Advertisement

Synthesis of Titania Nanocrystals: Application for Dye-Sensitized Solar Cells

  • Motonari Adachi
  • Yusuke Murata
  • Fumin Wang
  • Jinting Jiu
Part of the Nanostructure Science and Technology book series (NST)

Abstract

Titania nanocrystals, which have a large surface area with controlled surface structure and high electron transport properties, are essentially important for highefficiency dye-sensitized solar cells. Morphological control and high crystallinity are the key properties needed in titanium oxide materials for dye-sensitized solar cells. In this section, we first review morphological control and functionalization of nanosize ceramic materials from a wide point of view.

Keywords

Anodic Alumina Anatase Phase Shape Control Oriented Attachment Crystalline Anatase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. C. Scher, R. Soc, L. Manna, and A. P. Alivisatos, Shape control and application of nanocrystals, Phil. Trans. R. Soc. Lond. A 361, 241–257 (2003).CrossRefGoogle Scholar
  2. 2.
    M. P. Pileni, Colloidal self-assemblies used as templates to control size, shape and self organization of nanoparticles, Supramol. Sci. 5, 321–329 (1998).CrossRefGoogle Scholar
  3. 3.
    T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, and M. A. El-Sayed, Shapecontrolled synthesis of colloid platinum nanoparticles, Science 272, 1924–1925 (1996).CrossRefGoogle Scholar
  4. 4.
    A. P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots, Science 271, 933–937 (1996).CrossRefGoogle Scholar
  5. 5.
    C. M. Lieber, One-dimensional nanostructures: chemistry, physics & applications, Solid State Commun. 107, 607–616 (1998).CrossRefGoogle Scholar
  6. 6.
    Q. Song and Z. J. Zhang, Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals, J. Am. Chem. Soc. 126, 6164–6168 (2004).CrossRefGoogle Scholar
  7. 7.
    X. Peng, Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals, Adv. Mater. 15, 459–463 (2003).CrossRefGoogle Scholar
  8. 8.
    W. W. Yu, Y. A. Wang, and X. Peng, Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals, Chem. Mater. 15, 4300–4308 (2003).CrossRefGoogle Scholar
  9. 9.
    B. D. Reiss, C. Mao, D. J. Solis, K. S. Ryan, T. Thomson, and A. M. Belcher, Biological routes to metal alloy ferromagnetic nanostructures. Nano Lett. 4, 1127–1132 (2004).CrossRefGoogle Scholar
  10. 10.
    Z. Tang, B. Ozturk, Y. Wang, and N. A. Kotov, Simple preparation strategy and onedimensional energy transfer in CdTe nanoparticle chains, J. Phys. Chem. B 108, 6927–6931 (2004).CrossRefGoogle Scholar
  11. 11.
    Z. Tang, N. A. Kotov, and M. Giersig, Spontaneous organization of single CdTe nanoparticles into luminescent nanowires, Science 297, 237–240 (2002).CrossRefGoogle Scholar
  12. 12.
    G. Wu, L. Zhang, B. Cheng, T. Xie, and X. Yuan, Synthesis of Eu2O3 nanotube array through a facile sol-gel template approach, J. Am. Chem. Soc. 126, 5976–5977 (2004).CrossRefGoogle Scholar
  13. 13.
    C. Pacholski, A. Kornowski, and H. Weller, Self-assembly of ZnO: from nanodots to nanorods, Angew. Chem. Int. Ed. 41, 1188–1191 (2002).CrossRefGoogle Scholar
  14. 14.
    B. Cheng, J. M. Rusell, W. Shi, L. Zhang, and E.T. Samulski, Large-scale, solution phase growth of single-crystalline SnO2 nanorods, J. Am. Chem. Soc. 126, 5972–5973 (2004).CrossRefGoogle Scholar
  15. 15.
    H. Zhang, J. Sun, D. Ma, X. Bao, A. Klein-Hoffmann, G. Weinberg, D. Su, and R. Schlogl, Unusual mesoporous SBA-15 with parallel channels running along the short axis, J. Am. Chem. Soc. 126, 7440–7441 (2004).CrossRefGoogle Scholar
  16. 16.
    Y. Cui, M. T. Bjork, J. A. Liddle, C. Sonnichsen, B. Boussert, and A. P. Alivisatos, Integration of colloidal nanocrystals into lithographically patterned devices, Nano Lett. 4, 1093–1098 (2004).CrossRefGoogle Scholar
  17. 17.
    R. Garcia, and M. Tello, Size and shape controlled growth of molecular nanostructures on silicon oxide templates, Nano Lett. 4, 1115–1119 (2004).CrossRefGoogle Scholar
  18. 18.
    D. Yang, R. Wang, J. Zhang, and Z. Liu, Synthesis of nickel hydroxide nanoribbons with a new phase: A solution chemistry approach, J. Phys. Chem. B 108, 7531–7533 (2004).CrossRefGoogle Scholar
  19. 19.
    Y. C. Cao, Synthesis of square gadorinium-oxide nanoplates, J. Am. Chem. Soc. 126, 7456–7457 (2004).CrossRefGoogle Scholar
  20. 20.
    C. Liu, X. Wu, T. Klemmer, N. Shukla, X. Yang, D. Weller, A. G. Roy, M. Tanase, and D. Laughlin, Polyol process synthesis of monodispersed FePt nanoparticles, J. Phys. Chem. B 108, 6121–6123 (2004).CrossRefGoogle Scholar
  21. 21.
    X. G. Peng, L. Manna, W. D. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, Shape control of CdSe nanocrystals, Nature 404, 59–61 (2000).CrossRefGoogle Scholar
  22. 22.
    V. F. Puntes, K. M. Krishnan, and A. P. Alivisatos, Colloidal nanocrystal shape and size control: The case of cobalt, Science 291, 2115–2117 (2001).CrossRefGoogle Scholar
  23. 23.
    L. Pei, K. Mori, and M. Adachi, The formation process of 2-D networked gold nanowires by citrate reduction of AuCl 4 and the shape stabilization, Langmuir 20, 7837–7843 (2004).CrossRefGoogle Scholar
  24. 24.
    H. Masuda and K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina, Science 268, 1466–1468 (1995).CrossRefGoogle Scholar
  25. 25.
    H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, Highly ordered nanochannel-array architecture in anodic alumina, Appl. Phys. Lett. 71, 2770–2772 (1997).CrossRefGoogle Scholar
  26. 26.
    B. B. Lakshmi, P. K. Dorhout, and C. R. Martin, Sol-gel template synthesis of semiconductor nano structure, Chem. Mater. 9, 857–862, (1997); B. B. Lakshmi, C. J. Patrissi, and C. R. Martin, Sol-Gel template synthesis of semiconductor oxide micro- and nano structures, 9, 2544–2550 (1997).CrossRefGoogle Scholar
  27. 27.
    R. L. Penn and J. F. Banfield, Imperfect oriented attachment: dislocation generation in defect-free nanocrystals, Science 281, 969–971 (1998).CrossRefGoogle Scholar
  28. 28.
    J. F. Banfield, S. A. Welch, H. Zhang, T. T. Ebert, and R. L. Penn, Aggregationbased crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products, Science 289, 751–754.Google Scholar
  29. 29.
    M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, and F. Wang, Highly efficient dye sensitized solar cells with titania thin film electrode composed of network structure of single-crystal-like TiO2 nanowires made by “oriented attachment” mechanism, J. Am. Chem. Soc. 126, 14,943–14,949 (2004).CrossRefGoogle Scholar
  30. 30.
    F. Wang, J. Jiu, and M. Adachi, Control of TiO2 morphology via hydrothermal route, in: Proceedings of the10th Asian Pacific Confederation of Chemical Engineering Congress, Kitakyushu, Japan. 2004.Google Scholar
  31. 31.
    F. Wang, J. Jiu, and M. Adachi, Hydrothermal synthesis of nanosheet quasi-TiO2 by surfactant-assisted hydrolysis of titanium alkoxide, in: 2004 MRS Fall Meeting, Boston, 2004, abstract GG10.3; F. Wang, J. Jiu, L. Pei, K. Nakagawa, S. Isoda, and M. Adachi, hydrothermal synthesis of highly crystallized Lepidocrocite nanosheets of TiO2 under low temperature, Chem. Lett. 34, 418–419 (2005).Google Scholar
  32. 32.
    B. O’Regan and M. Grätzel, A low-cost, high-efficiency solar cell based on dye sensitized colloidal TiO2 films, Nature (London) 353, 737–740 (1991).CrossRefGoogle Scholar
  33. 33.
    Solbrand, H. Lindstrom, H. Rensmo, A. Hagfeldt, and S.-E. Lindquist, Electron transport in the nano structured TiO2-electrolyte system studied with time-resolved photocurrents. J. Phys. Chem. 101, 2514–2518 (1997).Google Scholar
  34. 34.
    S. Nakade, S. Kambe, T. Kitamura, Y. Wada, and S. Yanagida, Effect of lithium ion density on electron transport in nanoporous TiO2 electrode, J. Phys. Chem. B 105, 9150–9152 (2001).CrossRefGoogle Scholar
  35. 35.
    S. Kambe, S. Nakade, T. Kitamura, Y. Wada, and S. Yanagida, Influence of the electrolytes on electron transport in mesoporous TiO2-electrolyte system, J. Phys. Chem. 106, 2967–2972 (2002).Google Scholar
  36. 36.
    L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw, and I. Uhlendorf, Dynamic response of dye-sensitized nanocrystalline solar cells: Characterization by intensity-modulated photocurrent spectroscopy, J. Phys. Chem. 101, 10,281–10,289 (1997).Google Scholar
  37. 37.
    A. C. Fisher, L. M. Peter, E. A. Ponomarev, A. B. Walker, and K. G. U. Wijayantha, Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanocrystalline TiO2 solar cells, J. Phys. Chem. B 104, 949–958 (2000).CrossRefGoogle Scholar
  38. 38.
    G. Oskam, A. Nellore, R. L. Penn, and P. C. Searson, The growth kinetics of TiO2 nanoparticles from titanium(IV) alkoxide at high water/titanium ratio, J. Phys. Chem. B 107, 1734–1738 (2003).CrossRefGoogle Scholar
  39. 39.
    G. Oskam, Z. Hu, R. L. Penn, N. Pesika, and P. C. Searson, Coarsening of metal oxide nanoparticles, Phys. Rev. E 66, 11,403 (2002).CrossRefGoogle Scholar
  40. 40.
    A. P. Alivisatas, Naturally aligned nanocrystals, Science 289, 736 (2000).CrossRefGoogle Scholar
  41. 41.
    R. L. Penn and J. F. Banfield, Morphology dependent and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania, Geochim. Cosmochim. Acta 63, 1549–1557 (1999).CrossRefGoogle Scholar
  42. 42.
    C. J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, San Diego, CA, 1990, Chap. 3.Google Scholar
  43. 43.
    F. Huang, H. Zhang, and J. F. Banfield, Two-stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS, Nano Lett. 3, 373–378 (2003).CrossRefGoogle Scholar
  44. 44.
    D.-F. Zhang, L.-D. Sun, J.-L. Yin, and C.-H. Yan, Low-Temperature Fabrication of Highly Crystalline SnO2 Nanorods, Adv. Mater. 15, 1022–1025 (2003).CrossRefGoogle Scholar
  45. 45.
    M. Lazzeri, A. Vittadini, and A. Selloni, Structure and energetics of stoichiometric TiO2 anatase surfaces, Phys. Rev. B 63, 155,409 (2001).CrossRefGoogle Scholar
  46. 46.
    P. Hoyer, Semiconductor nanotube formation by a two-step template process, Adv. Mater. 8, 857–859 (1996).CrossRefGoogle Scholar
  47. 47.
    P. Hoyer, Formation of titanium dioxide nanotube array, Langmuir 12, 1411–1413 (1996).CrossRefGoogle Scholar
  48. 48.
    Y. Lei, L. D. Zhang, and J. C. Fan, Fabrication, characterization and Raman study of TiO2 nanowire array prepared by anodic oxidative hydrolysis of TiCl3, Chem. Phys. Lett. 338, 231–236 (2001).CrossRefGoogle Scholar
  49. 49.
    A. Michailowski, D. AlMawlawi, G. Cheng, and M. Moskovits, Highly regular anatase nanotubule arrays fabricated in porous anodic templates, Chem. Phys. Lett. 349, 1–5 (2001).CrossRefGoogle Scholar
  50. 50.
    H. Imai, Y. Takei, K. Shimizu, M. Matsuda, and H. Hirashima, Direct preparation of anatase TiO2 nanotubes in porous alumina membranes, J. Mater. Chem. 9, 2971–2972 (1999).CrossRefGoogle Scholar
  51. 51.
    M. Zhang, Y. Bando, and K.Wada, Sol-gel template preparation of TiO2 nanotubes and nanorods, J. Mater. Sci. Lett. 20, 167–170 (2001).CrossRefGoogle Scholar
  52. 52.
    Y. Lei, L. D. Zhang, G. W. Meng, G. H. Li, X. Y. Zhang, C. H. Liang, and S. X. Wang, Preparation and photoluminescence of highly ordered TiO2 nanowire arrays, Appl. Phys. Lett. 78, 1125–1127 (2001).CrossRefGoogle Scholar
  53. 53.
    Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao, and Y. Tang, Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires, Nano Lett. 2, 717–720 (2002).CrossRefGoogle Scholar
  54. 54.
    T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Formation of titanium oxide nanotube, Langmuir 14, 3160–3163 (1998).CrossRefGoogle Scholar
  55. 55.
    T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Titania nanotubes prepared by chemical processing, Adv. Mater. 11, 1307–1311 (1999).CrossRefGoogle Scholar
  56. 56.
    Z. Shunli, Z. Jingfang, Z. Zhijun, D. Zuliaqng, A. V. Vorontsov, and J. Zhensheng, Morphological structure and physical properties of nanotube TiO2, Chin. Sci. Bull. 45, 1533–1536 (2000).CrossRefGoogle Scholar
  57. 57.
    D-S. Seo, J.-K. Lee, and H. Kim, Preparation of nanotube-shaped TiO2 powder, J. Crystal Growth 229, 428–432 (2001).CrossRefGoogle Scholar
  58. 58.
    Y. X. Zhang, G. H. Li, Y. X. Jin, Y. Zhang, J. Zhang, and L. D. Zhang, Hydrothermal synthesis and photoluminescence of TiO2 nanowires, Chem. Phys. Lett. 365, 300–304 (2002).CrossRefGoogle Scholar
  59. 59.
    G. H. Du, Q. Chen, R. C. Che, Z. Y. Yuan, and L.-M. Peng, Preparation and structure analysis of titanium oxide nanotubes, Appl. Phys. Lett. 79, 3702–3704 (2001).CrossRefGoogle Scholar
  60. 60.
    B. D. Yao, Y. F. Chan, X. Y. Zhang, W. F. Zhang, Z. Y. Yang, and N. Wang, Formation mechanism of TiO2 nanotubes, Appl. Phys. Lett. 82, 281–283 (2003).CrossRefGoogle Scholar
  61. 61.
    G. R. Patzke, F. Krumeich, and R. Nesper, Oxidic nanotubes and nanorods: Anisotopic modules for a future nanotechnology, Angew. Chem. Int. Ed. 41, 2446–2461 (2002).CrossRefGoogle Scholar
  62. 62.
    R. Ma, Y. Bando, and T. Sasaki, Nanotubes of lepidocrocite titanates, Chem. Phys. Lett. 380, 577–582 (2003).CrossRefGoogle Scholar
  63. 63.
    T. Peng, A. Hasegawa, J. Qiu, and K. Hirao, Fabrication of titania with high surface area and well-developed mesostructural walls by surfactant-mediated templating method, Chem. Mater. 15, 2011–2016 (2003).CrossRefGoogle Scholar
  64. 64.
    A. Chemseddine and T. Moritz, Nano structuring titania: Control over nanocrystal structure, size, shape, and organization, Eur. J. Inorg. Chem. 235–245 (1999).Google Scholar
  65. 65.
    T. Sugimoto, X. Zhou, and A. Muramatsu, Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method. 4. Shape control, J. Colloid Interf. Sci. 259, 53–61 (2003).CrossRefGoogle Scholar
  66. 66.
    R. E. Schaak and T. E. Mallouk, Self-assembly of tiled perovskite monolayer and multilayer thin films, Chem. Mater. 12, 2513–2516 (2000).CrossRefGoogle Scholar
  67. 67.
    T. Sasaki, M. Watanabe, H. Hashizume, H. Yamada, and H. Nakazawa, Macromoleculelike aspect for a colloidal suspension of an exfoliated titanate. Pairwise association of nanosheets and dynamic reassembling process initiated from it, J. Am. Chem. Soc. 118, 8329–8335 (1996).CrossRefGoogle Scholar
  68. 68.
    Y. Omomo, T. Sasaki, L. Wang, and M. Watanabe, Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide, J. Am. Chem. Soc. 125, 3568–3575 (2003).CrossRefGoogle Scholar
  69. 69.
    R. E. Schaak and T. E. Mallouk, Prying apart Ruddlesden–Popper phase: Exfoliation into sheets and nanotubes for assembly of perovskite thin films, Chem. Mater. 12, 3427–3434 (2000).CrossRefGoogle Scholar
  70. 70.
    T. Tanaka, Y. Ebina, K. Takada, K. Kurashima, and T. Sasaki, Oversized titania nanosheet crystallites derived from flux-grown layered titanate single crystals, Chem. Mater.. 15, 3564–3568 (2003).CrossRefGoogle Scholar
  71. 71.
    Q. Gao, O. Giraldo, W. Tong, and S. L. Suib, Preparation of nanometer-sized manganese oxides by intercalation of organic ammonium ions in synthetic Birnessite OL-1, Chem. Mater. 13, 778–786 (2001).CrossRefGoogle Scholar
  72. 72.
    L. Wang, Y. Omomo, N. Sakai, K. Fukuda, I. Nakai, Y. Ebina, K. Takada, M. Watanabe, and T. Sasaki, Fabrication and characterization of multilayer ultrathin films of exfoliated MnO2 nanosheets and polycations, Chem. Mater. 15, 2873–2878 (2003).CrossRefGoogle Scholar
  73. 73.
    T. Sasaki, Y. Ebina, Y. Kitami, and M. Watanabe, Two-dimensional diffraction of molecular nanosheet crystallites of titanium oxide, J. Phys. Chem. B 105, 6116–6121 (2001).CrossRefGoogle Scholar
  74. 74.
    T. Sasaki and M Watanabe, Semiconductor nanosheet crystallites of quasi-TiO2 and their optical properties, J. Phys. Chem. B 101, 10,159–10,161 (1997).CrossRefGoogle Scholar
  75. 75.
    A. Hagfeldt and M. Grätzel, Molecular photovoltaics, Acc. Chem. Res. 33, 269–277 (2000).CrossRefGoogle Scholar
  76. 76.
    M. Grätzel, Photoelectrochemical cells, Nature 414, 338–344 (2001).CrossRefGoogle Scholar
  77. 77.
    M. Grätzel, Dye-sensitized solar cells, J. Photochem. Photobiol. C: Photochem. Rev. 4, 145–153 (2003).CrossRefGoogle Scholar
  78. 78.
    J. Bisquert, D. Cahen, G. Hodes, S. Ruhle, and A. Zaban, Physical chemical principle of photovoltaic conversion with nanoparticulate, masoporous dye-sensitized solar cells, J. Phys. Chem. 108, 8106–8118 (2004).Google Scholar
  79. 79.
    M. Grätzel, Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells, J. Photochem. Photobiol. A: Chemistry 164, 3–14 (2004).CrossRefGoogle Scholar
  80. 80.
    M. K. Nazeeruddin, A. Kay, I. Rodicio, B. R. Humphry, E. Mueller, P. Liska, N. Vlachopoulous, and M. Grätzel, Conversion of light to electricity by cis-X2bis(2,2′- bipyridyl-4,4′-dicarboxylate)ruthenium)(II) charge-transfer sensitizers (X = Cl, Br, I, CN, and SCN) on nanocrystalline TiO2 electrodes, J. Am. Chem. Soc. 115, 6382–6390 (1993).CrossRefGoogle Scholar
  81. 81.
    V. Shklover, Yu. E. Ovchinnkov, L. S. Braginsky, S. M. Zakeeruddin, and M. Grätzel, Structure of organic/inorganic interface in assembled materials comprising molecular components. Crystal structure of sensitizer bis[(4,4′-carboxy-2,2′-bipyridine) (thiocyanate)] ruthenium(II), Chem. Mater. 10, 2533–2541 (1998).CrossRefGoogle Scholar
  82. 82.
    Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, and M. Grätzel, Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell, J. Phys. Chem. B 107, 8981–8987 (2003).CrossRefGoogle Scholar
  83. 83.
    A. Fillinger and B. A. Parkinson, The adsorption behavior of a ruthenium-based sensitizing dye to nanocrystalline TiO2. Coverage effect on the external and internal sensitization quantum yields, J. Electrochem. Soc. 146, 4559–4564 (1999).CrossRefGoogle Scholar
  84. 84.
    M. Grätzel, Molecular photovoltaics that mimic photosynthesis, Pure Appl. Chem. 73, 459–467 (2001).CrossRefGoogle Scholar
  85. 85.
    A. Vittadini, A. Selloni, F. P. Rotzinger, and M. Grätzel, Formic acid adsorption on dry and hydrated TiO2 anatase (101) surfaces by DFT calculations, J. Phys. Chem. B 104, 1300–1306 (2000).CrossRefGoogle Scholar
  86. 86.
    K. Finnie, J. R. Bartlett, and J. L. Woolfrey, Vibrational spectroscopic study of the coordination of (2,2′-bipyridyl-4,4′-dicarboxylic acid)ruthenium(II) complexes to the surface of nanocrystalline titania, Langmuir 14, 2744–2749 (1998).CrossRefGoogle Scholar
  87. 87.
    C. Bauer, G. Boschloo, E. Mukhtar, and A. Hagfeldt, Interfacial electron-transfer dynamics in Ru(tcterpy)(NCS) 3-sensitizedTiO2 nanocrystalline solar cells, J. Phys. Chem. B 106, 12,693–12,704 (2002).CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Motonari Adachi
    • 1
  • Yusuke Murata
    • 1
  • Fumin Wang
    • 1
  • Jinting Jiu
    • 1
  1. 1.Institute of Advanced EnergyKyoto UniversityKyotoJapan

Personalised recommendations