Skip to main content

Intralaminar Thalamic Nuclei are Main Regulators of Basal Ganglia

Possible involvement in the pathophysiology of Parkinson’s disease

  • Conference paper
The Basal Ganglia VIII

4. Concluding Remarks

There is little doubt that the caudal intralaminar nuclei might modulate basal ganglia transmission at mutiple levels. Although thalamostriatal and thalamosubthalamic projections have largely been neglected in most studies dealing with basal ganglia pathophysiology, the data presented here, as well as data coming from other studies, call for a re-evaluation of the position of the thalamic intralaminar nuclei within the basal ganglia model. The anatomical and metabolic data discussed in this communication clearly support the idea that the intralaminar nuclei cannot longer be seen as a simply relay station between the basal ganglia output nuclei and the cortex. The primary, non-dopaminergic neurodegeneration observed in the caudal intralaminar nuclei might play a key role on the pathophysiology of basal ganglia in PD. Indeed, we suggest that the initial neuronal loss observed within CM-Pf may be a kind of self-compensatory mechanism in early stages of dopamine loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altar, A., Neve, K.A., Loughlin, S.E., Marshall, J.F., and Fallon, J.H., 1983, The crossed mesostriatal projection: neurochemistry and development response to lesion, Brain Res. 279:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Bacci, J.J., Kerkerian-Le Goff, L., and Salin, P., 2002, Effects of intralaminar thalamic nuclei lesion on glutamic acid decarboxylase (GAD65 and GAD67) and cytochrome oxidase subunit I mRNA expression in the basal ganglia of the rat, Eur. J. Neurosci. 15:1918–1928.

    Article  PubMed  Google Scholar 

  • Bacci, J.J., Kachidian, P., Kerkerian-Le Goff, L., and Salin, P., 2004, Intralaminar thalamic nuclei lesions: wide-spread impact on dopamine denervation-mediated cellular defects in the rat basal ganglia, J. Neuropathol. Exp. Neurol. 63:20–31.

    PubMed  Google Scholar 

  • Beckstead, R.M., Domesik, V.B., and Nauta, W.J., 1979, Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Res. 175:191–217.

    Article  PubMed  CAS  Google Scholar 

  • Castle, M., Aymerich, M.S., Sanchez-Escobar, C., Gonzalo, N., Obeso, J.A., and Lanciego, J.L., 2005, Thalamic innervation of the direct and indirect basal ganglia pathways in the rat: ipsi-and contralateral projections, J. Comp. Neurol. 483:143–153.

    Article  PubMed  Google Scholar 

  • Consolazione, A., Bentivoglio, M., Goldstein, M., and Toffano, G., 1985, Evidence for crossed catecholaminergic nigrostriatal projections by combining wheat germ agglutinin-horseradish peroxidase retrograde transport and tyrosine hydroxylase immunocytochemistry, Brain Res. 338:140–143.

    Article  PubMed  CAS  Google Scholar 

  • Deschênes, M., Bourassa, J., Van Diep, D., and Parent, A., 1996, A single-cell study of the axonal projection arising from the posterior intralaminar thalamic nuclei in the rat, Eur. J. Neurosci. 8:329–343.

    Article  PubMed  Google Scholar 

  • Douglas, R., Kellaway, L., Mintz, M., and van Wageningen, G., 1987, The crossed nigrostriatal projection decussates in the ventral tegmental decussation. Brain Res. 418:111–121.

    Article  PubMed  CAS  Google Scholar 

  • Fass, B., and Butcher, L.L., 1981, Evidence for a crossed nigrostriatal pathway in rats, Neurosci. Lett. 22:109–113.

    Article  PubMed  CAS  Google Scholar 

  • Feger, J., Bevan, M., and Crossman, A.R., 1994, The projections from the parafascicular thalamic nucleus to the subthalamic nucleus and the striatum arise from separated neuronal populations: a comparison with the corticostriatal and corticosubthalamic efferents in a retrograde fluorescent double-labelling study, Neuroscience 60:125–132.

    Article  PubMed  CAS  Google Scholar 

  • Freyaldenhoven, T.E., Ali, S.F., and Schmued, L.C., 1997, Systemic administration of MPTP induces thalamic neuronal degeneration in mice. Brain Res. 759:9–17.

    Article  PubMed  CAS  Google Scholar 

  • Gerfen, C.R., Staines, W.A., Arbuthnott, G.W., and Fibiger, H.C., 1982, Crossed connections of the substantia nigra in the rat, J. Comp. Neurol. 207:283–303.

    Article  PubMed  CAS  Google Scholar 

  • Ghorayeb, I., Fernagut, P.O., Hervier, L., Labattu, B., Bioulac, B., and Tison, F., 2002, A’ single toxin-double lesion’ rat model of striatonigral degeneration by intrastriatal 1-methyl-4-phenylpyridinium ion injection: a motor behavioural analysis, Neuroscience 115:533–46.

    Article  PubMed  CAS  Google Scholar 

  • González-Hernández, T., Barroso-Chinea, P., Pérez de la Cruz, M.A., Valera, P., Dopico, J.G., and Rodríguez, M., 2002, Response of GABAergic cells in the deep mesencephalic nucleus to dopaminergic cell degeneration: an electrophysiological and in situ hybridization study, Neuroscience 113:311–321.

    Article  PubMed  Google Scholar 

  • Gonzalo, N., Lanciego, J.L., Castle, M., Vázquez, A., Erro, E., and Obeso, J.A., 2002, The parafascicular thalamic complex and basal ganglia circuitry: further complexity to the basal ganglia model, Thalamus & Rel. Sys. 1:341–348.

    Google Scholar 

  • Hekerham, M., 1979, The afferent and efferent connections of the ventromedial thalamus in the rat, J. Comp. Neurol. 183:487–517.

    Article  Google Scholar 

  • Henderson, J.M., Carpenter, K., Cartwright, H., and Halliday, G.M., 2000, Loss of thalamic intralaminar nuclei in progressive supranuclear palsy and Parkinson’s disease: clinical and therapeutic implications, Brain 123:1410–1421.

    Article  PubMed  Google Scholar 

  • Henderson, J.M., Carpenter, K., Cartwright, H., and Halliday, G.M., 2000, Degeneration of the centre median-parafascicular complex in Parkinson’s disease, Ann. Neurol. 47:345–352.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, E.C., Perier, C., Orieux, G. et al., 2000, Metabolic effects of nigrostriatal denervation in basal ganglia, Trends Neurosci. 23:S78–S85.

    Article  PubMed  CAS  Google Scholar 

  • Kincaid, A.E., Penney, J.B. Jr, Young, A.B., and Newman, S.W., 1991, The globus pallidus receives a projection from the parafascicular nucleus in the rat, Brain Res. 553:18–26.

    Article  PubMed  CAS  Google Scholar 

  • Lanciego, J.L., Gonzalo, N., Castle, M., Sánchez-Escobar, C., and Aymerich, M.S., Obeso, J.A., 2004, Thalamic innervation of striatal and subthalamic neurons projecting to the rat entopeduncular nucleus, Eur. J. Neurosci. 19:1267–1277.

    Article  PubMed  Google Scholar 

  • Loughlin, S.E., and Fallon, J.H., 1982, Mesostriatal projections from ventral tegmentum and dorsal raphe cells project ipsilaterally or contralaterally but not bilaterally, Neurosci. Lett. 32:11–16.

    Article  PubMed  CAS  Google Scholar 

  • Marini, G., and Tredici, G., 1995, Parafascicular nucleus-raphe projections and termination patterns in the rat, Brain Res. 690:177–184.

    Article  PubMed  CAS  Google Scholar 

  • Marini, G., Pianca, L., and Tredici, G., 1999, Descending projections arising from the parafascicular nucleus in rats: trajectory of fibers, projection pattern and mapping of terminations, Somatosens. Mot. Res. 16:207–222.

    Article  PubMed  CAS  Google Scholar 

  • Mouroux, M., and Feger, J., 1993, Evidence that the parafascicular projection to the subthalamic nucleus is glutamatergic, Neuroreport 4:613–615.

    PubMed  CAS  Google Scholar 

  • Mouroux, M., Hassani, O.-K., and Feger, J., 1995, Electrophysiological study of the excitatory parafascicular projection to the subthalamic nucleus and evidence for ipsi-and contralateral controls, Neuroscience 67:399–407.

    Article  PubMed  CAS  Google Scholar 

  • Mouroux, M., Hassani, O.-K., and Feger, J., 1997, Electrophysiological and Fos immunohistochemical evidences for the excitatory nature of the parafascicular projection to the globus pallidus, Neuroscience 81:387–397.

    Article  PubMed  CAS  Google Scholar 

  • Obeso, J.A., Rodríguez-Oroz, M.C., Rodríguez, M., Lanciego, J.L., Artieda, J., Gonzalo, N., and Olanow, C.W., 2000, Pathophysiology of the basal ganglia in Parkinson’s disease, Trends Neurosci. 23:S8–S19.

    Article  PubMed  CAS  Google Scholar 

  • Orieux, G., François, C., Féger, J., Yelnik, J., Vila, M., Ruberg, M., Agid, Y., and Hirsch, E.C., 2000, Metabolic activity of excitatory parafascicular and pedunculopontine inputs to the subthalamic nucleus in a rat model of Parkinson’s disease, Neuroscience 97:79–88.

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez, M., Abdala, P., Barroso-Chinea, P., and González-Hernández, T., 2001, The deep mesencephalic nucleus as an output center of basal ganglia: morphological and electrophysiological similarities with the substantia nigra, J. Comp. Neurol. 438:12–31.

    Article  PubMed  Google Scholar 

  • Salin, P., and Kachidian, P., 1998, Thalamo-striatal deafferentation affects preproenkephalin but not preprotachykinin gene expression in the rat striatum, Mol. Brain Res. 57:257–65.

    Article  PubMed  CAS  Google Scholar 

  • Sidibe, M., and Smith, Y., 1996, Differential synaptic innervation of striatofugal neurones projecting to the internal or external segments of the globus pallidus by thalamic afferents in the squirrel monkey, J. Comp. Neurol. 365:445–65.

    Article  PubMed  CAS  Google Scholar 

  • Smith, Y., Raju, D.V., Pare, J.F., and Sidibe, M., 2004, The thalamostriatal system: a highly specific network of the basal ganglia circuitry, Trends Neurosci. 27:520–527.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto, T., and Hattori, T., 1983, Confirmation of thalamosubthalamic projections by electron microscopic autoradiography, Brain Res. 264:335–339.

    Article  Google Scholar 

  • Sugimoto, T., Hattori, T., Mizunp, N., Itoh, K., and Sato, M., 1983, Direct projection from the centre median-parafascicular complex to the subthalamic nucleus in the cat and rat, J. Comp. Neurol. 214:209–216.

    Article  PubMed  CAS  Google Scholar 

  • Yasukawa, T., Kita, T., Xue, Y., and Kita, H., 2004, Rat intralaminar thalamic nuclei projections to the globus pallidus: a biotinylated dextran amine anterograde tracing study, J. Comp. Neurol. 471:153–167.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Goff, L.KL. et al. (2005). Intralaminar Thalamic Nuclei are Main Regulators of Basal Ganglia. In: Bolam, J.P., Ingham, C.A., Magill, P.J. (eds) The Basal Ganglia VIII. Advances in Behavioral Biology, vol 56. Springer, Boston, MA. https://doi.org/10.1007/0-387-28066-9_31

Download citation

Publish with us

Policies and ethics