Skip to main content

Striatal Acetylcholine Control of Reward-Related Dopamine Signalling

  • Conference paper
The Basal Ganglia VIII

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 56))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  • Aosaki, T., Graybiel, A.M., and Kimura, M., 1994a, Effect of the nigrostriatal dopamine system on acquired neural responses in the striatum of behaving monkeys, Science 265:412.

    PubMed  CAS  Google Scholar 

  • Aosaki, T., Tsubokawa, H., Ishida, A., Watanabe, K., Graybiel, A.M., and Kimura, M., 1994b, Responses of tonically active neurons in the primate’s striatum undergo systematic changes during behavioral sensorimotor conditioning, J. Neurosci. 14:3969.

    PubMed  CAS  Google Scholar 

  • Avshalumov, M.V., Chen, B.T., Marshall, S.P., Pena, D.M., and Rice, M.E., 2003, Glutamate-dependent inhibition of dopamine release in striatum is mediated by a new diffusible messenger, H2O2, J. Neurosci. 23:2744.

    PubMed  CAS  Google Scholar 

  • Bennett, B.D., and Wilson, C.J., 1999, Spontaneous activity of neostriatal cholinergic interneurons in vitro, J. Neurosci. 19:5586.

    PubMed  CAS  Google Scholar 

  • Bennett, B.D., and Wilson, C.J., 1998, Synaptic regulation of action potential timing in neostriatal cholinergic interneurons, J. Neurosci. 18:8539.

    PubMed  CAS  Google Scholar 

  • Caggiula, A.R., Donny, E.C., White, A.R., Chaudhri, N., Booth, S., Gharib, M.A., Hoffman, A., Perkins, K.A., and Sved, A.F., 2001, Cue dependency of nicotine self-administration and smoking, Pharmacol. Biochem. Behav. 70:515.

    Article  PubMed  CAS  Google Scholar 

  • Champtiaux, N., Gotti, C., Cordero-Erausquin, M., David, D.J., Przybylski, C., Lena, C., Clementi, F., Moretti, M., Rossi, F.M., Le Novere, N., McIntosh, J.M., Gardier, A.M., and Changeux, J.P., 2003, Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice, J. Neurosci. 23:7820.

    PubMed  CAS  Google Scholar 

  • Chen, B.T., and Rice, M.E., 2001, Novel Ca2+ dependence and time course of somatodendritic dopamine release: substantia nigra versus striatum, J. Neurosci. 21:7841.

    PubMed  CAS  Google Scholar 

  • Corrigall, W.A., Coen, K.M., and Adamson, K.L., 1994, Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area, Brain Res. 653:278.

    Article  PubMed  CAS  Google Scholar 

  • Cragg, S.J., 2003, Variable dopamine release probability and short-term plasticity between functional domains of the primate striatum, J. Neurosci. 23:4378.

    PubMed  CAS  Google Scholar 

  • Cragg, S.J., and Greenfield, S.A., 1997, Differential autoreceptor control of somatodendritic and axon terminal dopamine release in substantia nigra, ventral tegmental area, and striatum, J. Neurosci. 17:5738.

    PubMed  CAS  Google Scholar 

  • Cragg, S.J., Hille, C.J., and Greenfield, S.A., 2000, Dopamine release and uptake dynamics within nonhuman primate striatum in vitro, J. Neurosci. 20:8209.

    PubMed  CAS  Google Scholar 

  • DeBoer, P., and Abercrombie, E.D., 1996, Physiological release of striatal acetylcholine in vivo: modulation by D1 and D2 dopamine receptor subtypes, J. Pharmacol. Exp. Ther. 277:775.

    PubMed  CAS  Google Scholar 

  • Di Chiara, G., and Imperato, A., 1988, Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats, Proc. Natl. Acad. Sci. U. S. A. 85:5274.

    Article  PubMed  Google Scholar 

  • Drukarch, B., Schepens, E., Schoffelmeer, A.N., and Stoof, J.C., 1989, Stimulation of D-2 dopamine receptors decreases the evoked in vitro release of [3H]acetylcholine from rat neostriatum: role of K+ and Ca2+, J. Neurochem. 52:1680.

    PubMed  CAS  Google Scholar 

  • Grace, A.A., and Bunney, B.S., 1984, The control of firing pattern in nigral dopamine neurons: single spike firing, J. Neurosci. 4:2866.

    PubMed  CAS  Google Scholar 

  • Graybiel, A.M., Aosaki, T., Flaherty, A.W., and Kimura, M., 1994, The basal ganglia and adaptive motor control, Science 265:1826.

    PubMed  CAS  Google Scholar 

  • Grenhoff, J., Aston-Jones, G., and Svensson, T.H., 1986, Nicotinic effects on the firing pattern of midbrain dopamine neurons, Acta. Physiol. Scand. 128:351.

    Article  PubMed  CAS  Google Scholar 

  • Hyland, B.I., Reynolds, J.N.J., Hay, J., Perk, C.G., and Miller, R., 2002, Firing modes of midbrain dopamine cells in the freely moving rat, Neuroscience 114:475.

    Article  PubMed  CAS  Google Scholar 

  • Jones, I.W., Bolam, J.P., and Wonnacott, S., 2001, Presynaptic localisation of the nicotinic acetylcholine receptor beta2 subunit immunoreactivity in rat nigrostriatal dopaminergic neurones, J. Comp. Neurol. 439:235.

    Article  PubMed  CAS  Google Scholar 

  • Katzenschlager, R., Sampaio, C., Costa, J., and Lees, A., 2003, Anticholinergics for symptomatic management of Parkinson’s disease, Cochrane. Database Syst. Rev. CD003735.

    Google Scholar 

  • Kimura, M., Rajkowski, J., and Evarts, E., 1984, Tonically discharging putamen neurons exhibit set-dependent responses, Proc. Natl. Acad. Sci. U. S. A. 81:4998.

    Article  PubMed  CAS  Google Scholar 

  • Kitabatake, Y., Hikida, T., Watanabe, D., Pastan, I., and Nakanishi, S., 2003, Impairment of reward-related learning by cholinergic cell ablation in the striatum, Proc. Natl. Acad. Sci. U. S. A. 100:7965.

    Article  PubMed  CAS  Google Scholar 

  • Klink, R., de Kerchove, D.A., Zoli, M., and Changeux, J.P., 2001, Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei, J. Neurosci. 21:1452.

    PubMed  CAS  Google Scholar 

  • Knowlton, B.J., Mangels, J.A., and Squire, L.R., 1996, A neostriatal habit learning system in humans, Science 273:1399.

    PubMed  CAS  Google Scholar 

  • Mansvelder, H.D., Keath, J.R., and McGehee, D.S., 2002, Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas, Neuron. 33:905.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, N., Hanakawa, T., Maki, S., Graybiel, A.M., and Kimura, M., 1999, Role of [corrected] nigrostriatal dopamine system in learning to perform sequential motor tasks in a predictive manner, J. Neurophysiol. 82:978.

    PubMed  CAS  Google Scholar 

  • Maurice, N., Mercer, J., Chan, C.S., Hernandez-Lopez, S., Held, J., Tkatch, T., and Surmeier, D.J., 2004, D2 dopamine receptor-mediated modulation of voltage-dependent Na+ channels reduces autonomous activity in striatal cholinergic interneurons, J. Neurosci. 24:10289.

    Article  PubMed  CAS  Google Scholar 

  • Morris, G., Arkadir, D., Nevet, A., Vaadia, E., and Bergman, H., 2004, Coincident but distinct messages of midbrain dopamine and striatal tonically active neurons, Neuron. 43:133.

    Article  PubMed  CAS  Google Scholar 

  • Packard, M.G., and Knowlton, B.J., 2002, Learning and memory functions of the Basal Ganglia, Annu. Rev. Neurosci. 25:563.

    Article  PubMed  CAS  Google Scholar 

  • Picciotto, M.R., Zoli, M., Rimondini, R., Lena, C., Marubio, L.M., Pich, E.M., Fuxe, K., and Changeux, J.P., 1998, Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine, Nature 391:173.

    Article  PubMed  CAS  Google Scholar 

  • Pidoplichko, V.I., DeBiasi, M., Williams, J.T., and Dani, J.A., 1997, Nicotine activates and desensitizes midbrain dopamine neurons, Nature 390:401.

    Article  PubMed  CAS  Google Scholar 

  • Pisani, A., Bonsi, P., Centonze, D., Calabresi, P., and Bernardi, G., 2000, Activation of D2-like dopamine receptors reduces synaptic inputs to striatal cholinergic interneurons, J. Neurosci. 20:RC69.

    PubMed  CAS  Google Scholar 

  • Pisani, A., Bonsi, P., Centonze, D., Gubellini, P., Bernardi, G., and Calabresi, P., 2003, Targeting striatal cholinergic interneurons in Parkinson’s disease: focus on metabotropic glutamate receptors, Neuropharmacology 45:45.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, J.N., Hyland, B.I., and Wickens, J.R., 2001, A cellular mechanism of reward-related learning, Nature 413:67.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, J.N.J., Hyland, B.I., and Wickens, J.R., 2004, Modulation of an afterhyperpolarization by the substantia nigra induces pauses in the tonic firing of striatal cholinergic interneurons, J. Neurosci. 24:9870.

    Article  PubMed  CAS  Google Scholar 

  • Rice, M.E., and Cragg, S.J., 2004, Nicotine amplifies reward-related dopamine signals in striatum, Nat. Neurosci. 7:583.

    Article  PubMed  CAS  Google Scholar 

  • Salminen, O., Murphy, K.L., McIntosh, J.M., Drago, J., Marks, M.J., Collins, A.C., and Grady, S.R., 2004, Subunit composition and pharmacology of two classes of striatal presynaptic nicotinic acetylcholine receptors mediating dopamine release in mice, Mol. Pharmacol. 65:1526.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz, Y., Benoit-Marand, M., Gonon, F., and Sulzer, D., 2003, Presynaptic regulation of dopaminergic neurotransmission, J. Neurochem. 87:273.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, W., 1986, Responses of midbrain dopamine neurons to behavioral trigger stimuli in the monkey, J. Neurophysiol. 56:1439.

    PubMed  CAS  Google Scholar 

  • Schultz, W., 2002, Getting formal with dopamine and reward, Neuron. 36:241.

    Article  PubMed  CAS  Google Scholar 

  • Soliakov, L., and Wonnacott, S., 1996, Voltage-sensitive Ca2+ channels involved in nicotinic receptor-mediated [3H]dopamine release from rat striatal synaptosomes, J. Neurochem. 67:163.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, A.M., 2000, Molecular frequency filters at central synapses, Prog. Neurobiol. 62:159.

    Article  PubMed  CAS  Google Scholar 

  • Wickens, J.R., Reynolds, J.N., and Hyland, B.I., 2003, Neural mechanisms of reward-related motor learning, Curr. Opin. Neurobiol. 13:685.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., and Sulzer, D., 2004, Frequency-dependent modulation of dopamine release by nicotine, Nat. Neurosci. 7:581.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., Zhou, F.M., and Dani, J.A., 2004, Cholinergic drugs for Alzheimer’s disease enhance in vitro dopamine release, Mol. Pharmacol. 66:538.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, F.M., Liang, Y., and Dani, J.A., 2001, Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum, Nat. Neurosci. 4:1224.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, F.M., Wilson, C.J., and Dani, J.A., 2002, Cholinergic interneuron characteristics and nicotinic properties in the striatum, J. Neurobiol. 53:590.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, F.M., Wilson, C.J., and Dani, J.A., 2003, Muscarinic and nicotinic cholinergic mechanisms in the mesostriatal dopamine systems, Neuroscientist. 9:23.

    Article  PubMed  CAS  Google Scholar 

  • Zoli, M., Moretti, M., Zanardi, A., McIntosh, J.M., Clementi, F., and Gotti, C., 2002, Identification of the Nicotinic Receptor Subtypes Expressed on Dopaminergic Terminals in the Rat Striatum, J. Neurosci. 22:8785.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Cragg, S.J., Exley, R., Clements, M.A. (2005). Striatal Acetylcholine Control of Reward-Related Dopamine Signalling. In: Bolam, J.P., Ingham, C.A., Magill, P.J. (eds) The Basal Ganglia VIII. Advances in Behavioral Biology, vol 56. Springer, Boston, MA. https://doi.org/10.1007/0-387-28066-9_9

Download citation

Publish with us

Policies and ethics