.

    CAS  PubMed  Google Scholar 

  • Koelliker, R.A., 1896, Handbuc der Gewebelchre des Menschen. Bd. 2 Nervensystem des Menschen und der Thiere, 6th edn, W. Englemann, Leipzig.

    Google Scholar 

  • Kornack, D.R. and Rakic, P., 1998, Changes in cell-cycle kinetics during the development and evolution of primate neocortex, Proc. Nat. Acad. Sci. USA 95:1242–1246.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Kornack, D.R. and Rakic, P., 1999, Continuation of neurogenesis in the hippocampus of the adult macaque monkey, Proc. Natl. Acad. Sci. USA 96: 5768–5773.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Kuhn, H.G., and Dickinson-Anson, H., and Gage, F.H., 1996, Neurogenesis in the dentate gyrus of the adult rat: Age-related decrease of neuronal progenitor proliferation, J. Neurosci. 16:2027–2033.

    CAS  PubMed  Google Scholar 

  • Lavdas, A.A., Grigoriou, M., Pachnis, V., and Parnavelas, J.G., 1999, The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J Neurosci 19:7881–7888.

    CAS  PubMed  Google Scholar 

  • Lavdas, A.A., Mione, M.C., and Parnavelas, J.G., 1996, Neuronal clones in the cerebral cortex show morphological neurotransmitter heterogeneity during development, Cerebral Cortex 6:490–497.

    Article  CAS  PubMed  Google Scholar 

  • Letinic, K. and Rakic, P., 2001, Telencephalic origin of human thalamic GABAergic neurons, Nat. Neurosci. 4:931–936.

    Article  CAS  PubMed  Google Scholar 

  • Letinic, K., Zoncu, R., and Rakic, P., 2002, Origin of GABAergic neurons in the human neocortex, Nature 417:645–649.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Leuba, G., Heumann, D., and Rabinowicz, T., 1977, Postnatal development of the mouse cerebral neocortex. I. Quantitative cytoarchitectonics of some motor and sensory areas, J. Hirnforsch. 18:461–481.

    CAS  PubMed  Google Scholar 

  • LeVine, S.M. and Goldman, J.E., 1988a, Embryonic divergence of oligodendrocyte and astrocyte lineages in developing rat cerebrum, J. Neurosci. 8:3992–4006.

    CAS  PubMed  Google Scholar 

  • LeVine, S.M. and Goldman, J.E., 1988b, Spatial and temporal patterns of oligodendrocyte differentiation in rat cerebrum and cerebellum, J. Comp. Neurol. 277:441–455.

    Article  CAS  PubMed  Google Scholar 

  • Levinson, S.W. and Goldman, J.E., 1993, Both oligodendrocytes and astrocytes develop from progenitors in the subventricular zone of the postnatal rat forebrain, Neuron 10:201–212.

    Article  Google Scholar 

  • Lois, C. and Alvarez-Buylla, A., 1994, Long-distance neuronal migration in the adult mammalian brain, Science 264:1145–1148.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Luskin, M.B., 1993, Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone, Neuron 11:173–189.

    Article  CAS  PubMed  Google Scholar 

  • Luskin, M.B. and McDermott, K., 1994, Divergent lineages for oligodendrocytes and astrocytes originating in the neonatal forebrain subventricular zone, Glia 11:211–226.

    Article  CAS  PubMed  Google Scholar 

  • Luskin, M.B., Parnavelas, J.G., and Barfield, J.A., 1993, Neurons, astrocytes, and oligodendrocytes of the rat cerebral cortex originate from separate progenitor cells: An ultrastructural analysis of clonally related cells, J. Neurosci. 13:1730–1750.

    CAS  PubMed  Google Scholar 

  • Luskin, M.B., Pearlman, A.L., and Sanes, J.R., 1988, Cell lineage in the cerebral cortex of the mouse studied in vivo and in vitro with a recombinant retrovirus, Neuron 1:635–647.

    Article  CAS  PubMed  Google Scholar 

  • Mares, V. and Bruckner, G., 1978, Postnatal formation of neural cells in the rat occipital cerebrum: An autoradiographic study of the time and space pattern of cell division, J. Comp. Neurol. 177:519–528.

    Article  CAS  PubMed  Google Scholar 

  • Marin, O. and Rubenstein, J.L., 2001, A long, remarkable journey: Tangential migration in the telencephalon, Nat. Rev. Neurosci. 2:780–790.

    Article  CAS  PubMed  Google Scholar 

  • Miale, I. and Sidman, R.L., 1961, An autoradiographic analysis of histogenesis in the mouse cerebellum, Exp. Neurol. 4:277–296.

    Article  CAS  PubMed  Google Scholar 

  • Mione, M.C., Cavanagh, J.F., Harris, B., and Parnavelas, J.G., 1997, Cell fate specification and symmetrical/asymmetrical divisions in the developing cerebral cortex, J. Neurosci. 17:2018–2029.

    CAS  PubMed  Google Scholar 

  • Mione, M.C., Danevic, C., Boardman, P., Harris, B., and Parnavelas, J.G., 1994, Lineage analysis reveals neurotransmitter, (GABA) or glutamate, but not calcium-binding protein homogeneity in clonally related cortical neurons, J. Neurosci. 14:107–123.

    CAS  PubMed  Google Scholar 

  • Miyama, S., Takahashi, T., Nowakowski, R.S., and Caviness, V.S., Jr., 1997, A gradient in the duration of the G1 phase in the murine neocortical proliferative epithelium, Cereb. Cortex 7:678–689.

    Article  CAS  PubMed  Google Scholar 

  • Nery, S., Fishell, G., and Corbin, J.G., 2002, The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations, Nat. Neurosci. 5:1279–1287.

    Article  CAS  PubMed  Google Scholar 

  • Nowakowski, R.S. and Rakic, P., 1981, The site of origin and route and rate of migration of neurons to the hippocampal region of the rhesus monkey, J. Comp. Neurol. 196:129–154.

    Article  CAS  PubMed  Google Scholar 

  • Nowakowski, R.S., Caviness, V.S., Jr., Takahashi, T., and Hayes, N.L., 2002, Population dynamics during cell proliferation and neuronogenesis in the developing murine neocortex. In Cortical Development: From Specification to Differentiation (Results and Problems in Cell Differentiation. Vol. 39) (C. Hohmann, ed.), Springer-Verlag, New York, pp. 1–22.

    Google Scholar 

  • Nowakowski, R.S., Lewin, S.B., and Miller, M.W., 1989, Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population, J. Neurocytol. 18:311–318.

    Article  CAS  PubMed  Google Scholar 

  • O’Rourke, N.A., Dailey, M.E., Smith, S.J., and McConnell, S.K., 1992, Diverse migratory pathways in the developing cerebral cortex, Science 258:299–302.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Obersteiner, H., 1883, Der feinere Bau der Kleinhirnrinde beim Menschen und bie Tieren, Biol. Zentralbl. 3:145–155.

    Google Scholar 

  • Panganiban, G. and Rubenstein, J.L., 2002, Developmental functions of the Distal-less/Dlx homeobox genes, Development 129:4371–4386.

    CAS  PubMed  Google Scholar 

  • Pomeroy, S.L., Tamayo, P., Gaasenbeek, M., Sturla, L.M., Angelo, M., McLaughlin, M.E. et al., 2002, Prediction of central nervous system embryonal tumour outcome based on gene expression, Nature 415:436–442.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Powell, E.M., Campbell, D.B., Stanwood, G.D., Davis, C., Noebels, J.L., and Levitt, P., 2003, Genetic disruption of cortical interneuron development causes region-and GABA cell type-specific deficits, epilepsy, and behavioral dysfunction, J. Neurosci. 23:622–631.

    CAS  PubMed  Google Scholar 

  • Price, J., 1987, Retroviruses and the study of cell lineage, Development 101:409–419.

    CAS  PubMed  Google Scholar 

  • Privat, A., 1975, Postnatal gliogenesis in the mammalian brain, Int. Rev. Cytol. 40:281–323.

    Article  CAS  PubMed  Google Scholar 

  • Rachel, R.A., Dolen, G., Hayes, N.L., Lu, A., Erskine, L., Nowakowski, R.S., and Mason, C.A., 2002, Spatiotemporal features of early neuronogenesis differ in wild-type and albino mouse retina, J. Neurosci. 22:4249–4263.

    CAS  PubMed  Google Scholar 

  • Rakic, P., 1974, Neurons in rhesus monkey visual cortex: Systematic relation between time of origin and eventual disposition. Science 183:425–427.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Rakic, P., 1977, Genesis of the dorsal lateral geniculate nucleus in the rhesus monkey: Site and time of origin, kinetics of proliferation, routes of migration and pattern of distribution of neurons, J. Comp. Neurol. 176:23–52.

    Article  CAS  PubMed  Google Scholar 

  • Rakic, P., and Nowakowski, R.S.,1981, The time of origin of neurons in the hippocampal region of the rhesus monkey, J. Comp. Neurol. 196: 99–128.

    Article  CAS  PubMed  Google Scholar 

  • Rakic, P. and Sidman, R.L., 1968, Supravital DNA synthesis in the developing human and mouse brain, J. Neuropathol. Exp. Neurol. 27:246–276.

    Article  CAS  PubMed  Google Scholar 

  • Rakic, P. and Sidman, R.L., 1969, Telencephalic origin of pulvinar neurons in the fetal human brain, Z Anat. Entwickl-Gesch. 129:53–82.

    Article  CAS  Google Scholar 

  • Rakic, P., Stensaas, L.J., Sayer, E.P., and Sidman, R.L., 1974, Computer aided three-dimensional reconstruction and quantitative analysis of cells from serial electron microscopic montage of foetal monkey brain, Nature 250:31–34.

    Article  CAS  PubMed  Google Scholar 

  • Ramon y Cajal, S., 1894, Les nouvelle idees sur la structure du systeme nerveuz chez l’homme et chez les vertebras, Reinwald, Paris.

    Google Scholar 

  • Ramon y Cajal, S., 1909–1911, Histologie du Systeme Nerveaux de l’Homme et des Vertebres, Reprinted by Instituto Ramon y Cajal del CSIC, Madrid.

    Google Scholar 

  • Reynolds, B.A. and Weiss, S., 1992, Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system, Science 255:1707–1710.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Sauer, F.C., 1935, Mitosis in the neural tube, J. Comp. Neurol. 62:377–405.

    Article  Google Scholar 

  • Sauer, F.C., 1936, The interkinetic migration of embryonic epithelial nuclei, J. Morphol. 60:1–11.

    Article  ADS  Google Scholar 

  • Sauer, F.C., 1937, Some factors in the morphogenesis of vertebrate embryonic epithelia, J. Morphol. 61:563–579.

    Article  Google Scholar 

  • Sauer, M.E., 1959, Radioautographic study of the location of newly synthesized deoxyribonucleic acid in the neural tube of the chick embryo: Evidence for intermitotic migration of nuclei. Anat. Rec. 133:456.

    Google Scholar 

  • Sauer, M.E. and Chittenden, A.C., 1959, Deoxyribonucleic acid content of cell nuclei in the neural tube of the chick embryo: Evidence for inter-mitotic migration of nuclei, Exp. Cell. Res. 16:1–6.

    Article  CAS  PubMed  Google Scholar 

  • Schaper, A., 1897a, Die fruhesten Differenzierungsvorgange im Centralnervensystem, Arch Entwicklungsmech Organ 5:81–132.

    Article  Google Scholar 

  • Schaper, A., 1897b, The earliest differentiation in the central nervous system of vertebrates, Science 5:81–132.

    Article  Google Scholar 

  • Schaper, A. and Cohen, C., 1905, Beitraege zur Analyze des tierischen Wachstums. II. Teil: Ueber zellproliferatorische Wachstumszentren und deren Bezeihung zur Regeneration und Geschwulstbildung, Arch. f Entwick-Mech. 19:348–445.

    Article  Google Scholar 

  • Schmechel, D.E. and Rakic, P., 1979a, Arrested proliferation of radial glial cells during midgestation in rhesus monkey, Nature 277:303–305.

    Article  CAS  PubMed  Google Scholar 

  • Schmechel, D.E. and Rakic, P., 1979b, A Golgi study of radial glial cells in developing monkey telencephalon: Morphogenesis and transformation into astrocytes, Anat. Embryol. (Berl) 156:115–152.

    Article  CAS  Google Scholar 

  • Seaberg, R.M. and van der Kooy, D., 2003, Stem and progenitor sells: The premature desertion of rigorous definitions, Trends Neurosci. 26:125–131.

    Article  CAS  PubMed  Google Scholar 

  • Sidman, R.L., 1970, Autoradiographic methods and principles for study of the nervous system with thymidine-H3. In Contemporary Research Methods in Neuroanatomy (W.J.H. Nauta and S.O.E. Ebbesson, eds.), Springer, New York, pp. 252–274.

    Google Scholar 

  • Sidman, R.L., Miale, I.L., and Feder, N., 1959, Cell proliferation and migration in the primitive ependymal zone: An autoradiographic study of histogenesis in the nervous system, Exp. Neurol. 1:322–333.

    Article  CAS  PubMed  Google Scholar 

  • Smart, I., 1961, The subependymal layer of the mouse brain and its cell production as shown by autoradiography after thymidine-H3 injection, J. Comp. Neurol. 116:325–347.

    Article  Google Scholar 

  • Smart, I. and Leblond, C.P., 1961, Evidence for division and transformation of neuroglia cells in the mouse brain, as derived from radio-autography after injection of thymidine-H3, J. Comp. Neurol. 116:349–367.

    Article  Google Scholar 

  • Smart, I.H.M., 1972, Proliferative characteristics of the ependymal layer during the early development of the mouse diencephalon, as revealed by recording the number, location, and plane of cleavage of mitotic cells, J. Anat. 113:109–129.

    CAS  PubMed  Google Scholar 

  • Smart, I.H.M., 1973, Proliferative characteristics of the ependymal layer during the early development of the mouse neocortex: A pilot study based on recording the number, location and plane of cleavage of mitotic figures, J. Anat. 116:67–91.

    CAS  ADS  PubMed  Google Scholar 

  • Smart, I.H.M. and McSherry, G.M., 1982, Growth patterns in the lateral wall of the mouse telencephalon: II. Histological changes during and subsequent to the period of isocortical neuron production, J. Anat. 134:415–442.

    CAS  PubMed  Google Scholar 

  • Stanfield, B.B. and Cowan, W.M., 1979, The development of the hippocampus and dentate gyrus in normal and reeler mice, J. Comp. Neurol. 185: 423–459.

    Article  CAS  PubMed  Google Scholar 

  • Stanfield, B.B. and Trice, J.E., 1988, Evidence that granule cells generated in the dentate gyrus of adult rats extend axonal projections, Exp. Brain. Res. 72:399–406.

    CAS  PubMed  Google Scholar 

  • Sturrock, R.R. and Smart, I.H., 1980, A morphological study of the mouse subependymal layer from embryonic life to old age, J. Anat. 130: 391–415.

    CAS  PubMed  Google Scholar 

  • Taber-Pierce, E., 1973, Time of origin of neurons in the brain stem of the mouse, Prog. Brain Res. 40:53–66.

    Article  Google Scholar 

  • Takahashi, T., Nowakowski, R.S., and Caviness, V.S., Jr., 1993, Cell cycle parameters and patterns of nuclear movement in the neocortical proliferative zone of the fetal mouse, J. Neurosci. 13:820–833.

    CAS  PubMed  Google Scholar 

  • Takahashi, T., Nowakowski, R.S., and Caviness, V.S., Jr., 1995a, The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall, J. Neurosci. 15:6046–6057.

    CAS  PubMed  Google Scholar 

  • Takahashi, T., Nowakowski, R.S., and Caviness, V.S., Jr., 1995b, Early ontogeny of the secondary proliferative population of the embryonic murine cerebral wall, J. Neurosci. 15:6058–6068.

    CAS  PubMed  Google Scholar 

  • Takahashi, T., Nowakowski, R.S., and Caviness, V.S., Jr., 1996a, The leaving or Q fraction of the murine cerebral proliferative epithelium: A general model of neocortical neuronogenesis, J. Neurosci. 16:6183–6196.

    CAS  PubMed  Google Scholar 

  • Takahashi, T., Nowakowski, R.S., and Caviness, V.S., Jr., 1996b, Interkinetic and migratory behavior of a cohort of neocortical neurons arising in the early embryonic murine cerebral wall, J. Neurosci. 16:5762–5776.

    CAS  PubMed  Google Scholar 

  • Takahashi T., Nowakowski, R.S., and Caviness, V.S., Jr., 1997, The mathematics of neocortical neuronogenesis, Dev. Neurosci. 19:17–22.

    Article  CAS  PubMed  Google Scholar 

  • Tan, S.S. and Breen, S., 1993, Radial mosaicism and tangential cell dispersion both contribute to mouse neocortical development [see comments], Nature 362:638–640.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Tanapat, P., Galea, L.A., and Gould, E., 1998, Stress inhibits the proliferation of granule cell precursors in the developing dentate gyrus, Int. J. Dev. Neurosci. 16:235–239.

    Article  CAS  PubMed  Google Scholar 

  • Tanapat, P., Hastings, N.B., Reeves, A.J., and Gould, E., 1999, Estrogen stimulates a transient increase in the number of new neurons in the dentate gyrus of the adult female rat, J. Neurosci. 19:5792–5801.

    CAS  PubMed  Google Scholar 

  • Thomaidou, D., Mione, M.C., Cavanagh, J.F., and Parnavelas, J.G., 1997, Apoptosis and its relation to the cell cycle in the developing cerebral cortex, J. Neurosci. 17:1075–1085.

    CAS  PubMed  Google Scholar 

  • Van Praag, H., Christie, B.R., Sejnowski, T.J., and Gage, F.H., 1999, Running enhances neurogenesis, learning, and long-term potentiation in mice, Proc. Natl. Acad. Sci. USA 96:13427–13431.

    Article  ADS  PubMed  Google Scholar 

  • Van Praag, H., Schinder, A.F., Christie, B.R., Toni, N., Palmer, T.D., and Gage, F.H., 2002, Functional neurogenesis in the adult hippocampus, Nature 415:1030–1034.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Verney, C., Takahashi, T., Bhide, P.G., Nowakowski, R.S., and Caviness, Jr., V.S., 2000, Independent controls for neocortical neuron production and histogenetic cell death, Dev. Neurosci. 22:125–138.

    Article  CAS  PubMed  Google Scholar 

  • Vignal, W., 1888, Recherches sur le developpement des elements des couches corticales du cerveau et du cervelet chez l’homme et les mamiferes, Arch. Physiol. Norm. Path. (Paris) Ser. IV 2:228–254.

    Google Scholar 

  • Walsh, C., 1993, Cell lineage and regional specification in the mammalian neocortex, Perspect. Dev. Neurobiol. 1:75–80.

    CAS  PubMed  Google Scholar 

  • Walsh, C. and Cepko, C.L., 1988, Clonally related cortical cells show several migration patterns, Science 242:1342–1345.

    Article  ADS  Google Scholar 

  • Walsh, C. and Cepko, C.L., 1992, Widespread dispersion of neuronal clones across functional regions of the cerebral cortex, Science 255:434–440.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Wichterle, H., and Turnbull, D.H., Nery, S., Fishell, G., and Alvarez-Buylla, A., 2001, In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain, Development 128:3759–3771.

    CAS  PubMed  Google Scholar 

  • Williams, B.P., Read, J., and Price, J., 1991, The generation of neurons and oligodendrocytes from a common precursor cell, Neuron 7:685–693.

    Article  CAS  PubMed  Google Scholar 

  • Zecevic, N. and Rakic, P., 1976, Differentiation of Purkinje cells and their relationship to other components of developing cerebellar cortex in man, J. Comp. Neurol. 167:27–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic / Plenum Publishers, New York

About this chapter

Cite this chapter

Nowakowski, R.S., Hayes, N.L. (2005). Cell Proliferation in the Developing Mammalian Brain. In: Rao, M.S., Jacobson†, M. (eds) Developmental Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/0-387-28117-7_2

Download citation

Publish with us

Policies and ethics