Skip to main content

3D Object Reconstruction and Recognition Techniques Based on Digital Holography

  • Chapter
Book cover Optical Imaging Sensors and Systems for Homeland Security Applications

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An X, Psaltis D, and Burr GW. (1999). “Thermal fixing of 10,000 holograms in LiNbO3: Fe.” Appl. Opt., 38:386–393.

    Article  ADS  Google Scholar 

  2. Bruning JH, Herriott DR, Gallagher JE, Rosenfeld DP, White AD, and Brangaccio DJ. (1974). “Digital wavefront measuring interferometer for testing optical surfaces and lenses.” Appl. Opt., 13:2693–2703.

    Article  ADS  Google Scholar 

  3. Casasent D. (1984). “Unified synthetic discriminant function computational formulation.” Appl. Opt., 23:1620–1627.

    Article  ADS  Google Scholar 

  4. Caulfield HJ. (1979). Handbook of Optical Holography. Academic, London.

    Google Scholar 

  5. Esteve-Taboada JJ, Mas D, and García J. (1999). “Three-dimensional object recognition by Fourier transform profilometry.” Appl. Opt., 38:4760–4765.

    Article  ADS  Google Scholar 

  6. Frauel Y and Javidi B. (2001). “Neural network for three-dimensional object recognition based on digital holography.” Opt. Lett., 26:1478–1480.

    Article  ADS  Google Scholar 

  7. Frauel Y, Pauliat G, Villing A, and Roosen G. (2001). “High-capacity photorefractive neural network implementing a Kohonen topological map.” Appl. Opt., 40:5162–5169.

    Article  ADS  Google Scholar 

  8. Frauel Y, Tajahuerce E, Castro M-A, and Javidi B. (2001). “Distortion-tolerant 3D object recognition using digital holography.” Appl. Opt., 40:3887–3893.

    Article  ADS  Google Scholar 

  9. Frauel Y, Tajahuerce E, Matoba O, Castro A, and Javidi B. (2004). “Comparison of passive ranging integral imaging and active imaging digital holography for three-dimensional object recognition.” Appl. Opt., 43:452–462.

    Article  ADS  Google Scholar 

  10. Goodman JW. (1968). Introduction to Fourier Optics. McGraw-Hill, New York.

    Google Scholar 

  11. Goodman JW and Lawrence RW. (1967). “Digital image formation from electronically detected holograms.” Appl. Phys. Lett., 11:77–79.

    Article  ADS  Google Scholar 

  12. Guerrero-Bermudez J, Meneses J, and Gualdrón O. (2000). “Object recognition using three-dimensional correlation of range images.” Opt. Eng., 39:2828–2831.

    Article  ADS  Google Scholar 

  13. Horner JL and Gianino PD. (1984). “Phase-only matched filtering.” Appl. Opt., 23:812–816.

    Article  ADS  Google Scholar 

  14. Javidi B. (1989). “Nonlinear joint power spectrum based optical correlation.” Appl. Opt., 28:2358–2367.

    Article  ADS  Google Scholar 

  15. Javidi B, ed. (2002). Image Recognition and Classification: Algorithms, Systems, and Applications. Marcel-Dekker, New York.

    MATH  Google Scholar 

  16. Javidi B and Horner JL. (1994). Real-time Optical Information Processing. Academic, Orlando.

    Google Scholar 

  17. Javidi B and Okano F, eds. (2002). Three-Dimensional Television, Video, and Display Technologies. Springer-Verlag, Berlin.

    Google Scholar 

  18. Javidi B and Painchaud D. (1996). “Distortion-invariant pattern recognition with Fourier-plane nonlinear filters.” Appl. Opt., 35:318–331.

    Article  ADS  Google Scholar 

  19. Javidi B and Tajahuerce E. (2000). “Three-dimensional object recognition using digital holography.” Opt. Lett., 25:610–612.

    Article  ADS  Google Scholar 

  20. Lippmann G. (1908). “La photographie intégrale.” Comptes-rendus de l’Académie des Sciences, 146:446–451.

    Google Scholar 

  21. MacAulay AD. (1991). Optical Computers Architectures. John Wiley, New York.

    Google Scholar 

  22. Mas D, Garcia J, Ferreira C, Bernardo LM, and Marinho F. (1999). “Fast algorithms for free-space diffraction patterns calculation.” Opt. Commun., 164:233–245.

    Article  ADS  Google Scholar 

  23. Matoba O, Tajahuerce E, and Javidi B. (2001). “Real-time three-dimensional object recognition with multiple perspectives imaging.” Appl. Opt., 20:3318–3325.

    Article  ADS  Google Scholar 

  24. Okoshi T. (1971). Three-dimensional Imaging Techniques. Academic, New York.

    Google Scholar 

  25. Pu A, Denkewalter R, and Psaltis D. (1997). “Real-time vehicle navigation using a holographic memory.” Opt. Eng., 36:2737–2746.

    Article  ADS  Google Scholar 

  26. Refrégiér Ph, Laude V, and Javidi B. (1994). “Nonlinear joint transform correlation: An optimum solution for adaptive image discrimination and input noise robustness.” Opt. Lett., 19:405–407.

    ADS  Google Scholar 

  27. Ritter H, Martinetz T, and Schulten K. (1992). Neural Computation and Selforganizing Maps. Addison-Wesley, New York.

    Google Scholar 

  28. Rosen J. (1998). “Three-dimensional joint transform correlator.” Appl. Opt., 37:7538–7544.

    Article  ADS  Google Scholar 

  29. Schnars U and Jüpter W. (1994). “Direct recording of holograms by a CCD target and numerical reconstruction.” Appl. Opt., 33:179–181.

    Article  ADS  Google Scholar 

  30. Tajahuerce E, Matoba O, and Javidi B. (2001). “Shift-invariant three-dimensional object recognition by means of digital holography.” Appl. Opt., 40:3877–3886.

    Article  ADS  Google Scholar 

  31. VanderLugt AB. (1964). “Signal detection by complex spatial filtering.” IEEE Trans. Inf. Theory IT, 10:139–145.

    Article  Google Scholar 

  32. VanderLugt AB. (1992). Optical Signal Processing. John Wiley, New York.

    Google Scholar 

  33. Weaver CS and Goodman JW. (1966). “A technique for optically convolving two functions.” Appl. Opt., 5:1248–1249.

    Article  ADS  Google Scholar 

  34. Yamaguchi I and Zhang T. (1997). “Phase-shifting digital holography.” Opt. Lett., 22:1268–1270.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Frauel, Y., Tajahuerce, E., Matoba, O., Castro, A., Javidi, B. (2006). 3D Object Reconstruction and Recognition Techniques Based on Digital Holography. In: Javidi, B. (eds) Optical Imaging Sensors and Systems for Homeland Security Applications. Advanced Sciences and Technologies for Security Applications, vol 2. Springer, New York, NY. https://doi.org/10.1007/0-387-28001-4_1

Download citation

Publish with us

Policies and ethics