Skip to main content

Fabrication, Characterization, and Applications of Template-Synthesized Nanotubes and Nanotube Membranes

  • Chapter

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Nanoscience is one of the most important research and development frontiers in modern science.1 Nano is a Greek word meaning dwarf, and the nanometer (nm, 10−9 m) defines the length scale that is used to measure systems being studied in nanoscience. In the most simplistic sense, nanoscience is the science of small particles of materials. Such small particles are of interest from a fundamental viewpoint because all properties of a material (e.g., melting point, electronic properties, optical properties) change when the size of the particles that makes up the material become nanoscopic. With new properties come new opportunities for technological and commercial development, and applications of nanoparticles have been demonstrated or proposed in areas as diverse as microelectronics, coatings and paints, and biotechnology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. J. Klabunde, Nanoscale Materials in Chemistry, Wiley–Interscience, New York, 2001.

    Google Scholar 

  2. C. R. Martin and D. T. Mitchell, Nanomaterials in analytical chemistry, Anal. Chem. 70, 322A–327A (1998).

    Article  CAS  Google Scholar 

  3. C.R. Martin, Nanomaterials: A membrane-based synthetic approach, Science 266, 1961–1966 (1994).

    Article  CAS  Google Scholar 

  4. T. M. S. Chang and S. Prakash, Procedures for microencapsulation of enzymes, cells and genetically engineered microorganisms, Mol. Biotech. 17, 249–260 (2001).

    Article  CAS  Google Scholar 

  5. C. Kneuer, M. Sameti, U. Bakowsky, T. Schiestel, H. Schirra, H. Schmidt, and C. M. Lehr, A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro, Bioconj Chem. 11, 926–932 (2000).

    Article  CAS  Google Scholar 

  6. J. Radler, I. Koltover, T. Salditt, and C. R. Safinya, Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes, Science 275, 810–814 (1997).

    Article  CAS  Google Scholar 

  7. I. Koltover, T. Salditt, J. O. Radler, and C. R. Safinya, An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery, Science 281, 78–81 (1998).

    Article  CAS  Google Scholar 

  8. Y. W. C. Cao, R. C. Jin, and C. A. Mirkin, Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection, Science 297, 1536–1540 (2002).

    Article  CAS  Google Scholar 

  9. L. M. Demers, D. S. Ginger, S. J. Park, Z. Li, S. W. Chung, and C.A. Mirkin, Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography, Science 296, 1836–1838 (2002).

    Article  CAS  Google Scholar 

  10. S. J. Park, T. A. Taton, and C. A. Mirkin, Array-based electrical detection with nanoparticles probes, Science 295, 1503–1506 (2002).

    Article  CAS  Google Scholar 

  11. K. E. Ulrich, S. M. Cannizzaro, R. S. Langer, and K. M. Shakeshelf, Polymeric systems for controlled drug release, Chem. Rev. 99, 3181–3198 (1999).

    Article  Google Scholar 

  12. K. E. Lee, B. K. Kim, and S. H. Yuk, Biodegradable polymeric nanospheres formed by temperature-induced phase transition in a mixture of poly(lactide-co-glycolide) and poly(ethylene oxide) -poly(propylene oxide) -poly(ethylene oxide) triblock copolymer, Biomacromolecules 3, 1115–1119(2002).

    Article  CAS  Google Scholar 

  13. N. Murthy, Y. X. Thng, S. Schuck, M. C. Xu, and J. M. J. Frechet, A novel strategy for encapsulation and release of proteins: Hydrogels and microgels with acid-labile acetal cross-linkers, J. Am. Chem. Soc. 124, 12, 398–12, 399 (2002).

    Article  Google Scholar 

  14. M. Lewin, N. Carlesso, C. Tung, X.-W. Tang, D. Cory, D. T. Scadden, and R. Weissleder, Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells, Nat. Biotech. 18, 410–414 (2000).

    Article  CAS  Google Scholar 

  15. J. P. Linsky, T. R. Paul, and M. E. Kenny, Planar organosilicon polymers, J. Polym. Sci. A-29, 143–160 (1971).

    Google Scholar 

  16. P. Yager and P. Schoen, Formation of tubules by a polymerizable surfactant, Mol. Crystal. Liq. Crsytal. 106, 371–381 (1984).

    Article  CAS  Google Scholar 

  17. J. M. Schnur, Lipid tubules: A paradigm for molecularly engineered structures, Science 262, 1669–1676 (1993).

    Article  CAS  Google Scholar 

  18. J. V. Selinger, M. S. Spector, and J. M. Schnur, Theory of self-assembled tubules and helical ribbons, J. Phys. Chem. B 105, 7157–7169 (2001).

    Article  CAS  Google Scholar 

  19. R. Price and M. Patchan, Controlled release from cylindrical macrostructures, J. Microencapsul. 8, 301–306 (1991).

    CAS  Google Scholar 

  20. A. S. Goldstein, J. K. Amory, S. M. Martin, C. Vernon, A. Matsumoto, and P. Yager, Testosterone delivery using glutamide-based complex high axial ratio microstructures, Bioorgan. Med. Chem. 9, 2819–2825 (2001).

    Article  CAS  Google Scholar 

  21. S. Iijima, Helical microtubules of graphitic carbon, Nature 354, 56–58 (1991).

    Article  CAS  Google Scholar 

  22. P. M. Ajayan, Structure and morphology of carbon nanotubes, in: Carbon Nanotubes: Preparation and Properties, edited by T. Ebbesen, CRC Press, Cleveland, OH (1997).

    Google Scholar 

  23. P. M. Ajayan, Nanotubes from carbon, Chem. Rev. 99, 1787–1800 (1999).

    Article  CAS  Google Scholar 

  24. H Dai, J. Kong, C. Zhou, N. Franklin, T. Tombler, A. Cassell, S. Fan, and M. Chapline, Controlled chemical routes to nanotube architectures, physics, and devices, J. Phys. Chem. B 103, 11, 246–11, 255 (1999).

    Article  Google Scholar 

  25. D. T. Mitchell, S. B. Lee, L. Trofin, N. Li, T. K. Nevanen, H. Söderlund, and C. R. Martin, Smart nanotubes for bioseparations and biocatalysis, J. Am. Chem. Soc. 124, 11, 864–11, 865 (2002).

    Google Scholar 

  26. S. B. Lee, D. T. Mitchell, L. Trofin, N. Li, T. K. Nevanen, H. Söderlund, and C. R. Martin, Antibody-based bio/nanotube membranes for enantiomeric drug separations, Science 296, 2198–2200 (2002).

    Article  CAS  Google Scholar 

  27. P. Kohli, C. C. Harrell, Z. Cao, R. Gasparac, W. Tan, and C. R. Martin, DNA functionalized nanotube membranes with single-base mismatch selectivity, Science 305, 984–986 (2004).

    Article  CAS  Google Scholar 

  28. M. Nishizawa, V. P. Menon, and C. R. Martin, Metal nanotubule membranes with electrochemically switchable ion-transport selectivity, Science 268, 700–702 (1995).

    Article  CAS  Google Scholar 

  29. K. B.Jirage, J. C. Hulteen, and C. R. Martin, Nanotubule-based molecular-filtration membranes, Science 278, 655–658 (1997).

    Article  CAS  Google Scholar 

  30. C. R. Martin and P. Kohli, The emerging field of nanotube biotechnology, Nat. Rev. Drug Discov. 2, 29–37 (2003).

    Article  CAS  Google Scholar 

  31. J. C. Hulteen and C. R. Martin, A general template-based method for the preparation of nanomaterials, J. Mater. Chem. 7, 1075–1087 (1997).

    Article  CAS  Google Scholar 

  32. M. R. Ghadiri, J. R. Granja, R. A. Milligan, D. McRee, and N. Khazanovich, Self-assembled organic nanotubes based on a cyclic peptide, Nature 366, 324–327 (1993).

    Article  CAS  Google Scholar 

  33. N. Khazanovich, J. R. Granja, D. E. McRee, R. A. Milligan, and M. R. Ghadiri, Nanoscale tubular ensembles with specified internal diameters. Design of a 248 Kohli and Martin self-assembled nanotube with a 13 angstrom pore, J. Am. Chem. Soc. 116, 6011–6012(1994).

    Article  CAS  Google Scholar 

  34. S. Fernandez-Lopez, H. S. Kim, E. C. Choi, M. Delgado, J. R. Granja, A. Khasanov, K. Kraehenbuehl, G. Long, D. A. Weinberger, K. M. Wilcoxen, and M. R. Ghadiri, Antibacterial agents based on the cyclic D, L-alpha-peptide architecture, Nature 412, 452–455 (2001).

    Article  CAS  Google Scholar 

  35. M. R. Ghadiri, J. R. Granja, and L. K. Buehler, Artificial transmembrane ion channels from self-assembling peptide nanotubes, Nature 369, 301–304 (1994).

    Article  CAS  Google Scholar 

  36. S.B. Lee, D. T. Mitchell, L. Trofin, T. K. Nevanen, H. Soderlund, and C. R. Martin, Template-synthesized bionanotubes for separations and biocatalysis, in: Carrier-Based Drug Delivery, ACS Symposium No 879, American Chemical Society, Washington, DC, 2004, pp 98–117.

    Google Scholar 

  37. R. Gasparac, P. Kohli, M. O. Mota, L. Trofin, and C. R. Martin, Template synthesis of nano test tubes, Nano Lett., 4, 513–516 (2004).

    Article  CAS  Google Scholar 

  38. C. C. Harrell, P. Kohli, Z. Siwy, and C. R. Martin, DNA-nanotube artificial ion channels, J. Am. Chem. Soc. 126, 15,646-15,647 (2004).

    Article  CAS  Google Scholar 

  39. S. R. Nicewarner-Pena, F. R. Griffith, B. D. Reiss, L. He, D. J. Pena, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan, Submicrometer metallic barcodes, Science 294, 137–141 (2001).

    Article  CAS  Google Scholar 

  40. S. A. Miller, V. Y. Young, and C. R. Martin, Electroosmotic flow in template-prepared carbon nanotube membranes, J. Am. Chem. Soc. 123, 12, 335–12, 342 (2001).

    Google Scholar 

  41. V. M. Cepak and C. R. Martin, Preparation of polymeric micro- and nanostructures using a template-based deposition method, Chem. Mater. 11, 1363–1367 (1999).

    Article  CAS  Google Scholar 

  42. N. Li and C. R. Martin, A high-rate, high-capacity, nanostructured Sn-based anode prepared using sol-gel template synthesis, J. Electrochem. Soc. 148, A164–A170 (2001).

    Article  CAS  Google Scholar 

  43. V. P. Menon and C. R. Martin, Fabrication and evaluation of nanoelectrode ensembles, Anal. Chem. 67, 1920–1928 (1995).

    Article  CAS  Google Scholar 

  44. V. M. Cepak, J. C. Hulteen, G. Che, K. B. Jirage, B. B. Lakshmi, E. R. Fisher, and C. R. Martin, Fabrication and characterization of concentric tubular composite microand nanostructures using the template synthesis method, J. Mater. Res. 13, 3070–3080 (1998).

    CAS  Google Scholar 

  45. T. K. Nevanen, L. Soderholm, K. Kukkonen, T. Suortti, T. Teerinen, M. Linder, H. Soderlund, and T. T. Teeri, Efficient enantioselective separation of drug enantiomers by immobilized antibody fragments, J. Chromatogr. A 925, 89–97 (2001).

    Article  CAS  Google Scholar 

  46. L. Stryer, Biochemistry, W. H. Freeman, New York, 1995.

    Google Scholar 

  47. S. Yu, S. B. Lee, M. Kang, and C. R. Martin, Size-based protein separations in poly(ethylene glycol)-derivatized gold nanotubule membranes, Nano Lett. 1, 495–498 (2001).

    Article  CAS  Google Scholar 

  48. E. D. Steinle, D. T. Mitchell, M. Wirtz, S. B. Lee, V. Y. Young, and C. R. Martin, Ion channel mimetic micropore and nanotube membrane sensors, Anal. Chem. 74, 2416–2122 (2002).

    Article  CAS  Google Scholar 

  49. G. L. Hornyak, C. J. Patrissi, and C. R. Martin, Fabrication, characterization, and optical properties of gold nanoparticle/porous alumina composites: The nonscattering Maxwell-Garnett limit, J. Phys. Chem. B 101, 1548–1555 (1997).

    Article  CAS  Google Scholar 

  50. H. K. Masuda, F. Hasegawa, and S. Ono, Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution, J. Electrochem. Soc. 144, L127 (1997).

    Article  CAS  Google Scholar 

  51. L. Trofin, M. O. Miguel, and C. R. Martin, unpublished results.

    Google Scholar 

  52. J. Israelachvili, Intermolecular and Surface Forces, 2nd ed., Academic Press, New York, 1991, pp 330–334.

    Google Scholar 

  53. K. B. Jirage, J. C. Hulteen, and C. R. Martin, Effect of thiol chemisorption on the transport properties of gold nanotubule membranes, Anal. Chem. 71, 4913–4918 (1999).

    Article  CAS  Google Scholar 

  54. S. Howorka, S. Cheley, and H. Bayley, Sequence-specific detection of individual DNA strands using engineered nanopores, Nat. Biotech. 19, 636–639 (2001).

    Article  CAS  Google Scholar 

  55. H. Fried and U. Kutay, Nucleocytoplasmic transport: taking an inventory, Cell. Mol. Life Sci. 60, 1659–1688 (2003).

    Article  CAS  Google Scholar 

  56. B. B. Lakshmi and C. R. Martin, Enantiomeric separation using apoenzymes in immobilized in a porous polymeric membrane, Nature 388, 758–760 (1997).

    Article  CAS  Google Scholar 

  57. M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic, Boston, 1996, pp. 342–351.

    Google Scholar 

  58. Y. Osada, T. Nakagawa, Y. Osada, and T. Nakagawa (Eds.), Membrane Science and Technology, Marcel Dekker, New York, 1992, pp. 377–391.

    Google Scholar 

  59. M. C. Hall, H. Wang, D. A. Erie, and T. A. Kunkel, High affinity cooperative DNA binding by the yeast Mlh-1-Pms1 heterodimer, J. Mol. Bol. 312, 637–647 (2001).

    Article  CAS  Google Scholar 

  60. Z. Siwy and A. Fulinski, Fabrication of a synthetic nanopore ion pump. Phys. Rev. Lett. 89, 198, 103 (2002).

    CAS  Google Scholar 

  61. Z. Siwy and A. Fulinski, Synthetic ion channels, Bioorg. Med. Chem. 12, 1265–1569 (2004).

    Article  Google Scholar 

  62. T. M. Fyles, D. Loock, and X. Zhou, A voltage-gated ion channel based on a bismacrocyclic bolaamphiphile, J. Am. Chem. Soc. 120, 2997–3003 (1998).

    Article  CAS  Google Scholar 

  63. Z. Wu, J. Tang, Z. Cheng, X. Yang, and E. Wang, Ion channel behavior of supported bilayer lipid membranes on a glassy carbon electrode, Anal. Chem. 72, 6030–6033 (2000).

    Article  CAS  Google Scholar 

  64. Z. Siwy, E. Heins, C. C. Harrell, P. Kohli, and C. R. Martin, Conical-nanotube ioncurrent rectifiers: The role of surface charge, J. Am. Chem. Soc. 126, 10,850–10,851 (2004).

    Article  CAS  Google Scholar 

  65. Y. Jiang, A. Lee, J. Chen, V. Ruta, M. Cadene, B. T. Chait, and R. MacKinnon, X-ray structure of a voltage-dependent K+ channel, Nature, 423, 33–41 (2003).

    Article  CAS  Google Scholar 

  66. Y. Jiang, A. Lee, J. Chen, M. Cadene, B. T. Chait, and R. MacKinnon, Crystal structure and mechanism of a calcium-gated potassium channel, Nature 417, 515–522 (2002).

    Article  CAS  Google Scholar 

  67. P. Apel, Y. E. Korchev, Z. Siwy, R. Spohr, and M. Yoshida, Diode-like single-ion track membrane prepared by electro-stopping, Nucl. Instrum. Methods B 184, 337–346 (2001).

    Article  CAS  Google Scholar 

  68. A. Meller, N. Lucas, and D. Branton, Voltage-driven DNA translocations through a nanopore, Phys. Rev. Lett. 86, 3435–3438 (2001).

    Article  CAS  Google Scholar 

  69. B. Maier, U. Seifert, and J. O. Raedler, Elastic response of DNA to external electric fields in two dimensions, Europhys. Lett. 60, 622–628 (2002).

    Article  CAS  Google Scholar 

  70. S. Lee, Y. Zhang, H. S. White, C. C. Harrell, and C. R. Martin, Electrophoretic capture and detection of nanoparticles at the opening of a membrane pore using scanning electrochemical microscopy, Anal. Chem. 76, 6108–6115 (2004).

    Article  CAS  Google Scholar 

  71. S. S. Sorlie and R. Pecora, A dynamic light scattering study of four DNA restriction fragments, Macromolecules 23, 487–497 (1990).

    Article  CAS  Google Scholar 

  72. M C. Olmstead, C. F. Anderson, and M. T. Record, Importance of oligoelectrolyte end effects for the thermodynamics of conformational transitions of nucleic acid oligomers: A grand canonical Monte Carlo analysis, Biopolymers 31, 1593–1604 (1991).

    Article  Google Scholar 

  73. G. Bonnet, S. Tyagi, A. Libchaber, and F. R. Kramer, Thermodynamic basis of the enhanced specificity of structured DNA probes, Proc. Natl. Acad. Sci. USA 96, 6171–6176 (1999).

    Article  CAS  Google Scholar 

  74. B. Hille, Ion Channels of Exictable Membranes, Sinauer, Sunderland, MA, 2001.

    Google Scholar 

  75. M. Kang and C. R. Martin, Investigations of potential-dependent fluxes of ionic permeates in gold nanotubule membranes prepared via the template method, Langmuir 17, 2753–2759 (2001).

    Article  CAS  Google Scholar 

  76. C. R. Martin, M. Nishizawa, K. Jirage, and M. Kang, Investigations of the transport properties of gold nanotubule membranes, J. Phys. Chem. B 105, 1925–1934 (2001).

    Article  CAS  Google Scholar 

  77. R. O. Blaustein and C. Miller, Ion channels: Shake, rattle or roll? Nature 427, 499–501 (2004).

    Article  CAS  Google Scholar 

  78. K. J. Swartz, Opening the gate in potassium channels, Nature Struct. Mol. Biol. 11, 499–500 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Kohli, P., Martin, C.R. (2006). Fabrication, Characterization, and Applications of Template-Synthesized Nanotubes and Nanotube Membranes. In: Adachi, M., Lockwood, D.J. (eds) Self-Organized Nanoscale Materials. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/0-387-27976-8_6

Download citation

Publish with us

Policies and ethics