Assembly of Zeolites and Crystalline Molecular Sieves

  • Jennifer L. Anthony
  • Mark E. Davis
Part of the Nanostructure Science and Technology book series (NST)

Abstract

Porous inorganic materials such as zeolites and zeolitelike crystalline molecular sieves are of great interest because of their range of commercial applications such as catalysis, adsorption/separation, and ion exchange. The term zeolite refers to the specific class of aluminosilicate molecular sieves, although the term is frequently used more loosely to describe compounds other than aluminosilicates that have frameworks similar to known zeolites.

Keywords

Molecular Sieve Zeolite Beta Mineralizing Agent Silicate Species Microporous Mesoporous Mater 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. E. Davis, Zeolites and molecular-sieves: Not just ordinary catalysts, Ind. Eng. Chem. Res. 30(8), 1675–1683 (1991).Google Scholar
  2. 2.
    W. Loewenstein, The distribution of aluminum in the tetrahedra of silicates and aluminates., Am. Mineral. 39, 92–96 (1954).Google Scholar
  3. 3.
    M. M. Helmkamp and M. E. Davis, Synthesis of porous silicates, Annu. Rev. Mater. Sci. 25, 161–192 (1995).CrossRefGoogle Scholar
  4. 4.
    M. E. Davis, New vistas in zeolite and molecular-sieve catalysis, Acc. Chem. Res. 26(3), 111–115 (1993).Google Scholar
  5. 5.
    I. Petrovic, A. Navrotsky, M. E. Davis, and S. I. Zones, Thermochemical study of the stability of frameworks in high-silica zeolites, Chem. Mater. 5(12), 1805–1813 (1993).Google Scholar
  6. 6.
    P. M. Piccione, C. Laberty, S. Y. Yang, M. A. Camblor, A. Navrotsky, and M. E. Davis, Thermochemistry of pure-silica zeolites, J. Phys. Chem. B 104(43), 10,001–10,011 (2000).Google Scholar
  7. 7.
    P. M. Piccione, B. F. Woodfield, J. Boerio-Goates, A. Navrotsky, and M. E. Davis, Entropy of pure-silica molecular sieves, J. Phys. Chem. B 105(25), 6025–6030 (2001).Google Scholar
  8. 8.
    J. Boerio-Goates, R. Stevens, B. K. Hom, B. F. Woodfield, P. M. Piccione, M. E. Davis, and A. Navrotsky, Heat capacities, third-law entropies and thermodynamic functions of SiO2 molecular sieves from T = 0 K to 400 K, J. Chem. Thermodyn. 34(2), 205–227 (2002).Google Scholar
  9. 9.
    Y. T. Hu, A. Navrotsky, C. Y. Chen, and M. E. Davis, Thermochemical study of the relative stability of dense and microporous aluminophosphate frameworks, Chem. Mater. 7(10), 1816–1823 (1995).Google Scholar
  10. 10.
    A. Navrotsky, I. Petrovic, Y. T. Hu, C. Y. Chen, and M. E. Davis, Little energetic limitation to microporous and mesoporous materials, Microporous Mater. 4(1), 95–98 (1995).Google Scholar
  11. 11.
    E. C. Moloy, L. P. Davila, J. F. Shackelford, and A. Navrotsky, High-silica zeolites: A relationship between energetics and internal surface areas, Microporous Mesoporous Mater. 54(1–2), 1–13 (2002).Google Scholar
  12. 12.
    Q. H. Li, A. Navrotsky, F. Rey, and A. Corma, Thermochemistry of (Gex Si1-x)O2 zeolites, Microporous Mesoporous Mater. 64(1–3), 127–133 (2003).Google Scholar
  13. 13.
    Q. H. Li, A. Navrotsky, F. Rey, and A. Corma, Thermochemistry of (Gex Si1-x)O2 zeolites (erratum), Microporous Mesoporous Mater. 66(2–3), 365–365 (2003).Google Scholar
  14. 14.
    P. M. Piccione, S. Y. Yang, A. Navrotsky, and M. E. Davis, Thermodynamics of puresilica molecular sieve synthesis, J. Phys. Chem. B 106(14), 3629–3638 (2002).Google Scholar
  15. 15.
    P. M. Piccione, S. Y. Yang, A. Navrotsky, and M. E. Davis, Thermodynamics of pure-silica molecular sieve synthesis (erratum), J. Phys. Chem. B 106(20), 5312–5312 (2002).Google Scholar
  16. 16.
    G. M. Whitesides, E. E. Simanek, J. P. Mathias, C. T. Seto, D. N. Chin, M. Mammen, and D. M. Gordon, Noncovalent synthesis: Using physical-organic chemistry to make aggregates, Acc. Chem. Res. 28(1), 37–44 (1995).Google Scholar
  17. 17.
    M. E. Davis, Strategies for zeolite synthesis by design, Studies Surf. Sci. Catal. 97, 35–43 (1995).Google Scholar
  18. 18.
    S. L. Burkett and M. E. Davis, Mechanism of structure direction in the synthesis of Si-ZSM-5: An investigation by intermolecular 1H-29Si CP MAS NMR, J. Phys. Chem. 98(17), 4647–4653 (1994).Google Scholar
  19. 19.
    A. V. Goretsky, L.W. Beck, S. I. Zones, and M. E. Davis, Influence of the hydrophobic character of structure-directing agents for the synthesis of pure-silica zeolites, Microporous Mesoporous Mater. 28(3), 387–393 (1999).Google Scholar
  20. 20.
    R. A. van Santen, J. Keijspar, G. Ooms, and A. G. T. G. Kortbeek, The role of interfacial energy in zeolite synthesis, Studies Surf. Sci. Catal. 28, 169–175 (1986).Google Scholar
  21. 21.
    T. V. Harris and S. I. Zones, A study of guest/host energetics for the synthesis of cage structures NON and CHA, Studies Surf. Sci. Catal. 84(Zeolites and Related Microporous Materials, Pt. A), 29–36 (1994).Google Scholar
  22. 22.
    G. van de Goor, C. C. Freyhardt, and P. Behrens, The cobalticinium cation Co-III(ETA(5)-C5H5)+2 : A metal-organic complex as a novel template for the synthesis of clathrasils, Z. Anorg. Allg. Chem. 621(2), 311–322 (1995).Google Scholar
  23. 23.
    P. de Moor, T. P. M. Beelen, B. U. Komanschek, L. W. Beck, P. Wagner, M. E. Davis, and R. A. van Santen, Imaging the assembly process of the organic-mediated synthesis of a zeolite, Chem. Eur. J. 5(7), 2083–2088 (1999).Google Scholar
  24. 24.
    O. Regev, Y. Cohen, E. Kehat, and Y. Talmon, Precursors of the zeolite ZSM-5 imaged by Cryo-Tem and analyzed by SAXS, Zeolites 14(5), 314–319 (1994).Google Scholar
  25. 25.
    B. J. Schoeman, A high temperature in situ laser light-scattering study of the initial stage in the crystallization of TPA-silicalite-1, Zeolites 18(2–3), 97–105 (1997).Google Scholar
  26. 26.
    T. A. M. Twomey, M. Mackay, H. Kuipers, and R. W. Thompson, In-situ observation of silicalite nucleation and growth: A light-scattering study, Zeolites 14(3), 162–168 (1994).Google Scholar
  27. 27.
    L. E. Iton, F. Trouw, T. O. Brun, J. E. Epperson, J. W. White, and S. J. Henderson, Smallangle neutron-scattering studies of the template-mediated crystallization of ZSM-5-type zeolite, Langmuir 8(4), 1045–1048 (1992).Google Scholar
  28. 28.
    A. Corma and M. E. Davis, Issues in the synthesis of crystalline molecular sieves: Towards the crystallization of low framework-density structures, Chem. Phys. Chem. 5, 304–313 (2004).Google Scholar
  29. 29.
    P. P. E. A. de Moor, T. P. M. Beelen, B. U. Komanschek, O. Diat, and R. A. van Santen , In situ investigation of Si-TPA-MFI crystallization using (ultra-) small- and wide-angle X-ray scattering, J. Phys. Chem. B 101(51), 11,077–11,086 (1997).Google Scholar
  30. 30.
    W. H. Dokter, H. F. Vangarderen, T. P. M. Beelen, R. A. Vansanten, and W. Bras, Homogeneous versus heterogeneous zeolite nucleation, Angew. Chem. Int. Ed. Engl. 34(1), 73–75 (1995).Google Scholar
  31. 31.
    S. L. Burkett and M. E. Davis, Mechanism of structure direction in the synthesis of pure-silica zeolites. 1. Synthesis of TPA/Si-ZSM-5, Chem. Mater. 7(5), 920–928 (1995).Google Scholar
  32. 32.
    V. Nikolakis, E. Kokkoli, M. Tirrell, M. Tsapatsis, and D. G. Vlachos, Zeolite growth by addition of subcolloidal particles: Modeling and experimental validation, Chem. Mater. 12(3), 845–853 (2000).Google Scholar
  33. 33.
    M. Tsapatsis, M. Lovallo, and M. E. Davis, High-resolution electron microscopy study on the growth of zeolite L nanoclusters, Microporous. Mater. 5(6), 381–388 (1996).Google Scholar
  34. 34.
    M. Tsapatsis, M. Lovallo, T. Okubo, M. E. Davis, and M. Sadakata, Characterization of zeolite-L nanoclusters, Chem. Mater. 7(9), 1734–1741 (1995).Google Scholar
  35. 35.
    L. Khatri, M. Z. Hu, E. A. Payzant, L. F. Allard, Jr., and M. T. Harris, Nucleation and growth mechanism of silicalite-1 nanocrystal during molecularly templated hydrothermal synthesis, Ceram. Trans. 137(Ceramic Nanomaterials and Nanotechnology), 3–21 (2003).Google Scholar
  36. 36.
    R. Ravishankar, C. E. A. Kirschhock, P.-P. Knops-Gerrits, E. J. P. Feijen, P. J. Grobet, P. Vanoppen, F. C. De Schryver, G. Miehe, H. Fuess, B. J. Schoeman, P. A. Jacobs, and J. A. Martens, Characterization of nanosized material extracted from clear suspensions for MFI zeolite synthesis, J. Phys. Chem. B. 103(24), 4960–4964 (1999).Google Scholar
  37. 37.
    C. E. A. Kirschhock, R. Ravishankar, F. Verspeurt, P. J. Grobet, P. A. Jacobs, and J. A. Martens, Identification of precursor species in the formation of MFI zeolite in the TPAOH–TEOS–H2O system, J. Phys. Chem. B. 103(24), 4965–4971 (1999).Google Scholar
  38. 38.
    C. E. A. Kirschhock, R. Ravishankar, L. van Looveren, P. A. Jacobs, and J. A. Martens, Mechanism of transformation of precursors into nanoslabs in the early stages ofMFIand MEL zeolite formation from TPAOH–TEOS–H2O and TBAOH–TEOS–H2O mixtures, J. Phys. Chem. B. 103(24), 4972–4978 (1999).Google Scholar
  39. 39.
    C. E. A. Kirschhock, R. Ravishankar, P. A. Jacobs, and J. A. Martens, Aggregation mechanism of nanoslabs with zeolite MFI-type structure, J. Phys. Chem. B. 103(50), 11,021–11,027 (1999).Google Scholar
  40. 40.
    C. E. A. Kirschhock, V. Buschmann, S. Kremer, R. Ravishankar, C. J. Y. Houssin, B. L. Mojet, R. A. van Santen, P. J. Grobet, P. A. Jacobs, and J. A. Martens, Zeosil nanoslabs: Building blocks in nPr4N+-mediated synthesis of MFI zeolite, Angew. Chem., Int. Ed. 40(14), 2637–2640 (2001).Google Scholar
  41. 41.
    C. T. G. Knight and S. D. Kinrade, Comment on “Identification of precursor species in the formation of MFI zeolite in the TPAOH–TEOS–H2O system, “ J. Phys. Chem. B. 106(12), 3329–3332 (2002).Google Scholar
  42. 42.
    D. D. Kragten, J. M. Fedeyko, K. R. Sawant, J. D. Rimer, D. G. Vlachos, R. F. Lobo, and M. Tsapatsis, Structure of the silica phase extracted from silica/(TPA)OH solutions containing nanoparticles, J. Phys. Chem. B 107(37), 10,006–10,016 (2003).Google Scholar
  43. 43.
    H. Ramanan, E. Kokkoli, and M. Tsapatsis, On the TEM and AFM evidence of zeosil nanoslabs present during the synthesis of silicalite-1, Angew. Chem. Int. Ed. 43, 4558–4561 (2004).Google Scholar
  44. 44.
    C. E. A. Kirschhock, S. P. B. Kremer, P. J. Grobet, P. A. Jacobs, and J. A. Martens, New evidence for precursor species in the formation of MFI zeolite in the tetrapropylammonium hydroxide-tetraethyl orthosilicate-water system, J. Phys. Chem. B 106(19), 4897–4900 (2002).Google Scholar
  45. 45.
    S. P. B. Kremer, C. E. A. Kirschhock, A. Aerts, K. Villani, J. A. Martens, O. I. Lebedev, and G. Van Tendeloo, Tiling silicalite-1 nanoslabs into 3D mosaics, Adv. Mater. 15(20), 1705–1707 (2003).Google Scholar
  46. 46.
    C. C. Harrison and N. Loton, Novel routes to designer silicas: Studies of the decomposition of (M+)2[Si(C6H4O2)3]*xH2O: Importance of M+ identity of the kinetics of oligomerization and the structural characteristics of the silicas produced, J. Chem. Soc. Faraday Trans. 91(23), 4287–4297 (1995).Google Scholar
  47. 47.
    S. D. Kinrade and D. L. Pole, Effect of alkali-metal cations on the chemistry of aqueous silicate solutions, Inorg. Chem. 31(22), 4558–4563 (1992).Google Scholar
  48. 48.
    M. Goepper, H. X. Li, and M. E. Davis, A possible role of alkali-metal ions in the synthesis of pure-silica molecular-sieves, J. Chem. Soc. Chem. Commun. 1665–1666 (1992).Google Scholar
  49. 49.
    M. A. Camblor, M. Yoshikawa, S. I. Zones, and M. E. Davis. Synthesis of VPI-8: The first large pore zincosilicate, in: Synthesis of Porous Materials: Zeolites, Clays, and Nanostructures, edited by M. L. Occelli and H. Kessler, Marcel Dekker, New York, 1997, pp. 243–261.Google Scholar
  50. 50.
    M. E. Davis and R. F. Lobo, Zeolite and molecular-sieve synthesis, Chem. Mater. 4(4), 756–768 (1992).Google Scholar
  51. 51.
    B. M. Lok, T. R. Cannan, and C. A. Messina, The role of organic-molecules in molecular-sieve synthesis, Zeolites 3(4), 282–291 (1983).Google Scholar
  52. 52.
    F. Liebau, Structural Chemistry of Silicates; Springer-Verlag, Berlin, 1985.Google Scholar
  53. 53.
    R. F. Lobo, S. I. Zones, and M. E. Davis, Structure-direction in zeolite synthesis, J. Incl. Phenom. Mol. Recogn. Chem. 21(1–4), 47–78 (1995).Google Scholar
  54. 54.
    P. Wagner, Y. Nakagawa, G. S. Lee, M. E. Davis, S. Elomari, R. C. Medrud, and S. I. Zones, Guest/host relationships in the synthesis of the novel cage-based zeolites SSZ-35, SSZ-36, and SSZ-39, J. Am. Chem. Soc. 122(2), 263–273 (2000).Google Scholar
  55. 55.
    H. Lee, S. I. Zones, and M. E. Davis, A combustion-free methodology for synthesizing zeolites and zeolite-like materials, Nature 425(6956), 385–388 (2003).Google Scholar
  56. 56.
    H. Koller, R. F. Lobo, S. L. Burkett, and M. E. Davis, SiO−…HOSi hydrogenbonds in as- synthesized high-silica zeolites, J. Phys. Chem. 99(33), 12,588–12,596 (1995).Google Scholar
  57. 57.
    D. F. Shantz, J. S. auf der Gunne, H. Koller, and R. F. Lobo, Multiple-quantum 1H MAS NMR studies of defect sites in as-made all-silica ZSM-12 zeolite, J. Am. Chem. Soc. 122(28), 6659–6663 (2000).Google Scholar
  58. 58.
    E. Flanigen and R. L. Patton, Silica polymorph and process for preparing same, US patent 4, 073, 685, 1978.Google Scholar
  59. 59.
    J. L. Guth, H. Kessler, and R. Wey, New route to the pentasil-type zeolites using a non alkaline medium in the presence of fluoride ions, Studies Surf. Sci. Catal. 28, 121–128 (1986).Google Scholar
  60. 60.
    M. A. Camblor, L. A. Villaescusa, and M. J. Diaz-Cabanas, Synthesis of all-silica and high-silica molecular sieves in fluoride media, Topics Catal. 9(1–2), 59–76 (1999).Google Scholar
  61. 61.
    M. O’Keeffe and B. G. Hyde. The role of nonbonded forces in crystals, in: Structure and Bonding in Crystals, edited by M. O’Keeffe and A. Navrotsky, Academic Press, New York, 1981, pp. 227–254.Google Scholar
  62. 62.
    L. B. McCusker, R. W. Grosse Kunstleve, C. Baerlocher, M. Yoshikawa, and M. E. Davis, Synthesis optimization and structure analysis of the zincosilicate molecular sieve VPI-9, Microporous Mater. 6(5–6), 295–309 (1996).Google Scholar
  63. 63.
    M. J. Annen, M. E. Davis, J. B. Higgins, and J. L. Schlenker, VPI-7: The 1st zincosilicate molecular-sieve containing 3-membered T-atom rings, J. Chem. Soc. Chem. Commun. 1175–1176 (1991).Google Scholar
  64. 64.
    G. V. Gibbs, E. P. Meagher, M. D. Newton, and D. K. Swanson. A comparison of experimental and theoretical bond length and angle variations for minerals, inorganic solids, and molecules, in: Structure and Bonding in Crystals, edited by M. O’Keeffe and A. Navrotsky, Academic Press, New York, 1981, pp.195–225.Google Scholar
  65. 65.
    G. O. Brunner and W. M. Meier, Framework density distribution of zeolite-type tetrahedral nets, Nature 337(6203), 146–147 (1989).Google Scholar
  66. 66.
    J. L. Guth, J. Hazm, J. M. Lamblin, and H. Gies, Synthesis, characterization and crystal structure of the new clathrasil phase octadecasil, Eur. J. Solid State Inorg. Chem. 28(2), 345–361 (1991).Google Scholar
  67. 67.
    P. A. Barrett, T. Boix, M. Puche, D. H. Olson, E. Jordan, H. Koller, and M. A. Camblor, ITQ-12: A new microporous silica polymorph potentially useful for light hydrocarbon separations, Chem. Commun. 17, 2114–2115 (2003).Google Scholar
  68. 68.
    L. A. Villaescusa, P. A. Barrett, and M. A. Camblor, ITQ-7: A new pure silica polymorph with a three-dimensional system of large pore channels, Angew. Chem., Int. Ed. 38(13–14), 1997–2000 (1999).Google Scholar
  69. 69.
    H. L. Li and O. M. Yaghi, Transformation of germanium dioxide to microporous germanate 4- connected nets, J. Am. Chem. Soc. 120(40), 10,569–10,570 (1998).Google Scholar
  70. 70.
    M. O’Keeffe and O. M. Yaghi, Germanate zeolites: Contrasting the behavior of germanate and silicate structures built from cubic T8O20 units (T = Ge or Si), Chem. Eur. J. 5(10), 2796–2801 (1999).Google Scholar
  71. 71.
    D. S. Wragg, A. M. Z. Slawin, and R. E. Morris, The synthesis of gallium phosphate frameworks with and without fluoride ions present: Attempts to direct the synthesis of double four-ring containing materials, J. Mater. Chem. 11(7), 1850–1857 (2001).Google Scholar
  72. 72.
    P. Reinert, B. Marler, and J. Patarin, Synthesis and characterization of the new microporous fluorogallophosphate Mu-2 with a novel framework topology, Chem. Commun. 1769–1770 (1998).Google Scholar
  73. 73.
    P. Reinert, B. Marler, and J. Patarin, Structure analysis and general characterization of the fluorogallophosphate Mu-2: A new microporous material built from double-four-ring units hosting F anions, J. Mater. Sci. 35(12), 2965–2972 (2000).Google Scholar
  74. 74.
    M. A. Zwijnenburg, S. T. Bromley, J. C. Jansen, and T. Maschmeyer, Computational insights into the role of Ge in stabilising double-four ring containing zeolites, Microporous Mesoporous Mater. 73(3), 171–174 (2004).Google Scholar
  75. 75.
    T. Blasco, A. Corma, M. J. Diaz-Cabanas, F. Rey, J. A. Vidal-Moya, and C. M. Zicovich-Wilson, Preferential location of Ge in the double four-membered ring units of ITQ-7 zeolite, J. Phys. Chem. B 106(10), 2634–2642 (2002).Google Scholar
  76. 76.
    C. T. G. Knight, R. J. Kirkpatrick, and E. Oldfield, Silicon-29 2D NMR evidence of 4 novel doubly germanium substituted silicate cages in a tetramethylammonium germanosilicate solution, J. Am. Chem. Soc. 109(6), 1632–1635 (1987).Google Scholar
  77. 77.
    A. Corma, M. J. Diaz-Cabanas, and V. Fornes, Synthesis, characterization, and catalytic activity of a large-pore tridirectional zeolite, H-ITQ-7, Angew. Chem., Int. Ed. 39, 2346–2349 (2000).Google Scholar
  78. 78.
    A. Corma, M. T. Navarro, F. Rey, J. Rius, and S. Valencia, Pure polymorph C of zeolite beta synthesized by using framework isomorphous substitution as a structure-directing mechanism, Angew. Chem., Int. Ed. 40(12), 2277–2280 (2001).Google Scholar
  79. 79.
    A. Corma, M. T. Navarro, F. Rey, and S. Valencia, Synthesis of pure polymorph C of Beta zeolite in a fluoride-free system, Chem. Commun. 1486–1487 (2001).Google Scholar
  80. 80.
    G. Sastre, J. A. Vidal-Moya, T. Blasco, J. Rius, J. L. Jorda, M. T. Navarro, F. Rey, and A. Corma, Preferential location of Ge atoms in polymorph C of beta zeolite (ITQ-17) and their structure-directing effect: A computational, XRD, and NMR spectroscopic study, Angew. Chem, Int. Ed. 41(24), 4722–4726 (2002).Google Scholar
  81. 81.
    R. F. Lobo, M. Pan, I. Chan, H. X. Li, R. C. Medrud, S. I. Zones, P. A. Crozier, and M. E. Davis, SSZ-26 and SSZ-33: 2 molecular-sieves with intersecting 10-ring and 12-ring pores, Science 262(5139), 1543–1546 (1993).Google Scholar
  82. 82.
    R. F. Lobo, M. Pan, I. Chan, R. C. Medrud, S. I. Zones, P. A. Crozier, and M. E. Davis, Physicochemical characterization of zeolites SSZ-26 and SSZ-33, J. Phys. Chem. 98(46), 12,040–12,052 (1994).Google Scholar
  83. 83.
    R. Castaneda, A. Corma, V. Fornes, F. Rey, and J. Rius, Synthesis of a new zeolite structure ITQ-24, with intersecting 10-and 12-membered ring pores, J. Am. Chem. Soc. 125(26), 7820–7821 (2003).Google Scholar
  84. 84.
    A. Corma, M. J. Diaz-Cabanas, and F. Rey, Microporous crystalline material (ITQ- 15), method for the preparation thereof and its use in processes for separating and transforming organic compounds, Patent WO 0230820, 2002.Google Scholar
  85. 85.
    A. Corma, F. Rey, S. Valencia, J. L. Jorda, and J. Rius, A zeolite with interconnected 8-, 10- and 12-ring pores and its unique catalytic selectivity, Nat. Mater. 2, 493–497 (2003).Google Scholar
  86. 86.
    A. Corma, M. Diaz-Cabanas, and F. Rey, Synthesis of ITQ-21 in OH media, Chem. Commun. 1050–1051 (2003).Google Scholar
  87. 87.
    A. Corma, M. Diaz-Cabanas, J. Martinez-Triguero, F. Rey, and J. Rius, A largecavity zeolite with wide pore windows and potential as an oil refining catalyst, Nature 418(6897), 514–517 (2002).Google Scholar
  88. 88.
    M. Yoshikawa, P. Wagner, M. Lovallo, K. Tsuji, T. Takewaki, C. Y. Chen, L. W. Beck, C. Jones, M. Tsapatsis, S. I. Zones, and M. E. Davis, Synthesis, characterization, and structure solution of CIT-5, a new, high-silica, extra-large-pore molecular sieve, J. Phys. Chem. B 102(37), 7139–7147 (1998).Google Scholar
  89. 89.
    A. Corma, M. J. Diaz-Cabanas, F. Rey, S. Nicolopoulus, and B. Boulahya, ITQ-15: The first ultralarge pore zeolite with a bi-directional pore system formed by intersecting 14- and 12-ring channels, and its catalytic implications, Chem. Comm. 12, 1356–1357 (2004).CrossRefGoogle Scholar
  90. 90.
    J. L. Paillaud, B. Harbuzaru, J. Patarin, and N. Bats, Extra-large-pore zeolites with two-dimensional channels formed by 14 and 12 rings, Science 304(5673), 990–992 (2004).Google Scholar
  91. 91.
    W. M. Meier, Zeolites and zeolite-like materials, Studies Surf. Sci. Catal. 28, 13–22 (1986).CrossRefGoogle Scholar
  92. 92.
    S. L. Lawton and W. J. Rohrbaugh, The framework topology of ZSM-18, a novel zeolite containing rings of three (Si, Al)-O species, Science 247(4948), 1319–1322 (1990).Google Scholar
  93. 93.
    D. T. Griffen and P. H. Ribbe, Distortions in the tetrahedral oxyanions of crystalline substances, Jahrb. Miner. Abh. 137(1), 54–73 (1979).Google Scholar
  94. 94.
    B. Renner and G. Lehmann, Correlation of angular and bond length distortions in TO4 units in crystals, Z. Kristallogr. 175(1–2), 43–59 (1986).CrossRefGoogle Scholar
  95. 95.
    M. Wenger and T. Armbruster, Crystal chemistry of lithium: Oxygen coordination and bonding, Eur. J. Miner. 3(2), 387–399 (1991).Google Scholar
  96. 96.
    X. H. Bu, P. Y. Feng, and G. D. Stucky, Novel germanate zeolite structures with 3-rings, J. Am. Chem. Soc. 120(43), 11, 204–11, 205 (1998).Google Scholar
  97. 97.
    T. Cheetham, H. Fjellvag, T. E. Gier, K. O. Kongshaug, K. P. Lillerud, and G. D. Stucky, Very open microporous materials: from concept to reality, Studies Surf. Sci. Catal. 135(Zeolites and Mesoporous Materials at the Dawn of the 21st Century), 788–795 (2001).Google Scholar
  98. 98.
    C. Rohig and H. Gies, A new zincosilicate zeolite with nine-ring channels, Angew. Chem. Int. Ed. 34, 63–65 (1995).Google Scholar
  99. 99.
    M. E. Davis, Evolution of extra large pore materials, Studies Surf. Sci. Catal. 135, 29–36 (2001).CrossRefGoogle Scholar
  100. 100.
    R. M. Hazen, H. Yang, L. W. Finger, and B. A. Fursenko, Crystal chemistry of highpressure BaSi4O9 in the trigonal (P3) barium tetragermanate structure, Am. Miner. 84(5-6), 987–989 (1999).Google Scholar
  101. 101.
    L. W. Finger, R. M. Hazan, and B. A. Fursenko, Refinement of the crystal structure of BaSi4O9 in the benitoite form, J. Phys. Chem. Solids 56, 1389–1393 (1995).Google Scholar
  102. 102.
    W. Gebert, Crystal structure of the barium aluminosilicate [Ba13Al22Si10O66], Kristallogr., Kristallgeom., Kristallphys., Kristallchem. 135(5–6), 437–452 (1972).Google Scholar
  103. 103.
    S. H. Park, P. Daniels, and H. Gies, RUB-23: A new microporous lithosilicate containing spiro-5 building units, Microporous Mesoporous Mater. 37(1–2), 129–143 (2000).Google Scholar
  104. 104.
    M. E. Davis, Reflections on routes to enantioselective solid catalysts, Topics Catal. 25(1–4), 3–7 (2003).Google Scholar
  105. 105.
    J. M. Thomas, Topography and topology in solid-state chemistry, Phil. Trans. R. Soc. Lond. Ser. A:Math. Phys. Eng. Sci. 277(1268), 251 (1974).Google Scholar
  106. 106.
    R. D. Gillard, Stinking rich: Platinum polysulfides, Chem. Br. 20(11), 1022–1024 (1984).Google Scholar
  107. 107.
    J. K. O’Loane, Optical-activity in small molecules, non-enantiomorphous crystals, and nematic liquid-crystals, Chem. Rev. 80(1), 41–61 (1980).Google Scholar
  108. 108.
    A. M. Glazer and K. Stadnicka, On the origin of optical-activity in crystal-structures, J. Appl. Crystallogr. 19, 108–122 (1986).Google Scholar
  109. 109.
    P. R. Kavasmaneck and W. A. Bonner, Adsorption of amino-acid derivatives by d-quartz and l-quartz, J. Am. Chem. Soc. 99(1), 44–50 (1977).Google Scholar
  110. 110.
    G. M. Schwab and L. Rudolph, Catalytic cleavage of racemates by d- and l-quartz, 20, 363–364 (1932).Google Scholar
  111. 111.
    M. M. J. Treacy and J. M. Newsam, 2 new 3-dimensional 12-ring zeolite frameworks of which zeolite beta is a disordered intergrowth, Nature 332(6161), 249–251 (1988).Google Scholar
  112. 112.
    J. M. Newsam, M. M. J. Treacy, W. T. Koetsier, and C. B. De Gruyter, Structural characterization of zeolite beta, Proc. R. Soc. London A 420(1859), 375–405 (1988).CrossRefGoogle Scholar
  113. 113.
    G. Burns and A. M. Glazer, Space Groups for Solid State Scientists; Academic Press, Boston, 1990.Google Scholar
  114. 114.
    J. Jacques, A. Collet, and S. H. Wilen, Enantiomers, Racemates, and Resolutions, Wiley, New York, 1981.Google Scholar
  115. 115.
    W. T. A. Harrison, T. E. Gier, G. D. Stucky, R. W. Broach, and R. A. Bedard, NaZnPO4H2O, an open-framework sodium zincophosphate with a new chiral tetrahedral framework topology, Chem. Mater. 8(1), 145–151 (1996).Google Scholar
  116. 116.
    M. J. Gray, J. D. Jasper, A. P. Wilkinson, and J. C. Hanson, Synthesis and synchrotron microcrystal structure of an aluminophosphate with chiral layers containing Lambda tris(ethylenediamine)cobalt(III), Chem. Mater. 9(4), 976–980 (1997).Google Scholar
  117. 117.
    J. H. Yu, Y. Wang, Z. Shi, and R. R. Xu, Hydrothermal synthesis and characterization of two new zinc phosphates assembled about a chiral metal complex: [COII(en)3]2[Zn6P8O32H8] and [COIII(en)3][Zn8P6O24CI] 2H2O, Chem. Mater. 13(9), 2972–2978 (2001).Google Scholar
  118. 118.
    A. M. Healey, M. T. Weller, and A. R. Genge, Synthesis and structure of NaZnSiO3OH, a new chiral zincosilicate framework material, Inorg. Chem. 38(3), 455–458 (1999).Google Scholar
  119. 119.
    M. E. Medina, M. Iglesias, N. Snejko, E. Gutierrez-Puebla, and M. A. Monge, Chiral germanium zeotype with interconnected 8-, 11-, and 11-ring channels. Catalytic properties, Chem. Mater. 16(4), 594–599 (2004).Google Scholar
  120. 120.
    S. M. Tomlinson, R. A. Jackson, and C. R. A. Catlow, A computational study of zeolite beta, J. Chem. Soc. Chem. Commun. 813 (1990).Google Scholar
  121. 121.
    D. K. Kondepudi, R. J. Kaufman, and N. Singh, Chiral symmetry-breaking in sodiumchlorate crystallization, Science 250(4983), 975–976 (1990).Google Scholar
  122. 122.
    J. M. McBride and R. L. Carter, Spontaneous resolution by stirred crystallization, Angew. Chem. Int. Ed. 30(3), 293–295 (1991).Google Scholar
  123. 123.
    R. G. Xiong, X. Z. You, B. F. Abrahams, Z. L. Xue, and C. M. Che, Enantioseparation of racemic organic molecules by a zeolite analogue, Angew. Chem. Int. Ed. 40(23), 4422–4425 (2001).Google Scholar
  124. 124.
    P. Behrens, G. van de Goor, and C. C. Freyhardt, Structure-determining C-HO-Si hydrogen bonds in cobaltocenium fluoride nonasil, Angew. Chem. Int. Ed. 34(23–24), 2680–2682 (1996).Google Scholar
  125. 125.
    I. Bull, L. A. Villaescusa, S. J. Teat, M. A. Camblor, P. A. Wright, P. Lightfoot, and R. E. Morris, Imposition of polarity on a centrosymmetric zeolite host: The effect of fluoride ions on template ordering in zeolite IFR, J. Am. Chem. Soc. 122(29), 7128–7129 (2000).Google Scholar
  126. 126.
    M. E. Davis, Ordered porous materials for emerging applications, Nature 417(6891), 813–821 (2002).Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Jennifer L. Anthony
    • 1
  • Mark E. Davis
    • 1
  1. 1.California Institute of Technology, Chemical EngineeringPasadena

Personalised recommendations