Skip to main content

Synthesis and Characterization of Core-Shell Structured Metals

  • Chapter

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Many intensive studies on metal nanoparticles have been carried out from the point of view of a wide variety of scientific interests and pratical properties.1–8 These nanoparticles, with their diameters of 1–10 nm, consist of several tens or thouthands of metal atoms in every one. Recently, these nanoparticles can be considered as a new class of materials in a presently hot nanotechnology. Examples include some specific properties: spectroscopic and magnetic properties of semiconductor nanoparticles, synthesis and catalysis of polymer-stabilized or ligand-coated metal nanoparticles, as well as nonlinear optical properties of metal nanoparticle-doped metal oxides. Thanks to the size limit of nanoparticles, they are expected to show novel properties that can be explained by the “nanoscopic effect,” “nanosize effect,” or “quantum size effect.” This effect has been theoretically established by Kubo.9 This size limit introduces quite a high population of surface atoms rather than inner atoms. Therefore, the properties of nanoparticles are controlled by the corresponding surface atoms. Various preparative methods have been proposed to obtain perfectly uniform-size metal nanoparticles. Perfectly monodispersed metal nanoparticles are, of course, ideal, but special properties of nanoparticles are to be expected even if this ideal condition is not exactly realized. The synthesis of monodispersed nanoparticles is of key importance because their properties varied strongly based on their dimensions. Economical mass production of monodispersed metal nanoparticles is now becoming one of the very important issues for realizing these products as real materials.10

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Schmid, Large clusters and colloids. Metals in the embryonic state,Chem. Rev. 92, 1709 (1992).

    Article  CAS  Google Scholar 

  2. H. Hirai and N. Toshima, Tailored Metal Catalysts, edited by Y. Iwasawa., D. Reidel, Dordrecht, 1986, pp. 87–140.

    Google Scholar 

  3. J. S. Bradley, Clusters and Colloids, edited by G. Schmid, Wiley–VCH, Weinheim, 1994, pp. 459–544.

    Google Scholar 

  4. J. S. Bradley, Nanoparticles, edited by G. Schmid, Wiley–VCH, Weinheim, 2004, pp. 186–238.

    Google Scholar 

  5. G. Schmid and L. F. Chi, Metal clusters and colloids, Adv. Mater. 10, 515 (1998).

    Article  CAS  Google Scholar 

  6. G. Schmid, M. Bäumle, M. Geerkens, I. Heim, C. Osemann, and T. Sawitouwski, Current and future applications of nanoclusters, Chem. Soc. Rev. 28, 179 (1999).

    Article  CAS  Google Scholar 

  7. T. Sawitowski, S. Frantzka, N. Beyer, M. Levering, and G. Schmid, Nanostructured surfaces, Adv. Funct. Mater. 11, 169 (2001).

    Article  CAS  Google Scholar 

  8. M. Brust and C. J. Kiely, Colloids and Colloid Assemblies, edited by F. Caruso, Wiley–VCH, Weinheim, 2004, pp. 96–119.

    Google Scholar 

  9. R. Kubo, Electronic properties of metal fine particles I, J. Phys. Soc. Jpn. 17, 975 (1962).

    Article  CAS  Google Scholar 

  10. J. Park, K. An, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang, and T. Hyeon, Ultra-large-scale syntheses of monodisperse nanocrystals, Nature Mater. 3, 891 (2004).

    Article  CAS  Google Scholar 

  11. N. Toshima and T. Yonezawa, Bimetallic nanoparticles: Novel materials for chemical and physical applications, New J. Chem. 1998, 1179 (1998).

    Article  Google Scholar 

  12. T. Yonezawa, Morphology Control of Materials and Nanoparticles, edited by Y. Waseda and A. Muramatsu, Springer-Verlag, Berlin, 2003, pp. 85–112.

    Google Scholar 

  13. J. Turkevich and G. Kim, Palladium: Preparation and catalytic properties of particles of uniform size, Science, 169, 873 (1970).

    Article  CAS  Google Scholar 

  14. J. H. Sinfelt, Supported “bimetallic cluster” catalysts, J. Catal. 29, 308 (1973).

    Article  CAS  Google Scholar 

  15. J. H. Sinfelt, Structure of bimetallic clusters, Acc. Chem. Res. 20, 134 (1987).

    Article  CAS  Google Scholar 

  16. A. Henglein, Physicochemical properties of small metal particles in solution: “microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition, J. Phys. Chem. 97, 5457 (1993).

    Article  CAS  Google Scholar 

  17. S. Remita, G. Picq, J. Khatouri, and M. Mostafavi, Radiolytic formation of bilayered Ptcore/Aushell and Aucore/Ptshell clusters in aqueous solution, Radiat. Phys. Chem. 54, 463 (1999).

    Article  CAS  Google Scholar 

  18. G. Schmid, A. Lehnert, J. O. Halm, and J. O. Bovin, Ligand-stabilized bimetallic colloids indentified by HRTEM and EDX, Angew. Chem. Int Ed. Engl. 30, 874 (1991).

    Article  Google Scholar 

  19. A. F. Lee, C. J. Baddeley, C. Hardacre, R. M. Ormerod, R. M. Lambert, G. Schmid, and H.West, Structural and catalytic properties of novel Au/Pd bimetallic colloid particles: EXAFS, XRD, and acetylene coupling, J. Phys. Chem. 99, 6096 (1995).

    Article  CAS  Google Scholar 

  20. G. Schmid, H. West, J. O. Halm, J. O. Bovin, and C. Grenthe, Catalytic properties of layered gold-palladium colloids, Chem. Eur. J. 2, 1099 (1996).

    Article  CAS  Google Scholar 

  21. I. Srnová - Šloufová, B. Vlčková, Z. Bastl, and T. L. Hasslett, Bimetallic (Ag)Au nanoparticles prepared by the seed growth method: Two-dimensional assembling, characterization by energy dispersive X-ray analysis, X-ray photoelectron spectroscopy, and surface enhanced Raman spectroscopy, and proposed mechanism of growth, Langmuir 20, 3407 (2004).

    Article  Google Scholar 

  22. N. Toshima and T. Takahashi, Colloidal dispersions of platinum and palladium clusters embedded in the micelles. Preparation and application to the catalysis for hydrogenation of olefins, Bull. Chem. Soc. Jpn. 65, 400 (1992).

    Article  CAS  Google Scholar 

  23. K. Mallik, M. Mandal, N. Pradhan, and T. Pal, Seed mediated formation of bimetallic nanoparticles by UV irradiation: A photochemical approach for the preparation of “core-shell” type structures, Nano Lett. 1, 319 (2001).

    Article  CAS  Google Scholar 

  24. S. Giorgio and C. R. Henry, Core-shell bimetallic particles, prepared by sequential impregnations, Eur. Phys. J. Appl. Phys. 20, 23 (2002).

    Article  CAS  Google Scholar 

  25. M. Harada, K. Asakura, and N. Toshima, Catalytic activity and structural-analysis of polymer-protected Au/Pd bimetallic clusters prepared by the successive reduction of HAuCl4 and PdCl2, J. Phys. Chem. 97, 5103 (1993).

    Article  CAS  Google Scholar 

  26. S. Gu, X. Yao, M. J. Hampden-Smith, and T. T. Kodas, Reactions of Cu(hfac)2 and Co2(CO)8 during chemical vapor deposition of copper–cobalt films. Chem. Mater. 10, 2145 (1998).

    Article  CAS  Google Scholar 

  27. H. Cai, N. Zhu, Y. Jiang, P. He, and Y. Fang, Cu@Au alloy nanoparticle as oligonucleotides labels for electrochemical stripping detection of DNA hybridization, Biosens. Bioelectron. 18, 1311 (2003).

    Article  CAS  Google Scholar 

  28. T. Kinoshita, S. Seino, K. Okitsu, T. Nakayama, T. Nakagawa, and T. A. Yamamoto, Magnetic evaluation of nanostructure of gold–iron composite particles synthesized by a reverse micelle method, J. Alloys Compounds 359, 46 (2003).

    Article  CAS  Google Scholar 

  29. T. Yonezawa, K. Shibuya, and H. Nishihara, Synthesis of surfactant-stabilized Co/Au bimetallic nanoparticles with a core-shell structure, Trans. Mater. Soc. Jpn., 30, in press (2006).

    Google Scholar 

  30. N. Toshima, K. Kushihashi, T. Yonezawa, and H. Hirai, Colloidal dispersions of palladium–platinum bimetallic clusters by polymers. Preparation and application to catalysis, Chem. Lett., 1769 (1989).

    Google Scholar 

  31. N. Toshima, M. Harada, T. Yonezawa, and K. Asakura, Structural analysis of polymer-protected palladium/platinum bimetallic clusters as dispersed catalysts by using extended X-ray absorption fine structure spectroscopy, J. Phys. Chem. 95, 7448 (1991).

    Article  CAS  Google Scholar 

  32. N. Toshima and T. Yonezawa, Preparation of polymer-protected gold/platinum bimetallic clusters and their application to visible light-induced hydrogen evolution, Makromol. Chem. Macromol. Symp. 59, 281 (1992).

    CAS  Google Scholar 

  33. N. Toshima, M. Harada, Y. Yamazaki, and K. Asakura, Catalytic activity and structural analysis of polymer-protected gold-palladium bimetallic clusters prepared by the simultaneous reduction of hydrogen tetrachloroaurate and palladium dichloride, J. Phys. Chem. 96, 9927 (1992).

    Article  CAS  Google Scholar 

  34. Y. Mizukoshi, K. Okitsu, Y. Maeda, T. A. Yamamoto, R. Oshima, and Y. Nagata, Sonochemical preparation of bimetallic nanoparticles of gold/palladium in aqueous solution, J. Phys. Chem. B 101, 7033 (1997).

    Article  CAS  Google Scholar 

  35. Y. Mizukoshi, T. Fujimoto, Y. Nagata, R. Oshima, and Y. Maeda, Characterization and catalytic activity of core-shell structured gold/palladium bimetallic nanoparticles synthesized by the sonochemical method, J. Phys. Chem. B 104, 6028 (2000).

    Article  CAS  Google Scholar 

  36. R. Harpeness and A. Gedanken, Microwave synthesis of core-shell gold/palladium bimetallic nanoparticles, Langmuir 20, 3431 (2004).

    Article  CAS  Google Scholar 

  37. M. Harada, K. Asakura, and N. Toshima, Structural analysis of polymer-protected platinum/rhodium bimetallic clusters using extended X-ray absorption fine structure spectroscopy. Importance of microclusters for the formation of bimetallic clusters, J. Phys. Chem. 98, 2653 (1994).

    Article  CAS  Google Scholar 

  38. S. S. Shankar, A. Rai, A. Ahmad, and M. Sastry, Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth, J. Colloid Interf. Sci. 275, 496 (2004).

    Article  CAS  Google Scholar 

  39. Y. Wang and N. Toshima, Preparation of Pd-Pt bimetallic colloids with controllable core/shell structures. J. Phys. Chem. B 101, 5301 (1997).

    Article  CAS  Google Scholar 

  40. J. W. Niemantsverdriet, Spectroscopy in Catalysis, VCH, Weinheim, 1995. p. 140.

    Google Scholar 

  41. Y. Wand and H. Liu, Preparation and immobilization of polymer-protected bilmetallic colloids, Polym. Bull. 25, 139 (1991).

    Google Scholar 

  42. T. Yonezawa and N. Toshima, Mechanistic consideration of formation of polymerprotected nanoscopic bimetallic nanoparticles, J. Chem. Soc. Faraday Trans. 91, 4111 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Yonezawa, T. (2006). Synthesis and Characterization of Core-Shell Structured Metals. In: Adachi, M., Lockwood, D.J. (eds) Self-Organized Nanoscale Materials. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/0-387-27976-8_7

Download citation

Publish with us

Policies and ethics