Skip to main content

Synthesis and Applications of Highly Ordered Anodic Porous Alumina

  • Chapter
Self-Organized Nanoscale Materials

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Anodic porous alumina, which is formed by the anodization of Al, is a typical self-organized material uilizable for the fabrication of several types of functional nanodevice. The geometrical structure of anodic porous alumina is described as a closed-packed array of uniform-sized cylindrical units called cells, each of which has central straight pores perpendicular to the surface.1 Compared with other nanomaterials, one important advantage of anodic porous alumina is that the geometrical structure of anodic porus alumina (pore sizes, pore intervals, and pore depths) can be controlled easily based on the anodizing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Keller, M. Hunter, and D. L. Robinson, Structural features of oxide coating on aluminum, J. Electrochem. Soc. 100, 411 (1953).

    Article  CAS  Google Scholar 

  2. S. Kawai and R. Ueda, Magnetic properties of anodic oxide coatings on aluminum containing electrodeposited cobalt and cobalt-nickel, J. Electrochem. Soc. 122, 32 (1975).

    Article  CAS  Google Scholar 

  3. D. G. W. Goad and M. Moskovits, Colloidal metal in aluminum oxide, J. Appl. Phys. 49, 2929 (1978).

    Article  CAS  Google Scholar 

  4. M. J. Tierney and C. R. Martin, Transparent metal microstructures, J. Phys. Chem, 93, 2878–2880 (1989).

    Article  CAS  Google Scholar 

  5. C. A. Huber, T. E. Huber, M. Sadoqi, J. A. Lubin, S. Manalis, and C. B. Prater, Nanowire array composites, Science, 263, 800–802 (1994).

    Article  CAS  Google Scholar 

  6. H. Masuda and K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina, Science 268, 1466–1468 (1995).

    Article  CAS  Google Scholar 

  7. H. Masuda and M. Satoh, Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask, Jpn. J. Appl. Phys. 35, L126–L129 (1996).

    Article  CAS  Google Scholar 

  8. H. Masuda, F. Hasegawa, and S. Ono, Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution, J. Electrochem. Soc. 144, L127–L130 (1997).

    Article  CAS  Google Scholar 

  9. H. Masuda, K. Yada, and A. Osaka, Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution, Jpn. J. Appl. Phys. 37, L1340–L1342 (1998).

    Article  Google Scholar 

  10. P. Li, F. Muller, A. Brirner, K. Nielsh, and U. Gosele, Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina, J. Appl. Phys. 84, 6023–6026 (1998).

    Article  CAS  Google Scholar 

  11. H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, Highly ordered nanochannel-array architecture in anodic alumina, Appl. Phys. Lett. 71, 2770–2772 (1997).

    Article  CAS  Google Scholar 

  12. H. Asoh, K. Nishio, M. Nakao, A. Yokoo, T. Tamamura, and H. Masuda, Fabrication of ideally ordered anodic porous alumina with 63 nm hole periodicity using sulfuric acid, J. Vac. Sci. Technol. B 19, 569–572 (2001).

    Article  CAS  Google Scholar 

  13. H. Masuda, M. Yotsuya, M. Asano, K. Nishio, M. Nakao, A. Yokoo, and T. Tamamura, Self-repair of ordered pattern of nanometer dimensions based on self-compensation properties of anodic porous alumina, Appl. Phys. Lett. 78, 826–828 (2001).

    Article  CAS  Google Scholar 

  14. C. Y. Liu, A. Datta, and Y. L. Wang, Ordered anodic alumina nanochannels on focusedion-beam-prepatterned aluminum surfaces, Appl. Phys. Lett. 78, 120–122 (2001).

    Article  CAS  Google Scholar 

  15. H. Masuda, Y. Matsui, M. Yotsuya, F. Matsumoto, and K. Nishio, Fabrication of highly ordered anodic porous alumina using self-organized polystyrene particle array, Chem. Lett. 33, 584–585 (2004); Y. Matsui, K. Nishio, and H. Masuda, Highly Ordered Anodic Porous Alumina by Imprinting Using Ni Molds Prepared from Ordered Array of Polystyrene Particles, Jpn. J. Appl. Phys., 44, 7726–7728 (2005).

    Article  CAS  Google Scholar 

  16. S. G. Yang, H. Zhu, G. Ni, D. L. Yu, S. L. Tang, and Y. W. Du, A study of cobalt nanowire arrays, J. Phys. D 33, 2388–2390 (2000).

    Article  CAS  Google Scholar 

  17. T. Kyotani, L. Tsai, and A. Tomita, Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film, Chem. Mater. 8, 2109–2113 (1996).

    Article  CAS  Google Scholar 

  18. T. Iwasaki, T. Motoi, and T. Den, Multiwalled carbon nanotubes growth in anodic alumina nanoholes, Appl. Phys. Lett. 75, 2044–2046 (1999).

    Article  CAS  Google Scholar 

  19. H. Masuda, A. Abe, M. Nakao, A. Yokoo, T. Tamamura, and K. Nishio, Ordered mosaic nanocomposites in anodic porous alumina, Adv. Mater. 15, 161–164 (2003).

    Article  CAS  Google Scholar 

  20. T. Yanagishita, M. Sasaki, K. Nishio, and H. Masuda, Fabrication of TiO2 nanoparticles with triangular cross section by template process, J. Surf. Fin. Soc. Jpn. 55, 1 (2004).

    Google Scholar 

  21. T. Yanagishita, M. Sasaki, K. Nishio, and H. Masuda, Carbon nanotubes with a triangular cross-section, fabricated using anodic porous alumina as the template, Adv. Mater. 16, 429–432 (2004).

    Article  CAS  Google Scholar 

  22. X. Mei, D. Kim, H. E. Ruda, and Q. X. Guo, Molecular-beam epitaxial growth of GaAs and InGaAs/GaAs nanodot arrays using anodic Al2O3 nanohole array template masks, Appl. Phys. Lett. 81, 361–363 (2002).

    Article  CAS  Google Scholar 

  23. H. Masuda, K. Yasui, and K. Nishio, Fabrication of ordered arrays of multiple nanodots using anodic porous alumina as an evaporation mask, Adv. Mater. 12, 1031–1033 (2000).

    Article  CAS  Google Scholar 

  24. H. Masuda, K. Yasui, Y. Sakamoto, M. Nakao, T. Tamamura, and K. Nishio, Ideally ordered anodic porous alumina mask prepared by imprinting of vacuum-evaporated al on Si, Jpn. J. Appl. Phys. 40, L1267–L1269 (2001).

    Article  CAS  Google Scholar 

  25. K. Nishio, M. Nakao, A. Yokoo, and H. Masuda, Ideally ordered metal hole arrays with high aspect ratios prepared from anodic porous alumina, Jpn. J. Appl. Phys. 42, L83 (2003).

    Article  CAS  Google Scholar 

  26. H. Masuda, K. Nishio, and N. Baba, Fabrication of porous TiO2 films using two-step replication of microstructure of anodic porous alumina, Jpn. J. Appl. Phys. 31, L1775 (1992).

    Article  CAS  Google Scholar 

  27. H. Masuda, T. Mizuno, N. Baba, and T. Ohmori, Fabrication of Pt microporous electrodes from anodic porous alumina and immobilization of GOD into their micropores, J. Electroanal. Chem. 368, 333–336 (1994).

    Article  CAS  Google Scholar 

  28. K. Nishio, K. Iwata, and H. Masuda, Fabrication of nanoporous WO3 membranes and their electrochromic properties, Electrochem. Solid-State Lett. 6, H21–H23 (2003).

    Article  CAS  Google Scholar 

  29. T. Ohmori, T. Kimura, and H. Masuda, Impedance measurement of platinum cylindrical porous electrode replicated from anodic porous alumina J. Electrochem. Soc. 144, 1286 (1997).

    Article  CAS  Google Scholar 

  30. H. Masuda, H. Hogi, K. Nishio, and F. Matsumoto, Arrangement of ferritin molecules on a gold disk array fabricated on highly ordered anodic porous alumina substrate, Chem. Lett. 33, 812–813 (2004).

    Article  CAS  Google Scholar 

  31. F. Matsumoto, K. Nishio, T. Miyasaka, and H. Masuda, Ideally Ordered, High-Density Patterning of DNA on Au Disk Array Fabricated Using Anodic Porous Alumina, Jpn. J. Appl. Phys. 43, L640 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Masuda, H., Nishio, K. (2006). Synthesis and Applications of Highly Ordered Anodic Porous Alumina. In: Adachi, M., Lockwood, D.J. (eds) Self-Organized Nanoscale Materials. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/0-387-27976-8_9

Download citation

Publish with us

Policies and ethics