Self-Assembled Si1-xGex Dots and Islands

  • Jean-Marc Baribeau
  • Nelson L. Rowell
  • David J. Lockwood
Part of the Nanostructure Science and Technology book series (NST)

Abstract

The growth and properties of semiconductor quantum dots have been studied extensively in the last decade. These novel nanostructures offer interesting prospects for the development of new electronic or optoelectronic devices. In particular, if the size, shape, and positioning of those structures can be controlled, they become very attractive for applications such telecommunication wavelength-integrated photodetectors or tunable or single-photon light sources.

Keywords

Molecular Beam Epitaxy Alloy Layer SiGe Island Molecular Beam Epitaxy Sample Planar Superlattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. W. Matthews and E. A. Blakeslee, Defects in epitaxial materials: I. Misfit dislocations, J. Cryst. Growth 27, 118–125 (1974).Google Scholar
  2. 2.
    R. People and J. C. Bean, Calculation of critical layer thickness versus lattice mismatch for Si1-xGex/Si strained-layer heterostructures, Appl. Phys. Lett. 47, 322–342 (1985).Google Scholar
  3. 3.
    R. People and J. C. Bean, Erratum: Calculation of critical layer thickness versus lattice mismatch for Si1-xGex/Si strained-layer heterostructures [Appl. Phys. Lett. 47, 322 (1985)], Appl. Phys. Lett. 49, 229 (1986).Google Scholar
  4. 4.
    D. D. Perovic, B. Bahierathan, D. C. Houghton, H. Lafontaine, and J.-M. Baribeau, Strain relaxation at low misfits: Dislocation injection vs. surface roughening, in: Evolution of Epitaxial Structure and Morphology, edited by A. Zangwill, D. Jesson, D. Chambliss, and R. Clarke, Materials Research Society, Boston, 1995, Vol. 399, pp. 325–336.Google Scholar
  5. 5.
    H. Lafontaine, D. C. Houghton, B. Bahierathan, D. D. Perovic, and J.-M. Baribeau, Si1-xGex critical thickness for surface wave generation during UHV-CVD growth, in: Evolution of Epitaxial Structure Morphology, edited by D. J. A. Zangwill, D. Chambliss, and R. Clarke, Materials Research Society, Pittsburgh, PA, 1996, Vol. 399, pp. 413–418.Google Scholar
  6. 6.
    R. J. Asaro and W. A. Tiller, Interface morphology development during stress corrosion cracking. I. Via surface diffusion, Metall. Trans. A 1789–1796 (1972).Google Scholar
  7. 7.
    M. A. Grinfeld, Instability of the separation boundary between a non-hydrostatically stressed elastic body and a melt, Dokl. Akad. Nauk SSSR 290, 1358–1363 (1986).Google Scholar
  8. 8.
    B. Teichert, Self-organization of nanostructures in semiconductor heteroepitaxy, Phys. Rep. 365, 335–432 (2002).Google Scholar
  9. 9.
    Z. Zhang and M. G. Lagally, Morphological organization in epitaxial growth and removal, in: Series on Directions in Condensed Matter Physics, World Scientific, Singapore, 1998, Vol. 14, p. 498.Google Scholar
  10. 10.
    K. Brunner, Si/Ge nanostructures, Rep. Prog. Phys. 65, 27–72 (2002).Google Scholar
  11. 11.
    B. Voigtländer, Fundamental processes in Si/Si and Ge/Si epitaxy studied by scanning tunneling microscopy during growth, Surf. Sci. Rep. 43, 127–254 (2001).Google Scholar
  12. 12.
    E. Bauer, Phänomenologische theorie der kristallabscheidung an oberfläschen, I/II, Z. Kristallogr. 110, 372–394/395–431 (1958).Google Scholar
  13. 13.
    I. N. Stranski and L. Krastanow, Zur theorie der orientierten ausscheidung von ionenkristallen aufeinander, Sitzungaber. Akad. Wien, Mat. Nat. Kl. IIb 146, 797–810 (1937).Google Scholar
  14. 14.
    M. A. Grinfeld and D. J. Srolovitz, Stress driven morphological instabilities and islanding of epitaxial films, in:Properties of Strained and Relaxed Silicon Germanium, edited by E. Kasper, INSPEC, London, 1995, Vol. 12, pp. 3–16.Google Scholar
  15. 15.
    J. C. Bean, L. C. Feldman, A. T. Fiory, S. Nakahara, and I. K. Robinson, Si1-xGex/Si strained-layer superlattice grown by molecular beam epitaxy, J. Vac. Sci. Technol. A 2, 436–440 (1984).Google Scholar
  16. 16.
    M. L. Green, M. L. Baglin, G. Y. Chin, H. W. Deckman, W. Mayo, and D. Narasinham, Si-Based Heterostructrues: Interfacial Structure and Stability, The Metallurgical Society, Warrendale, PA, 1986.Google Scholar
  17. 17.
    E. Rosencher, Heterostructures on Si: One Step Further with Silicon, Kluwer Academic Publishers, Dordrecht, 1988.Google Scholar
  18. 18.
    M. L. Swanson, N. R. Parikh, E. C. Frey, G. S. Sandhu, W. K. Chu, T. E. Jackman, J.-M. Baribeau, S. Kechang, and J. McCaffrey, RBS/channeling and TEM analysis of thin sandwiched epi-layers of germanium on silicon, in: Characterization of the Structure and Chemistry of Defects in Materials, edited by B. C. Larson, M. Rühle, and D. N. Seidman, Materials Research Society, Boston, 1989, Vol. 138.Google Scholar
  19. 19.
    J.-M. Baribeau, D. C. Houghton, T. E. Jackman, and J. P. McCaffrey, Molecular beam epitaxy growth of Ge on (100) Si, J. Electrochem. Soc. 136, 1158–1162 (1989).Google Scholar
  20. 20.
    D. J. Eaglesham and M. Cerullo, Dislocation-free Stranski Krastanow growth of Ge on Si(100), Phys. Rev. Lett. 64, 1943–1946 (1990).Google Scholar
  21. 21.
    Y.-W. Mo, D. E. Savage, B. S. Swartzentruber, and M. G. Lagally, Kinetic pathway in Stranski-Krastanov growth of Ge on Si(00l), Phys. Rev. Lett. 65, 1020–1023 (1990).Google Scholar
  22. 22.
    J. Drucker and S. Chapparo, Diffusional narrowing of Ge on Si(l00) coherent island quantum dot size distributions, Appl. Phys. Lett. 71, 614–616 (1997).Google Scholar
  23. 23.
    X. Z. Liao, J. Zou, D. J. H. Cockayne, Z. M. Jiang, and X. Wang, Extracting composition and alloying information of coherent Ge(Si)/Si(001) islands from [001] on-zone bright-field diffraction contrast images, J. Appl. Phys. 90, 2725–2729 (2001).Google Scholar
  24. 24.
    X. Z. Liao, J. Zou, D. J. H. Cockayne, J. Wan, Z. M. Jiang, G. Jin, and K. L. Wang, Annealing effects on the microstructure of Ge/Si(001) quantum dots, Appl. Phys. Lett. 79, 1258–1261 (2001).Google Scholar
  25. 25.
    B. Cho, T. Schwarz-Selinger, K. Ohmori, D. G. Cahill, and J. E. Greene, Effect of growth rate on the spatial distributions of dome-shaped Ge islands on Si(00l), Phys. Rev. B 66, 195,407 (2002).Google Scholar
  26. 26.
    M. M. Rzaev, T. M. Burbaev, V. A. Kurbatov, N. N. Melnik, M. Mühlberger, A. O. Pogosov, F. Schäffler, N. N. Sibeldin, V. A. Tsvetkov, P. Werner, N. D. Zakharov, and T. N. Zavaritskaya, Photoluminescence of self-assembled Ge islands grown by Si MBE at low temperatures, Phys. Stat. Solid (c) 4, 1262–1266 (2003).Google Scholar
  27. 27.
    F. Boscherini, G. Capellini, L. Di Gaspare, M. De Seta, F. Rosei, A. Sgarlata, N. Motta, and S. Mobilio, Ge-Si intermixing in Ge quantum dots on Si, Thin Solid Films 380, 173–175 (2000).Google Scholar
  28. 28.
    D. Dentel, L. Vescan, O. Chrétien, and B. Holländer, Influence of molecular hydrogen on Ge island nucleation on Si(001), J. Appl. Phys. 88, 5113–5118 (2000).Google Scholar
  29. 29.
    T. I. Kamins, E. C. Carr, R. S. Williams, and S. J. Rosner, Deposition of three-dimensional Ge islands on Si(001) by chemical vapor deposition at atmospheric and reduced pressures, J. Appl. Phys. 81, 211–219 (1997).Google Scholar
  30. 30.
    M. D. Seta, G. Capellini, F. Evangelisti, and C. Spinella, Intermixing-promoted scaling of Ge/Si(100) island sizes, J. Appl. Phys. 92, 614–619 (2002).Google Scholar
  31. 31.
    W T. Huang, N. Deng, P. Y. Chen, G. L. Luo, and P. X. Qian, Self-organized growth of Ge quantum dots by UHV-CVD, Microelectron. Technol. 41, 17–22 (2004).Google Scholar
  32. 32.
    S. W Lee, L. J. Chen, P. S. Chen, M.-J. Tsai, C. W Liu, T. Y. Chien, and C. T. Chia, Self-assembled nanorings in Si-capped Ge quantum dots on (001) Si, Appl. Phys. Lett. 83, 5283–5285 (2003).Google Scholar
  33. 33.
    A. Rastelli, M. Kummer, and H. V. Känel, Reversible shape evolution of Ge islands on Si(001), Phys. Rev. Lett. 87, 256, 101–256,101 (2001).Google Scholar
  34. 34.
    A. Vailionis, B. Cho, G. Glass, P. Desjardins, D. G. Cahill, and J. E. Greene, Pathway for the strain-driven two-dimensional to three-dimensional transition during growth of Ge on Si(001), Phys. Rev. Lett. 85, 3672–3675 (2000).Google Scholar
  35. 35.
    A. Rastelli, H. V. Känel, B. J. Spencer, and J. Tersoff, Prepyramid-to-pyramid transition of SiGe islands on Si(001), Phys. Rev. B 68, 115,301 (2003).Google Scholar
  36. 36.
    U. Denker, M. W. Dashiell, N. Y. Jin-Phillipp, and O. G. Schmidt, Trenches around and between self assembled silicon/germanium islands grown on silicon substrates investigated by atomic force microscopy, Mater. Sci. Eng. B 89, 166–170 (2002).Google Scholar
  37. 37.
    S. A. Chaparro, Y. Zhang, J. Drucker, D. Chandrasekhar, and D. J. Smith, Evolution of Ge/Si(100) islands: Island size and temperature dependence, J. Appl. Phys. 87, 245–248 (2000).Google Scholar
  38. 38.
    U. Denker, O. G. Schmidt, N.-Y. Jin-Phillip, and K. Eberl, Trench formation around and between self-assembled Ge islands on Si, Appl. Phys. Lett. 78, 3723–3725 (2001).Google Scholar
  39. 39.
    A. Hesse, J. Stangl, V. Holý, T. Roch, G. Bauer, O. G. Schmidt, U. Denker, and B. Struth, Effect of overgrowth on shape, composition and strain of SiGe islands on Si(001), Phys. Rev. B 66, 085321 (2002).Google Scholar
  40. 40.
    J.-M. Baribeau, R. Pascual, and S. Saimoto, X-ray study of interdiffusion and strain relaxation in SimGen superlattices, Appl. Phys. Lett. 57, 1502–1504 (1990).Google Scholar
  41. 41.
    X. Z. Liao, J. Zou, D. J. H. Cockayne, J. Qin, Z. M. Jiang, X. Wang, and R. Leon, Strain relaxation by alloying effects in Ge islands grown on Si(001), Phys. Rev. B 60, 15, 605–15,608 (1999).Google Scholar
  42. 42.
    P. Sonnet and P. C. Kelires, Physical origin of trench formation in Ge/Si(100) islands, Appl. Phys. Lett 85, 203–205 (2004).Google Scholar
  43. 43.
    G. Medeiros-Ribeiro, M. Bratkovski, T. I. Kamins, D. A. A. Ohlberg, and R. S. Williams, Shape transition of germanum nanocrystals on silicon (001) surface from pyramids to domes, Sci. Technol. Adv. Mater. 279, 353–355 (1998).Google Scholar
  44. 44.
    F. M. Ross, R. M. Tromp, and M. C. Reuter, Transition states between pyramids and domes during Ge/Si island growth, Sci. Technol. Adv. Mater. 286, 1931–1934 (1999).Google Scholar
  45. 45.
    V. B. Shenoy and L. B. Freund, A continuum description of the energetics and evolution of stepped surfaces in strained nanostructures, J. Mech. Phys. Solids 50, 1817–1841 (2002).Google Scholar
  46. 46.
    I. Berbezier, A. Ronda, F. Volpi, and A. Portavoce, Morphological evolution of SiGe layers, Surf. Sci. 531, 231–243 (2003).Google Scholar
  47. 47.
    Y. Zhang and J. Drucker, Annealing-induced Ge/Si(100) island evolution, J. Appl. Phys. 93, 9583–9590 (2003).Google Scholar
  48. 48.
    R. Kern, G. Le Lay, and J. J. Metois, Basic mechanisms in the early stages of epitaxy, in: Current Topics in Materials Science, edited by E. Kaldis, North-Holland, Amsterdam, 1979, Vol. 3.Google Scholar
  49. 49.
    G. Capellini, M. De Seta, and F. Evangelisti, Influence of the growth parameters on self-assembled Ge islands on Si100), Mater. Sci. Eng. B 89, 184–187 (2002).Google Scholar
  50. 50.
    G. Capellini, M. D. Seta, and F. Evangelisti, Ge/Si(100) islands: Growth dynamics versus growth rate, J. Appl. Phys. 93, 291–295 (2003).Google Scholar
  51. 51.
    Rastelli, E. Müller, and H. V. Känel, Shape preservation of Ge/Si(001) islands during Si capping, Appl. Phys. Lett. 80, 1438–1440 (2002).Google Scholar
  52. 52.
    T. I. Kamins, G. Medeiros-Ribeiro, D. A. A. Ohlberg, and R. S. Williams, Evolution of Ge islands on Si(001) during annealing, J. Appl. Phys. 85, 1159–1171 (1999).Google Scholar
  53. 53.
    U. Denker, O. G. Schmidt, N.-Y. Jin-Philipp, and K. Eberl, Trench formation around and between self-assembled Ge islands on Si, Appl. Phys. Lett. 78, 3723–3725 (2001).Google Scholar
  54. 54.
    J. Stangl, A. Daniel, V. Holý, T. Roch, G. Bauer, I. Kegel, T. H. Metzger, T. Wiebach, O. G. Schmidt, and K. Eberl, Strain and composition distribution in uncapped SiGe islands from x-ray diffraction, Appl. Phys. Lett. 79, 1474–1476 (2001).Google Scholar
  55. 55.
    T. U. Schülli, J. Stangl, Z. Zhong, R. T. Lechner, M. Sztucki, T. H. Metzger, and G. Bauer, Direct determination of strain and composition profiles in SiGe islands by anomalous x-ray diffraction at high momentum transfer, Phys. Rev. Lett. 90, 066105 (2003).Google Scholar
  56. 56.
    J. Stangl, A. Hesse, V. Holý, Z. Zhong, G. Bauer, U. Denker, and O. G. Schmidt, Effect of overgrowth temperature on shape, strain, and composition of buried Ge islands deduced from x-ray diffraction, Appl. Phys. Lett. 82, 2251–2253 (2003).Google Scholar
  57. 57.
    O. Kirfel, E. Müller, D. Grützmacher, K. Kern, A. Hesse, J. Stangl, V. Holý, and G. Bauer, Shape and composition change of Ge dots due to Si capping, Appl. Surf. Sci. 224, 139–142 (2004).Google Scholar
  58. 58.
    A. A. Darhuber, V. Holý, P. Schittenhelm, J. Strangl, I. Kegel, Z. Kovats, T. H. Metzger, G. Bauer, G. Abstreiter, and G. Grubel, Structural characterizartion of self-assembled Ge dot multilayers by x-ray diffraction and reflectivity methods, Physica E 2, 789–793 (1998).Google Scholar
  59. 59.
    R. Magalhaes-Paniago, G. Medeiros-Ribeiro, A. Malachias, S. Kycia, T. I. Kamins, and R. S. Williams, Direct evaluation of composition profile, strain relaxation, and elastic energy of Ge:Si(001) self-assembled islands by anomalous x-ray scattering, Phys. Rev. B 66, 245,311 (2002).Google Scholar
  60. 60.
    F. Boscherini, X-ray absorption studies of atomic environments in semiconductor nanostructures, Nucl. Instrum. Methods B 199, 169–173 (2003).Google Scholar
  61. 61.
    F. Boscherini, G. Capellinin, L. D. Gaspare, F. Rosei, N. Motta, and S. Mobilio, Ge-Si intermixing in Ge quantum dots on Si(001) and Si (111), Appl. Phys. Lett. 76, 682–684 (2000).Google Scholar
  62. 62.
    C. J. Huang, D. Z. Li, Z. Yu, B. W. Cheng, J. Z. Yu, and Q. M. Wang, Atomic-force-microscopy investigation of the formation and evolution of Ge islands on Si1-xGex strained layers, Appl. Phys. Lett. 77, 391–393 (2000).Google Scholar
  63. 63.
    C. P. Liu, J. M. Gibson, D. G. Cahill, T. I. Kamins, D. P. Basile, and R. S. Williams, Strain evolution in coherent Ge/Si islands, Phys. Rev. Lett. 84, 1958–1961 (2000).Google Scholar
  64. 64.
    M. Cazayous, J. Groenen, F. Demangeot, R. Sirvin, M. Caumont, T. Remmele, M. Al-brecht, S. Christiansen, M. Becker, H. P. Strunk, and H. Wawra, Strain and composition in self-assembled SiGe islands by raman spectroscopy, J. Appl. Phys. 91, 6772–6774 (2002).Google Scholar
  65. 65.
    V. O. Yukhymchuk, A. M. Yaremko, M. Y. Valakh, A. V. Novikov, E. V. Mozdor, P. M. Lytvyn, Z. F. Krasilnik, V. P. Klad’ko, V. M. Dzhagan, N. Mestres, and J. Pascual, Theoretical and experimental investigations of single- and multilayer structures with SiGe nanoislands, Mater. Sci. Eng. C 23, 1027–1031 (2003).Google Scholar
  66. 66.
    V. Magidson, D. V. Regelman, R. Beserman, and K. Dettmer, Evidence of Si presence in self-assembled Ge islands deposited on a Si(001) substrate, Appl. Phys. Lett. 73, 1044–1046 (1998).Google Scholar
  67. 67.
    M. Floyd, Y. Zhang, K. P. Driver, J. Drucker, P. A. Crozier, and D. J. Smith, Nanometer-scale composition measurements of Ge/Si islands, Appl. Phys. Lett. 82, 1473–1475 (2003).Google Scholar
  68. 68.
    U. Denker, M. Stoffel, and O. G. Schmidt, Probing the lateral composition profile of self-assembled islands, Phys. Rev. Lett. 90, 196,102 (2003).Google Scholar
  69. 69.
    U. Denker, H. Sigg, and O. G. Schmidt, Composition of self assembled Ge hut clusters, Mater. Sci. Eng. B 101, 89–94 (2003).Google Scholar
  70. 70.
    C. J. Huang, Y H. Zuo, D. Z. Li, B. W Cheng, L. P. Luo, J. Z. Yu, and Q. M. Wang, Shape evolution of Ge/Si(001) islands induced by strain-driven alloying, Appl. Phys. Lett. 78, 3881–3883 (2001).Google Scholar
  71. 71.
    Y. Zhang, M. Floyd, K. P. Driver, J. Drucker, P. A. Crozier, and D. J. Smith, Evolution of Ge/Si(100) island morphology at high temperature, Appl. Phys. Lett. 80, 3623–3625 (2002).Google Scholar
  72. 72.
    S. A. Chaparro, J. Drucker, Y. Zhang, D. Chandrasekhar, M. R. McCartney, and D. J. Smith, Strain-driven alloying in Ge/Si(100) coherent islands, Phys. Rev. Lett. 83, 1199–1202 (1999).Google Scholar
  73. 73.
    S. K. Sinha, E. B. Sirote, S. Garoff, and H. B. Stanley, X-ray and neutron scattering from rough surfaces, Phys. Rev. B 38, 2297–2311 (1988).Google Scholar
  74. 74.
    V. Holý, U. Pietsch, and T. Baumbach, High Resolution X-Ray Scattering from Thin Films and Multilayers, Springer-Verlag, Berlin, 1999.Google Scholar
  75. 75.
    I. Kegel, H. Metzger, A. Lorke, J. Peisl, A. Stangl, G. Bauer, and K. Nordlund, Determination of strain fields and composition of self-organized quantum dots using x-ray diffraction, Phys. Rev. B 63, 035318 (2001).Google Scholar
  76. 76.
    A. Malachias, S. Kycia, G. Medeiros-Ribeiro, R. Magalhaes-Paniago, T. I. Kamins, and R. S. Williams, 3D composition of epitaxial nanocrystals by anomalous x-ray diffraction: Observation of a Si-rich core in Ge domes on Si(100), Phys. Rev. Lett. 91, 176, 101–17, 6104 (2003).Google Scholar
  77. 77.
    I. Kegel, H. Metzger, A. Lorke, J. Peisl, A. Stangl, G. Bauer, J. M. Garcia, and P. M. Petroff, Nanometer-scale resolution of strain and interdiffusion in self-assembled InAs/GaAs quantum dots, Phys. Rev. Lett. 85, 1694–1697 (2000).Google Scholar
  78. 78.
    O. G. Schmidt, U. Denker, S. Christiansen, and F. Ernst, Composition of self-assembled Ge/Si islands in single and multiple layers, Appl. Phys. Lett. 81, 2614–2616 (2002).Google Scholar
  79. 79.
    O. G. Schmidt and K. Eberl, Multiple layers of self-asssembled Ge/Si islands: Photo-luminescence, strain fields, material interdiffusion, and island formation, Phys. Rev. B 61, 13, 721–13, 729 (2000).Google Scholar
  80. 80.
    Y. Chen and J. Washburn, Structural transition in large-lattice-mismatch heteroepitaxy, Phys. Rev. Lett. 77, 4046–4049 (1996).Google Scholar
  81. 81.
    T. Ide, A. Sakai, and K. Shimizu, Nanometer-scale imaging of strain in Ge island on Si(001) surface, Thin Solid Films 357, 22–25 (1999).Google Scholar
  82. 82.
    P. Raiteri, L. Miglio, F. Valentinotti, and M. Celino, Strain maps at the atomic scale below Ge pyramids and domes on a Si substrate, Appl. Phys. Lett. 80, 3736–3738 (2002).Google Scholar
  83. 83.
    H. Gao, Some general properties of stress-driven surface evolution in a heteroepitaxial thin film structure, J. Mech. Phys. Solids 42, 741–772 (1994).Google Scholar
  84. 84.
    K.-N. Tu, J. W. Mayer, and L. C. Feldman, Electronic Thin Film Science for Electrical Engineers and Materials Scientists. Appendix E, Macmillan, New York, 1992.Google Scholar
  85. 85.
    A. Ponchet, A. Rocher, J.-Y. Emery, C. Starck, and L. Goldstein, Lateral modulations in zero-net-strained GaιnAsP multilayers grown by gas source molecular-beam epitaxy, J. Appl. Phys. 74, 3778–3782 (1993).Google Scholar
  86. 86.
    T. Marschner, S. Lutgen, M. Volk, W. Stolz, E. O. Göbel, N. Y Jin-Phillipp, and F. Phillipp, Strain-induced changes in epitaxial layer morphology of highly-strained III/V semiconductor heterostructures, Superlattices Microstruct. 15, 183–186 (1994).Google Scholar
  87. 87.
    T. Walther, C. J. Humphreys, A. G. Cullis, and D. J. Robbins, A correlation between compositional fluctuations and surfaces undulations in strained layer epitaxy, in: Proceedings of the 18th International Conference on Defects in Semiconductors, Trans Tech Publications, Sendai, Japan, 1995, Vol. 196–201, pp. 505–510.Google Scholar
  88. 88.
    T. Spila, P. Desjardins, A. Vaiionis, H. Kim, N. Taylor, D. G. Cahill, J. E. Greene, S. Guillon, and R. A. Masut, Hydrogen-mediated quenching of strain-induced surface roughening during gas-source molecular beam epitaxy of fully-coherent Si0.7Ge0.3 layers on Si(001), J. Appl. Phys 91, 3579–3588 (2002).Google Scholar
  89. 89.
    A. G. Cullis, D. J. Robbins, S. J. Barnett, and A. J. Pidduck, Growth ripples upon strained SiGe epitaxial layers on Si and misfit dislocation interactions, J. Vac. Sci. Technol. A 12, 1924–1931 (1994).Google Scholar
  90. 90.
    J. Tersoff, Y H. Phang, Z. Zhang, and M. G. Lagally, Step-bunching instability of vicinal substrates under stress, Phys. Rev. Lett. 75, 2730–2733 (1995).Google Scholar
  91. 91.
    D. E. Jesson, S. J. Pennycook, J.-M. Baribeau, and D. C. Houghton, Direct imaging of surface cusp evolution during straine-layer epitaxy and implications for strained relaxation, Phys. Rev. Lett. 71, 1744–1747 (1993).Google Scholar
  92. 92.
    E. Sutler, P. Sutler, and L. Vescan, Organization of self-assembled quanlum dots in SiGe/Si multilayers: Effecl of strain and subslrale curvalure, Mater. Sci. Eng. B 89, 196–200 (2002).Google Scholar
  93. 93.
    E. Maleeva, P. Suller, and M. G. Lagally, Sponlaneous self-embedding of three-dimensional SiGe islands, Appl. Phys. Lett. 74, 567–569 (1999).Google Scholar
  94. 94.
    V. Le Thanh and V. Yam, Superlallices of self-assembled Ge/Si(001) quanlum dots, Appl. Surf. Sci. 212–213, 296–304 (2003).Google Scholar
  95. 95.
    E. Maleeva, P. Suller, J. C. Bean, and M. G. Lagally, Mechanism of organization of three-dimensional islands in SiGe/Si multilayers, Appl. Phys. Lett. 71, 3233–3235 (1997).Google Scholar
  96. 96.
    B. Teichert, M. G. Lagally, L. J. Peticolas, J. C. Bean, and J. Tersoff, Stress-induced self-organization of nanoscale structures in SiGe/Si multilayer films, Phys. Rev. B 53, 16, 334–16, 337 (1996).Google Scholar
  97. 97.
    J.-M. Baribeau, A. Delâge, S. Janz, H. Lafontaine, D. J. Lockwood, J. P. McCaffrey, S. Moisa, N. L. Rowell, and D.-X. Xu, Wavy SiGe/Si superlattices: Structural and optical properites and application to near infrared light detection, in: Advanced Luminescent Materials and Quantum Confinement, edited by M. Cahay, S. Bandyopadhyay, D. J. Lockwood, J.P. Leburton, N. Koshida, M. Meyyappan, and T. Sakamoto, The Electrochemical Society, Pennington, NJ (USA), 1999, Vol. PV 99–22, pp. 45–61.Google Scholar
  98. 98.
    J.-M. Baribeau, D. J. Lockwood, M. W. C. Dharma-wardana, N. L. Rowell, and J. P. McCaffrey, Growth and characterization of Si-Ge atomic layer superlattices, Thin Solid Films 183, 17–24 (1989).Google Scholar
  99. 99.
    J.-M. Baribeau, T. E. Jackman, D. C. Houghton, P. Maigné, and M. W. Denhoff, Growth and characterization of Si/GexSi1-x and Ge epilayers on (100) Si, J. Appl. Phys. 63, 5738–5740 (1988).Google Scholar
  100. 100.
    H. Lafontaine, D. C. Houghton, B. Bahierathan, D. D. Perovic, and J.-M. Baribeau, Si1-xGex critical thickness for surface wave generation during UHV-CVD growth at 525 degrees C, in: Evolution of Epitaxial Structure and Morphology, edited by A. Zangwill, D. Jesson, D. Chambliss, and R. Clarke, Material Research Society, Philadelphia, 1996, Vol. 399, pp. 413–418.Google Scholar
  101. 101.
    H. Lafontaine, D. C. Houghton, D. Elliott, N. L. Rowell, J.-M. Baribeau, S. Lafram-boise, G. I. Sproule, and S. J. Rolfe, Characterization of Si1-xGex epi-layers grown using a commercially available UHV-CVD reactor, J. Vac. Sci. Technol. B 14, 1675–1681 (1996).Google Scholar
  102. 102.
    H. K. Shin, D. J. Lockwood, and J.-M. Baribeau, Strain in coherent-wave SiGe/Si superlattices, Solid State Commun. 114, 505–510 (2000).Google Scholar
  103. 103.
    O. G. Schmidt, N. Y. Jin-Phillipp, C. Lange, U. Denker, K. Eberl, R. Schreiner, H. Grabeldinger, and H. Schweizer, Long-range ordered lines of self-assembled Ge islands on a flat Si(001) surface, Appl. Phys. Lett. 77, 4139–4141 (2000).Google Scholar
  104. 104.
    J. Stangl, T. Roch, G. Bauer, I. Kegel, T. H. Metzger, O. G. Schmidt, K. Eberl, O. Kienzle, and F. Ernst, Vertical correlation of SiGe islands in SiGe/Si superlattices: X-ray diffraction versus transmission electron microscopy, Appl. Phys. Lett. 77, 3953–3955 (2000).Google Scholar
  105. 105.
    J. Tersoff, C. Teichert, and M. G. Lagally, Self-organization in growth of quantum dot superlattices, Phys. Rev. Lett. 76, 1675–1678 (1996).Google Scholar
  106. 106.
    J.-M. Baribeau, Interface morphology and relaxation in high temperature grown Si1-xGex/Si superlattices, J. Cryst. Growth 157, 52–56 (1995).Google Scholar
  107. 107.
    J.-M. Baribeau, X-ray double-crystal characterization of molecular beam epitaxially grown Si/Si1-xGex strained-layer superlattices, Appl. Phys. Lett. 52, 105–107 (1988).Google Scholar
  108. 108.
    J.-M. Baribeau, D. J. Lockwood, and R. W. G. Syme, Interfaces in Si/Ge atomic layer superlattices on (001) Si: Effect of growth temperature and wafer misorientation, J. Appl. Phys. 80, 1450–1459 (1996).Google Scholar
  109. 109.
    J.-M. Baribeau, X-ray scattering analysis of interface roughness and diffusion, J. Vac. Sci. Technol. B 16, 1568–1574 (1998).Google Scholar
  110. 110.
    Y. H. Phang, C. Teichert, M. G. Lagally, L. J. Peticolas, J. C. Bean, and E. Kasper, Correlated-interfacial-roughness anisotropy in Si1-xGex/Si superlattices, Phys. Rev. B 50, 14, 435–14, 445 (1994).Google Scholar
  111. 111.
    S. Fukatsu, H. Sunamura, Y. Shiraki, and S. Komiyama, Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot, Appl. Phys. Lett. 71, 258–260 (1997).Google Scholar
  112. 112.
    I. Kegel, H. Metzger, J. Peisl, J. Stangl, G. Bauer, and D. Smilgies, Vertical alignment of multilayers quantum dots studied by x-ray grazing-incidence diffraction, Phys. Rev. B 60, 2516–2521 (1999).Google Scholar
  113. 113.
    W. Hayes and R. Loudon, Light Scattering in Solids, Wiley, New York, 1978.Google Scholar
  114. 114.
    J. Menéndez, Characterization of bulk semiconductors using Raman spectroscopy, in: Raman Scattering in Materials Science, edited by W. H. Weber and R. Merlin, Springer-Verlag, Berlin, 2000, pp. 55–103.Google Scholar
  115. 115.
    Z. R. Wasilewski, M. M. Dion, D. J. Lockwood, P. Poole, R. W. Streater, and A. J. SpringThorpe, Composition of AlGaAs, J. Appl. Phys. 81, 1883–1694 (1997).Google Scholar
  116. 116.
    D. J. Lockwood, R. Radomski, and Z. R. Wasilewski, Raman study of phonons in Ga1-xAlx As, J. Raman Spectrosc. 33, 202–206 (2002).Google Scholar
  117. 117.
    T. Ruf, Phonon Raman Scattering in Semiconductors, Quantum Wells and Superlat-tices, Springer-Verlag, Berlin, 1998.Google Scholar
  118. 118.
    D. J. Lockwood, H. X. Xu, and J.-M. Baribeau, Lattice vibrations of Si1-xCx epilayers on Si(100), Phys. Rev. B 68, 115, 308 (2003).Google Scholar
  119. 119.
    D. J. Lockwood and J.-M. Baribeau, Strain shift coefficients for phonons in Si1-xGex epilayers, Phys. Rev. B 45, 8565–8571 (1992).Google Scholar
  120. 120.
    J.-M. Baribeau and D. J. Lockwood, Strain shift coefficients for phonons in Si-Ge heterostructures, in: Thin Films, Stresses and Mechanical Properties III, edited by W. D. Nix, J. C. Bravman, E. Artz, and L. B. Freund, Materials Research Society, Boston, 1992, Vol. 239, pp. 449–454.Google Scholar
  121. 121.
    M. A. Renucci, J. B. Renucci, and M. Cardona, in: Light Scattering in Solids, edited by M. Balkanski, Flammarion, Paris, 1971, pp. 326–329.Google Scholar
  122. 122.
    W. J. Brya, Raman scattering in GeSi alloys, Solid State Commun. 12, 253–257 (1973).Google Scholar
  123. 123.
    T. Ishidate, S. Katagiri, K. Inoue, M. Shibuya, K. Tsuji, and S. Minomura, Lattice vibrational properties of crystalline Si-Ge alloys, J. Phys. Soc. Jpn. 53, 2584–2591 (1984).Google Scholar
  124. 124.
    M. I. Alonso and K. Winer, Raman spectra of C-Si1-xGex alloys, Phys. Rev. B 39, 10, 056–10,062 (1989).Google Scholar
  125. 125.
    Y. S. Tang, C. M. Sotomayer Torres, B. Dietrich, W. Kessinger, T. E. Whall, and E. H. C. Parker, Raman spectroscopy of dry etched Si-Si1-xGex quantum dots, Solid State Commun. 94, 369–372 (1995).Google Scholar
  126. 126.
    A. B. Talochkin, V. A. Markov, S. P. Suprun, and A. I. Nikiforov, Raman scattering of light by optical phonons in Si-Ge-Si structures with quantum dots, JETP Lett. 64, 219–224 (1996).Google Scholar
  127. 127.
    X. Wang, Z.-M. Jiang, H. J. Zhu, D. Huang, X. Liu, C. W. Hu, Y. Chen, Z. Zhu, and T. Yao, Germanium dots with high uniform size distribution grown on Si(100) substrate by molecular beam epitaxy, Appl Phys. Lett. 71, 3543–3545 (1997).Google Scholar
  128. 128.
    A. A. Darhuber, T. Grill, A. Stangl, G. Bauer, D. J. Lockwood, J.-P. Noël, P. D. Wang, and C. M. Sotomayer Torres, Elastic relaxation of dry-etched Si/SiGe quantum dots, Phys. Rev. B 58, 4825–831 (1998).Google Scholar
  129. 129.
    S. H. Kwok, P. Y. Yu, C. H. Tung, Y. H. Zhang, M. F. Li, C. S. Peng, and J. M. Zhou, Confinement and electron–phonon interactions of the e1 exciton in self-organized Ge quantum dots, Phys. Rev. B 59, 4980–4984 (1999).Google Scholar
  130. 130.
    J. L. Liu, Y. S. Tang, K. L. Wang, T. Radetic, and R. Gronsky, Raman scattering from a self-organized Ge dot superlattice, Appl. Phys. Lett. 74, 1863–1865 (1999).Google Scholar
  131. 131.
    A. B. Talochkin, V. A. Markov, A. I. Nikiforov, and S. A. Tiis, Optical phonon spectrum of germanium quantum dots, JETP Lett. 70, 288–293 (1999).Google Scholar
  132. 132.
    J. H. Zhu, C. Meisner, K. Brunner, and G. Abstreiter, Strain relaxation of faceted Ge islands on Si (113), Appl. Phys. Lett. 75, 2395–2397 (1999).Google Scholar
  133. 133.
    A. V. Kolobov and K. Tanaka, Comment on “Raman scattering from a self-organized Ge dot super-lattice” [Appl. Phys. Lett. 74, 1863 (1999)], Appl. Phys. Lett. 75, 3572–3573 (1999).Google Scholar
  134. 134.
    J. L. Liu, G. Jin, Y. S. Tang, Y. H. Luo, K. L. Wang, and D. P. Yu, Optical and acoustic phonon modes in self-organized Ge quantum dot superlattices, Appl. Phys. Lett. 76, 586–588 (2000).Google Scholar
  135. 135.
    A. V. Kolobov, Raman scattering from ge nanostructures grown on Si substrates: Power and limitations, J. Appl. Phys. 87, 2926–2930 (2000).Google Scholar
  136. 136.
    J. L. Liu, G. Jin, Y. S. Tang, Y. H. Luo, K. L. Wang, and D. P. Yu, Study of phonons in self-organized multiple Ge quantum dots, J. Electron. Mater. 29, 554–556 (2000).Google Scholar
  137. 137.
    A. Milekhin, N. P. Stepina, A. I. Yakimov, S. Schulze, and D. R. T. Zahn, Raman scattering of ge dot superlattices, Eur. Phys. J. B 16, 355–359 (2000).Google Scholar
  138. 138.
    P. Y. Yu, Comment on “Optical and acoustic phonon modes in self-organized Ge quantum dot superlattices” [Appl. Phys. Lett. 76, 586 (2000)], Appl. Phys. Lett. 78, 1160–1161 (2001).Google Scholar
  139. 139.
    C. Guedj, A. Beyer, E. Müller, and D. Grützmacher, Raman spectroscopy of carbon-induced germanium dots, Appl. Phys. Lett. 78, 1742–1744 (2001).Google Scholar
  140. 140.
    A. Milekhin, N. P. Stepina, A. I. Yakimov, A. I. Nikiforov, S. Schulze, and D. R. T. Zahn, Raman scattering study of Ge dot superlattices, Appl. Surf. Sci. 175–176, 629–635 (2001).Google Scholar
  141. 141.
    M. Cazayous, J. Groenen, J. R. Huntzinger, A. Mlayah, and O. G. Schmidt, Spatial correlations and Raman scattering interferences in self-asembled quantum dot multilayers, Phys. Rev. B 64, 033306 (2001).Google Scholar
  142. 142.
    A. G. Milekhin, A. I. Nikiforov, O. P. Pchelyakov, S. Schulze, and D. R. T. Zahn, Phonons in Ge/Si superlattices with Ge quantum dots, JETP Lett. 73, 461–464 (2001).Google Scholar
  143. 143.
    J. Wan, Y. H. Luo, Z. M. Jiang, G. Jin, J. L. Liu, X. Z. Liao, K. L. Wang, and J. Zou, Ge/Si interdiffusion in GeSi dots and wetting layers, J. Appl. Phys. 90, 4290–4292 (2001).Google Scholar
  144. 144.
    A. G. Milekhin, A. I. Nikiforov, O. P. Pchelyakov, S. Schulze, and D. R. T. Zahn, Phonons in self-assembled Ge/Si structures, Physica E 13, 982–985 (2002).Google Scholar
  145. 145.
    A. V. Kolobov, H. Oyanagi, K. Brunner, G. Abstreiter, Y. Maeda, A. A. Shklyaev, S. Yamasaki, M. Ichikawa, and K. Tanaka, Effect of the interface on the local structure of Ge-Si nanostructures, J. Vac. Sci. Technol. A 20, 1116–1119 (2002).Google Scholar
  146. 146.
    A. V. Kolobov, K. Morita, K. M. Itoh, and E. E. Haller, A raman scattering study of self-assembled pure isotope Ge/Si(100) quantum dots, Appl. Phys. Lett. 81, 3855–3857 (2002).Google Scholar
  147. 147.
    S.-F. Ren and W. Cheng, Calculations of surface effects on phonon modes and Raman intensities of Ge quantum dots, Phys. Rev. B 66, 205, 328 (2002).Google Scholar
  148. 148.
    J. L. Liu, J. Wan, Z. M. Jiang, A. Khitun, K. L. Wang, and D. P. Yu, Optical phonons in self-assembled Ge quantum dot superlattices: Strain relaxation effects, J. Appl. Phys. 92, 6804–6808 (2002).Google Scholar
  149. 149.
    Y. Darma, H. Murakami, and S. Miyazaki, Formation of nanometer silicon dots with germanium core by highly-selective pressure chemical vapor deposition, Jpn. J. Appl. Phys. 42, 4129–4133 (2003).Google Scholar
  150. 150.
    P. H. Tan, K. Brunner, D. Bougeard, and G. Abstreiter, Raman characterization of strain and composition in small self-assembled Si/Ge dots, Phys. Rev. B 68, 125, 302 (2003).Google Scholar
  151. 151.
    B. V. Kamenev, H. Grebel, L. Tsybeskov, T. I. Kamins, R. S. Williams, J. M. Baribeau, and D. J. Lockwood, Polarized Raman scattering and localized embedded strain in self-organized Si/Ge nanostructures, Appl. Phys. Lett. 83, 5035–5037 (2003).Google Scholar
  152. 152.
    B. V. Kamenev, L. Tsybeskov, J.-M. Baribeau, and D. J. Lockwood, Photoluminescence and Raman scattering in three-dimensional Si/Si1-xGex nanostructures, Appl. Phys. Lett. 84, 1293–1295 (2004).Google Scholar
  153. 153.
    Z. Yang, Y. Shi, B. Yan, Z. X. Huang, L. Pu, Y. D. Zheng, and K. L. Wang, Strain and phonon confinement in self-assembled Ge quantum dot superlattices, Chin. Phys. Lett. 20, 2001–2003 (2003).Google Scholar
  154. 154.
    M. W. C. Dharma-wardana, G. C. Aers, D. J. Lockwood, and J.-M. Baribeau, Interpretation of raman spectra of GeSi ultrathin superlattices, Phys. Rev. B 41, 5319–5331 (1990).Google Scholar
  155. 155.
    J. P. Dismukes, L. Ekstrom, and R. J. Paff, Lattice parameter and density in germanium-silicon alloys, J Phys. Chem. 68, 3021–3027 (1964).Google Scholar
  156. 156.
    H. D. Fuchs, C. H. Grein, M. I. Alonso, and M. Cardona, High-resolution Raman spectroscopy of Ge-rich C-Ge1-xSix alloys: Features of the Ge-Ge vibrational modes, Phys. Rev. B 44, 13, 120–13, 123 (1991).Google Scholar
  157. 157.
    A. B. Talochkin and S. A. Teys, Optical phonons in Ge quantum dots obtained on Si (111), JETP Lett. 75, 264–267 (2002).Google Scholar
  158. 158.
    D. J. Lockwood, J.-M. Baribeau, T. E. Jackman, P. Aebi, T. Tyliszczak, A. P. Hitchcock, and R. L. Headrick, Influence of annealing on the interface structure and strain relief in Si/Ge heterostructures on (100) Si, Scanning Microsc., 457–471 (1993).Google Scholar
  159. 159.
    D. J. Lockwood, M. W. C. Dharma-wardana, J.-M. Baribeau, and D. C. Houghton, Folded acoustic phonons in Si/GexSi1-x strained-layer superlattices, Phys. Rev. B 35, 3243–3251 (1987).Google Scholar
  160. 160.
    P. H. Tan, D. Bougeard, G. Abstreiter, and K. Brunner, Raman scattering of folded acoustic phonons in self-assembled Si/Ge dot superlattices, Appl. Phys. Lett. 84, 2632–2634 (2004).Google Scholar
  161. 161.
    O. L. Lazarenkova and A. A. Balandin, Raman scattering from three-dimensionally regimented quantum dot superlattices, Superlattices Microstruct. 33, 95–101 (2003).Google Scholar
  162. 162.
    L. Hoffman, J. C. Bach, B. B. Nielsen, P. Leary, R. Jones, and S. Oberg, Substitutional carbon in germanium, Phys. Rev. B 55, 11, 167–11, 173 (1997).Google Scholar
  163. 163.
    C. Guedj, J. Kolodzey, and A. Hairie, Structure and lattice dynamics of Ge1-, y Cy alloys using anharmonic Keating modeling, Phys. Rev. B 60, 15, 150–15, 153 (1999).Google Scholar
  164. 164.
    J.-P. Noël, N. L. Rowell, D. C. Houghton, and D. D. Perovic, Intense photolumines-cence between 1.3 and 1.8 mm from strained Si1-xGex alloys, Appl. Phys. Lett 57, 1037–1039 (1990).Google Scholar
  165. 165.
    R. Apetz, L. Vescan, A. Hartmann, C. Dicker, and H. Luth, Photoluminescence and electroluminescence of SiGe dots fabricated by island growth, Appl. Phys. Lett. 66, 445–447 (1995).Google Scholar
  166. 166.
    Y. S. Tang, C. M. S. Torres, B. Dietrich, W. Kissinger, T. E. Whall, and E. H. C. Parker, Photoluminescence and raman spectroscopy of Si/Si1-xGex quantum dots, J. Cryst. Growth 157, 280–284 (1995).Google Scholar
  167. 167.
    Y. S. Tang, W.-X. Ni, C. M. Sotomayor Torres, and G. V. Hansson, Fabrication and characterisation of Si-Si0.7Ge0.3 quantum dot light emitting diodes, Electron. Lett. 31, 1385–1386 (1995).Google Scholar
  168. 168.
    Y. S. Tang, C. M. Sotomayor Torres, W. X. Ni, and G. V. Hansson, Room temperature electroluminescence of nanofabricated Si-Si1-xGex quantum dot diodes, Superlattices Microstruct. 20, 505–511 (1996).Google Scholar
  169. 169.
    J. C. Sturm, H. Manoharan, L. C. Lenchyshyn, M. L. W. Thewalt, N. L. Rowell, J.-P. Noël, and D. C. Houghton, Well-resolved band-edge photoluminescence of excitons confined in strained Si1-xGex quantum wells, Phys. Rev. Lett. 66, 1362–1365 (1991).Google Scholar
  170. 170.
    H. Sunamura, Y. Shiraki, and S. Fukatsu, Growth mode transition and photolumines-cence properties of Si1-xGex/Si quantum well structures with high Ge composition, Appl. Phys. Lett. 66, 953–955 (1995).Google Scholar
  171. 171.
    H. Sunamura, N. Usami, Y. Shiraki, and S. Fukatsu, Island formation during growth of Ge on Si(100): A study using photoluminescence spectroscopy, Appl. Phys. Lett. 66, 3024–3026 (1995).Google Scholar
  172. 172.
    Y. S. Tang, S. E. Hicks, W. X. Ni, C. M. Sotomayor Torres, G. V. Hansson, and C. D. W. Wilkinson, Controlling the strain and light emission from Si-Si1-xGex quantum dots, Thin Solid Films 294, 304–307 (1997).Google Scholar
  173. 173.
    O. G. Schmidt, U. Denker, K. Eberl, O. Kienzle, and F. Ernst, Effect of overgrowth temperature on the photoluminescence of Ge/Si islands, Appl. Phys. Lett. 77, 2509–2511 (2000).Google Scholar
  174. 174.
    O. G. Schmidt, C. Lange, K. Eberl, O. Kienzle, and F. Ernst, Formation of carbon-induced germanium dots, Appl. Phys. Lett. 71, 2340–2342 (1997).Google Scholar
  175. 175.
    K. Terashima, M. Tajima, and T. Tatsumi, Near-band-gap photoluminescence of Si1-xGex alloys grown on Si(100) by molecular beam epitaxy, Appl. Phys. Lett. 57, 1925–1927 (1990).Google Scholar
  176. 176.
    D. V. Lang, R. People, J. C. Bean, and A. M. Sergent, Measurement of the band gap of GexSi1-x/Si strained-layer heterostructures, Appl. Phys. Lett. 47, 1333–1335 (1985).Google Scholar
  177. 177.
    X. Xiao, C. W. Liu, J. C. Sturm, L. C. Lenchyshyn, M. L. W Thewalt, R. B. Gregory, and P. Fejes, Quantum confinement effects in strained silicon-germanium alloy quantum wells, Appl. Phys. Lett. 60, 2135–2137 (1992).Google Scholar
  178. 178.
    D. J. Robbins, L. T. Canham, S. J. Barnett, A. D. Pitt, and P. Calcott, Near-band-gap photoluminescence from pseudomorphic Si1-xGex single layers on Silicon, J. Appl. Phys. 71, 1407–1414 (1992).Google Scholar
  179. 179.
    D. Dutartre, G. Brémond, A. Souifi, and T. Benyattou, Excitonic photoluminescence from Si-capped strained Si1-xGex layers, Phys. Rev. B 44, 11, 525–11, 527 (1991).Google Scholar
  180. 180.
    N. L. Rowell, J.-P. Noël, D. C. Houghton, A. Wang, L. C. Lenchyshyn, M. L. W Thewalt, and D. D. Perovic, Exciton luminescence in Si1-xGex/Si heterostructures grown by molecular beam epitaxy, J. Appl. Phys. 74, 2790–2805 (1993).Google Scholar
  181. 181.
    S. Fukatsu, H. Sunamura, Y. Shiraki, and S. Komiyama, Suppression of phonon replica in the radiative recombination of an MBE-grown type-II Ge/Si quantum dot, Thin Solid Films 321, 65–69 (1998).Google Scholar
  182. 182.
    P. Boucaud, V. L. Thanh, S. Sauvage, D. Debarre, D. Bouchier, and J.-M. Lourtioz, Photoluminescence of self-assembled Ge dots grown by ultra-high-vacuum chemical vapor deposition, Thin Solid Films 336, 240–243 (1998).Google Scholar
  183. 183.
    M. Goryll, L. Vescan, and H. Luth, Morphology and photoluminescence of Ge islands grown on Si(001), Thin Solid Films 336, 244–247 (1998).Google Scholar
  184. 184.
    O. G. Schmidt, C. Lange, and K. Eberl, Photoluminescence study of the 2D-3D growth mode changeover for different Ge/Si island phases, Phys. Stat. Solidi (b) 215, 319–324 (1999).Google Scholar
  185. 185.
    O. G. Schmidt, C. Lange, and K. Eberl, Photoluminescence study of the initial stages of island formation for Ge pyramids/domes and hut clusters on Si(001), Appl. Phys. Lett. 75, 1905–1907 (1999).Google Scholar
  186. 186.
    A. Beyer, E. Müller, H. Sigg, S. Stutz, D. Grützmacher, O. Leifeld, and K. Ensslin, Size control of carbon-induced Ge quantum dots, Appl. Phys. Lett. 77, 3218–3220 (2000).Google Scholar
  187. 187.
    O. G. Schmidt, K. Eberl, and Y. Rau, Strain and band-edge alignment in single and multiple layers of self-assembled Ge/Si and GeSi/Si islands, Phys. Rev. B 62, 16, 715–16, 720 (2000).Google Scholar
  188. 188.
    N. Usami and Y. Shiraki, Optical investigation of modified Stranski-Krastanov growth mode in the stacking of self-assembled Ge islands, Thin Solid Films 369, 108–111 (2000).Google Scholar
  189. 189.
    F. Gao, C. J. Huang, D. D. Huang, J. P. Li, D. Z. Sun, M. Y. Kong, Y. P. Zeng, J. M. Li, and L. Y Lin, Changing the size and shape of Ge island by chemical etching, J. Cryst. Growth 231, 17–21 (2001).Google Scholar
  190. 190.
    L. Vescan, Ge nanostructures grown by self-assembly; influence of substrate orientation, J. Phys.: Condens. Matter 14, 8235–8252 (2002).Google Scholar
  191. 191.
    G. E. Cirlin, V. G. Talalaev, N. D. Zakharov, V. A. Erorov, and P. Werner, Room temperature superlinear power dependence of photoluminescence from defect-free Si/Ge quantum dot multilayer strucures, Phys. Stat. Solidi (b) 232 R1–R3 (2002).Google Scholar
  192. 192.
    I. Berbezier, A. Ronda, and A. Portavoce, SiGe nanostructures: New insights into growth processes, J. Phys. C 14, 8283–8331 (2002).Google Scholar
  193. 193.
    L. Vescan, T. Stoica, B. Holländer, A. Nassiopoulou, A. Olzierski, I. Raptis, and E. Sutter, Self-assembling of Ge on finite Si(001) areas comparable with the island size, Appl. Phys. Lett. 82, 3517–3519 (2003).Google Scholar
  194. 194.
    M. Larsson, A. Elfving, P.-O. Holtz, G. V. Hansson, and W.-X. Ni, Luminescence study of Si/Ge quantum dots, Physica E 16, 476–480 (2003).Google Scholar
  195. 195.
    A. G. Makarov, N. N. Ledentsov, A. F. Tsatsal’nikov, G. E. Cirlin, V. A. Egorov, V. M. Usinov, N. D. Zakharov, and P. Werner, Optical properties of structures with ultradense arrays of Ge QD’s in a Si matrix, Semiconductors 37, 210–214 (2003).Google Scholar
  196. 196.
    A. V. Novikov, D. N. Lobanov, A. N. Yablonsky, Y N. Drozdov, N. V. Vostokov, and Z. F. Krasilnik, Photoluminescence of Ge(Si)/Si(001) self-assembled islands in the near infra-red wavelength range, Physica E 16, 467–472 (2003).Google Scholar
  197. 197.
    F. Volpi, A. R. Peaker, I. D. Hawkins, M. P. Halsall, P. B. Kenway, A. Portavoce, A. Ronda, and I. Berbezier, Hole trapping in self-assembled SiGe quantum nanostructures, Mater. Sci. Eng. B 101, 338–344 (2003).Google Scholar
  198. 198.
    U. Denker, H. Sigg, and O. G. Schmidt, Intermixing in Ge hut cluster islands, Appl. Surf. Sci. 224, 127–133 (2004).Google Scholar
  199. 199.
    L. H. Nguyen, V. LeThanh, D. Debarre, V. Yam, M. Halbwax, M. El Kurdi, D. Bouch-ier, P. Rosner, M. Becker, M. Benamara, and H. P. Strunk, Selective epitaxial growth of ge quantum dots on patterned SiO2/Si(001) surfaces, Appl. Surf. Sci. 224, 134–138 (2004).Google Scholar
  200. 200.
    V. Yam, V. Le Thanh, D. Debarre, Y. Zheng, and D. Bouchier, Kinetics of Si capping process of Ge/Si(001) quantum dots, Appl. Surf. Sci. 224, 143–147 (2004).Google Scholar
  201. 201.
    W.-Y Chen, W.-H. Chang, A.-T. Chou, T.-M. Hsu, P.-S. Chen, Z. Pei, and L.-S. Lai, Optical properties of stacked Ge/Si quantum dots with different spacer thickness grown by chemical vapor deposition, Appl. Surf. Sci. 224, 148–151 (2004).Google Scholar
  202. 202.
    L. H. Nguyen, V. Le Thanh, D. Debarre, V. Yam, and D. Bouchier, Selective growth of ge quantum dots on chemically prepared SiO2/Si(001) surfaces, Mater. Sci. Eng. B 101, 199–203 (2003).Google Scholar
  203. 203.
    L. H. Nguyen, T. K. Nguyen-Duc, V. LeThanh, F. A. d’Avitaya, and J. Derrien, Growth and optical properties of Ge/Si quantum dots formed on patterned SiO2/Si(001) substrates, Physica E 23, 471–475 (2004).Google Scholar
  204. 204.
    N. L. Rowell, J.-P. Noël, D. C. Houghton, and M. Buchanan, Electroluminescence and photoluminescence from Si1-xGex alloys, Appl. Phys. Lett. 58, 957–958 (1991).Google Scholar
  205. 205.
    J.-P. Nël, N. L. Rowell, D. C. Houghton, A. Wang, and D. D. Perovic, Luminescence origins in molecular beam epitaxial Si1-xGex, Appl. Phys. Lett. 61, 690–692 (1992).Google Scholar
  206. 206.
    U. Denker, M. Stoffel, O. G. Schmidt, and H. Sigg, Ge hut cluster luminescence below bulk Ge band gap, Appl. Phys. Lett. 82, 454–456 (2003).Google Scholar
  207. 207.
    P. Boucaud, S. Sauvage, M. El Kurdi, E. Mercier, T. Brunhes, V. L. Thanh, D. Bouchier, O. Kermarrec, Y. Campidelli, and D. Bensahel, Optical recombination from excited states in Ge/Si self-assembled quantum dots, Phys. Rev. B 64, 155, 310–155, 316 (2001).Google Scholar
  208. 208.
    B. V. Kamanev, J.-M. Baribeau, D. J. Lockwood, and L. Tsybeskov, Optical properties of Stranski-Krastanov grown three-dimensional Si/Si1-xGex nanostructures, Physica E 26, 174–179 (2005).Google Scholar
  209. 209.
    J.-P. Noël, N. L. Rowell, D. C. Houghton, A. Wang, and D. D. Perovic, Luminescence origins in molecular beam epitaxial Si1-xGex Appl. Phys. Lett. 61, 690–692 (1992).Google Scholar
  210. 210.
    O. Leifeld, E. Müller, D. Grützmacher, B. Müller, and K. Kern, In situ scanning tunneling microscopy study of C-induced Ge quantum dot formation on Si(100), Appl. Phys. Lett. 74, 994–996 (1999).Google Scholar
  211. 211.
    F. Ratto, F. Rosei, A. Locatelli, S. Cherifi, S. Fontana, S. Heun, P.-D. Szkutnik, A. Sgarlata, M. D. Crescenzi, and N. Motta, Composition of Ge(Si) islands in the growth of Ge on Si(111), Appl. Phys. Lett. 84, 4526–4528 (2004).Google Scholar
  212. 212.
    A. Sgarlata, P. D. Szkutnik, A. Balzarotti, N. Motta, and F. Rosei, Self-ordering of Ge islands on step-bunched Si(111) surfaces, Appl. Phys. Lett. 83, 4002–4004 (2003).Google Scholar
  213. 213.
    J.-P. Noël, N. L. Rowell, D. C. Houghton, and D. D. Perovic, Intense photolumines-cence between 1.3 and 1.8 mm from strained Si1-xGex alloys, Appl. Phys. Lett. 57, 1037–1039 (1990).Google Scholar
  214. 214.
    L. C. Lenchyshyn, M. L. W. Thewalt, J. C. Sturm, P. V. Schwartz, E. J. Prinz, N. L. Rowell, J.-P. Noël, and D. C. Houghton, High quantum efficiency photoluminescence from localized excitons in Si1-xGex, Appl. Phys. Lett. 60, 3174–3176 (1992).Google Scholar
  215. 215.
    P. L. Gourley and J. P. Wolfe, Thermodynamics of excitonic molecules in silicon, Phys. Rev. B 20, 3319–3327 (1979).Google Scholar
  216. 216.
    K. Eberl, O. G. Schmidt, R. Duschl, O. Kienzle, E. Ernst, and Y. Rau, Self-assembling SiGe and SiGeC nanostructures for light emitters and tunneling diodes, Thin Solid Films 369, 33–38 (2000).Google Scholar
  217. 217.
    K. Eberl, O. G. Schmidt, O. Kienzle, and F. Ernst, Preparation and optical properties of Ge and C-induced Ge quantum dots on Si, Thin Solid Films 373, 164–169 (2000).Google Scholar
  218. 218.
    J.-P. Noël, J. E. Greene, N. L. Rowell, and D. C. Houghton, Photoluminescence studies of Si(100) doped with low-energy (100–1000 eV) B+ ions during molecular beam epitaxy, Appl. Phys. Lett. 56, 265–267 (1990).Google Scholar
  219. 219.
    J.-P. Noël, J. E. Greene, N. L. Rowell, S. Kechang, and D. C. Houghton, Photoluminescence studies of Si(100) doped with low-energy (≤ 1000 eV) As+ ions during molecular beam epitaxy, Appl. Phys. Lett. 55, 1525–1527 (1989).Google Scholar
  220. 220.
    H. Lafontaine, N. L. Rowell, and S. Janz, Phonon-resolved photoluminescence at λ = 1.55 μm from undulating Si0.5Ge0.5 epitaxial layers, Appl. Phys. Lett. 72, 2430–2432 (1998).Google Scholar
  221. 221.
    O. Chrétien, T. Stoica, D. Dentel, E. Mateeva, and L. Vescan, Influence of the mesa size on Ge island electroluminescence properties, Semicond. Sci. Technol. 15, 920–925 (2000).Google Scholar
  222. 222.
    L. Vescan, O. Chrétien, T. Stoica, E. Mateeva, and A. Muck, Room-temperature light-emitting diodes with Ge islands, Mater. Sci. Semicond. Process. 3, 383–387 (2000).Google Scholar
  223. 223.
    Z. Pei, P. S. Chen, S. W. Lee, L. S. Lai, S. C. Lu, M.-J. Tsai, W. H. Chang, W. Y. Chen, A. T. Chou, and T. M. Hsu, Room temperature 1.3 and 1.5 mm electroluminescence from Si/Ge quantum dots (QDs)/Si multi-layers, Appl. Surf. Sci. 224, 165–169 (2004).Google Scholar
  224. 224.
    J.-P. Noël, J. E. Greene, N. L. Rowell, S. Kechang, and D. C. Houghton, Photoluminescence studies of Si(100) doped with low-energy (≤1000 eV) As+ ions during molecular beam epitaxy, Appl. Phys. Lett. 55, 1525–1527 (1989).Google Scholar
  225. 225.
    J.-P. Noël, J. E. Greene, N. L. Rowell, and D. C. Houghton, Photoluminescence studies of Si(100) doped with low-energy (100–1000 eV) B+ ions during molecular beam epitaxy, Appl. Phys. Lett. 56, 265–267 (1990).Google Scholar
  226. 226.
    D. C. Houghton, Misfit dislocation dynamics in Si1-xGex/(100) Si: Uncapped alloy layers, buried strained layers, and multiple quantum wells, Appl. Phys. Lett. 57, 1434–1436 (1990).Google Scholar
  227. 227.
    K. Sakamoto, H. Matsuhata, M. O. Tanner, D. Wang, and K. L. Wang, Alignment of Ge three-dimensional islands on faceted Si(001) surfaces, Thin Solid Films 321, 55–59 (1998).Google Scholar
  228. 228.
    F. Liu, J. Tersoff, and M. G. Lagally, Self-organization of steps in growth of strained films on vicinal substrates, Phys. Rev. Lett. 80, 1268–1271 (1998).Google Scholar
  229. 229.
    J.-H. Zhu, K. Brunner, and G. Abstreiter, Two-dimensional ordering of self-assembled Ge islands on vicinal Si(001) surfaces with regular ripples, Appl. Phys. Lett. 73, 620–622 (1998).Google Scholar
  230. 230.
    Y. H. Xie, S. B. Samavedam, M. Bulsara, T. A. Langdo, and E. A. Fitzgerald, Relaxed template for fabricating regularly distributed quantum dot arrays, Appl. Phys. Lett. 71, 3567–3568 (1997).Google Scholar
  231. 231.
    C. Teichert, C. Hofer, K. Lyutovich, M. Bauer, and E. Kasper, Interplay of dislocation network and island arrangement in SiGe films grown on Si(001), Thin Solid Films 380, 25–28 (2000).Google Scholar
  232. 232.
    F. Leroy, J. Eymery, P. Gentile, and F. Fournel, Ordering of Ge quantum dots with buried Si dislocation networks, Appl. Phys. Lett. 80, 3078–3080 (2002).Google Scholar
  233. 233.
    S. Y. Shiryaev, E. V. Pedersen, F. Jensen, J. W. Petersen, J. L. Hansen, and A. N. Larsen, Dislocation patterning: A new tool for spatial manipulation of Ge islands, Thin Solid Films 294, 311–314 (1997).Google Scholar
  234. 234.
    B. Voigtländer and N. Theuerkauf, Ordered growth of Ge islands above a misfit dislocation network in a Ge layer on Si (111), Surf. Sci. 461, L575–L580 (2000).Google Scholar
  235. 235.
    D. D. Perovic, G. C. Weatherly, P. J. Simpson, P. J. Schultz, T. E. Jackman, G. C. Aers, J. P. Noël, and D. C. Houghton, Microvoid formation in low-temperature molecular-beam-epitaxy-grown silicon, Phys. Rev. B 43, 14, 257–14, 260 (1991).Google Scholar
  236. 236.
    T. E. Jackman, G. C. Aers, J. P. McCaffrey, D. Britton, P. Willtzki, P. J. Schultz, P. J. Simpson, and P. Mascher, Depth profiling of defects in low-temperature MBE-grown silicon, in: Positron annihilation: Proceedings of the 9th International Conference on Positron Annihilation, edited by Z. Kajcsos and C. Szeles, Trans Tech Publications Inc., Zurich, 1992, Vol. 105–110, pp. 301–308.Google Scholar
  237. 237.
    J.-M. Baribeau, X. Wu, D. J. Lockwood, L. Tay, and G. I. Sproule, Low temperature Si growth on Si(001): Impurity incorporation and limiting thickness for epitaxy, J. Vac. Sci. Technol. B 22, 1479–1483 (2004).Google Scholar
  238. 238.
    G. Jin, J. L. Liu, S. G. Thomas, Y. H. Luo, K. L. Wang, and B.-Y. Nguyen, Controlled arrangement of self-organized Ge islands on patterned Si(001) substrates, Appl. Phys. Lett. 75, 2752–2754 (1999).Google Scholar
  239. 239.
    T. L. Kamins, D. A. A. Ohlberg, R. S. Williams, W. Zhang, and S. Y. Chou, Positioning of self-assembled, single-crystal, germanium islands by silicon nanoimprinting, Appl. Phys. Lett. 74, 1773–1775 (1999).Google Scholar
  240. 240.
    G. Jin, Cooperative arrangement of self-assembled Ge dots on pre-grown Si mesas, Thin Solid Films 380, 169–172 (2000).Google Scholar
  241. 241.
    G. Jin, Uniform and ordered self-assembled Ge dots on patterned Si substrates with selectively epitaxial growth technique, J. Cryst. Growth 227–228, 1100–1105 (2001).Google Scholar
  242. 242.
    T. I. Kamins and R. S. Williams, Lithographic positioning of self-assembled Ge islands on Si(001), Appl. Phys. Lett. 71, 1201–1203 (1997).Google Scholar
  243. 243.
    G. Jin, J. L. Liu, and K. L. Wang, Regimented placement of self-assembled Ge dots on selectively grown Si mesas, Appl. Phys. Lett. 76, 3591–3593 (2000).Google Scholar
  244. 244.
    A. R. Woll, P. Rugheimer, and M. G. Lagally, Strain engineering, self-assembly, and nanoarchitectures in thin SiGe films on Si, Mater. Sci. Eng. B 96, 94–101 (2002).Google Scholar
  245. 245.
    T. Kitajima, B. Liu, and S. R. Leone, Two-dimensional periodic alignment of self-assembled Ge islands on patterned Si(001) surfaces, Appl. Phys. Lett. 80, 497–499 (2002).Google Scholar
  246. 246.
    K. L. Wang, Self-assembled Ge quantum dots on Si and their applications, J. Cryst. Growth 237–239, 1892–1897 (2002).Google Scholar
  247. 247.
    Z. Zhong, A. Halilovic, M. Mühlberger, F. Schäffler, and G. Bauer, Positioning of self-assembled Ge islands on stripe-patterned Si(001) substrates, J. Appl. Phys. 93, 6258–6264 (2003).Google Scholar
  248. 248.
    Z. Zhong, A. Halilovic, M. Mühlberger, F. Schäffler, and G. Bauer, Ge island formation on stripe-patterned Si(001) substrates, Appl. Phys. Lett. 82, 445–447 (2003).Google Scholar
  249. 249.
    N. Deng, P. Chen, and Z. Li, Self-assembled SiGe islands with uniform shape and size by controlling Si concentration in islands, J. Cryst. Growth 263, 21–24 (2004).Google Scholar
  250. 250.
    Z. Zhong, A. Halilovic, T. Fromherz, F. Schäffler, and G. Bauer, Two-dimensional periodic positioning of self-assembled Ge islands on prepatterned Si(001) substrates, Appl. Phys. Lett. 82, 4779–4781 (2003).Google Scholar
  251. 251.
    Z. Zhong, A. Halilovic, M. Mählberger, F. Scüffler, and G. Bauer, Positioning of self-assembled Ge islands on stripe-patterned Si(001) substrates, J. Appl. Phys. 93, 6258–6264 (2003).Google Scholar
  252. 252.
    Z. Zhong, G. Chen, J. Stangl, T. Fromherz, F. Schäffler, and G. Bauer, Two-dimensional lateral ordering of self-assembled Ge islands on patterned substrates, Physica E 21, 315–320 (2004).Google Scholar
  253. 253.
    Z. Zhong, A. Halilovic, H. Lichtenberger, F. Schäffler, and G. Bauer, Growth of Ge islands on prepatterned Si(001) substrates, Physica E 23, 243–247 (2004).Google Scholar
  254. 254.
    J.-M. Baribeau, D. J. Lockwood, J. Balle, S. J. Rolfe, and G. I. Sproule, Si1-x-yGexCy alloy growth by electron cyclotron resonance plasma-assisted Si molecular beam epitaxy, Mater. Sci. Eng. B 89, 296–302 (2002).Google Scholar
  255. 255.
    J.-M. Baribeau, D. J. Lockwood, J. Balle, S. J. Rolfe, G. I. Sproule, and S. Moisa, Molecular beam epitaxy synthesis of Si1-yCyand Si1-x-yGexCy alloys and Ge islands using an electron cyclotron resonance argon/methane plasma, Thin Solid Films 410, 61–71 (2002).Google Scholar
  256. 256.
    O. G. Schmidt, C. Lange, K. Eberl, O. Kienzle, and F. Ernst, Formation of carbon-induced germanium dots, Appl. Phys. Lett. 71, 2340–2342 (1997).Google Scholar
  257. 257.
    O. G. Schmidt, S. Schieker, K. Eberl, O. Kienzle, and F. Ernst, Carbon-induced germanium dots: Kinetically-limited islanding process prevents coherent vertical alignment, Appl. Phys. Lett. 73, 59–61 (1998).Google Scholar
  258. 258.
    O. G. Schmidt, C. Lange, K. Eberl, and O. K. F. Ernst, C-induced Ge dots: A versatile tool to fabricate ultra-small Ge nanostructures, Thin Solid Films 336, 248–251 (1998).Google Scholar
  259. 259.
    D. Dentel, L. Vescan, O. Chretien, and B. Holländer, Influence of molecular hydrogen on Ge island nucleation on Si(001), J. Appl. Phys. 88, 5113–5118 (2000).Google Scholar
  260. 260.
    Y. Wakayama, L. V. Sokolov, N. Zakharov, P. Werner, and U. Gosele, Precise control of size and density of self-assembled Ge dot on Si(100) by carbon-induced strain-engineering, Appl. Surf. Sci. 216, 419–423 (2003).Google Scholar
  261. 261.
    X. Shao, R. Jonczyk, M. Dashiell, D. Hits, B. A. Orner, A.-S. Khan, K. Roe, J. Kolodzey, P. R. Berger, M. Kaba, M. A. Barteau, and K. M. Unruh, Strain modification in thin Si1-x-yGexCy alloys on (100) Si for formation of high density uniformly sized quantum dots, J. Appl. Phys. 85, 578–582 (1999).Google Scholar
  262. 262.
    D. Dentel, J. L. Bischoff, L. Kubler, M. Stoffel, and G. Castelein, Influence of a pre-deposited carbon submonolayer on the Ge island nucleation on Si(001), J. Appl. Phys. 93, 5069–5074 (2003).Google Scholar
  263. 263.
    O. Leifeld, A. Beyer, E. Müller, D. Grützmacher, and K. Kern, Nucleation of Ge quantum dots on the C-alloyed Si(001) surface, Thin Solid Films 380, 176–179 (2000).Google Scholar
  264. 264.
    K. Eberl, O. G. Schmidt, S. Schieker, N. Y. Jin-Phillipp, and F. Phillipp, Formation and optical properties of carbon-induced Ge dots, Solid-State Electron. 42, 1593–1597 (1998).Google Scholar
  265. 265.
    J. Y. Kim, S. H. Ihm, J. H. Seok, C. H. Lee, Y. H. Lee, E.-K. Suh, and H. J. Lee, Growth temperature dependence on the formation of carbon-induced Ge quantum dots, Thin Solid Films 369, 96–99 (2000).Google Scholar
  266. 266.
    A. Sakai and T. Tatsumi, Ge growth on Si using atomic hydrogen as a surfactant, Appl. Phys. Lett. 64, 52–54 (1994).Google Scholar
  267. 267.
    J.-M. Baribeau, D.J. Lockwood, R.W.G. Syme, H.-J. Labbé, and S. J. Rolfe, Proc. Mat. Res. Soc. Symp. 448, 113–118 (1997). Atomic hydrogen assisted growth of Si-Ge heterostructrues on (001) Si, in: Control of Semiconductor Surfaces and Interfaces, edited by S. M. Prokes, O. J. Glembocki, S. K. Brierley, J. M. Gibson, and J. M. Woodall, Materials Research Society, Pittsburgh, PA.Google Scholar
  268. 268.
    A. Portavoce, A. Ronda, and I. Berbezier, Sb-surfactant mediated growth of Ge nanos-tructures, Mater. Sci. Eng. B 89, 205–210 (2002).Google Scholar
  269. 269.
    A. Portavoce, F. Volpi, A. Ronda, P. Gas, and I. Berbezier, Sb segregation in Si and SiGe: Effect on the growth of self-organised Ge dots, Thin Solid Films 380, 164–168 (2000).Google Scholar
  270. 270.
    D. J. Eaglesham, F. C. Unterwald, and D. C. Jacobson, Growth morphology and the equilibrium shape; the role of “surfactants” in Ge/Si island formation, Phys. Rev. Lett. 70, 966–968 (1993).Google Scholar
  271. 271.
    T. L Kamins, G. Medeiros-Ribeiro, D. A. A. Ohlberg, and R. S. Williams, Annealing of phosphorus-doped Ge islands on Si(001), J. Appl. Phys. 95, 1562–1567 (2004).Google Scholar
  272. 272.
    L. Pavesi and D. J. Lockwood, Silicon Photonics, Springer, Heidelberg, 2004.Google Scholar
  273. 273.
    H. Lafontaine, N. L. Rowell, S. Janz, and D.-X. Xu, Growth of undulating Si0.5Ge0.5 layers for photodetectors at λ =1.55 μm, J. Appl Phys. 86, 1287–1291 (1999).Google Scholar
  274. 274.
    S. Janz, J.-M. Baribeau, D. J. Lockwood, J. P. McCaffrey, S. Moisa, N. L. Rowell, D.-X. Xu, H. Lafontaine, and M. R. T. Pearson, Si/Si1-xGex photodetectors using three-dimensional growth modes to enhance photoresponse at λ = 1550 nm, J. Vac. Sci. Technol. A 18, 588–592 (2000).Google Scholar
  275. 275.
    S. Tong, J. L. Liu, J. Wan, and K. L. Wang, Normal-incidence Ge quantum-dot photodetectors at 1.5 mm based on Si substrate, Appl. Phys. Lett. 80, 1189–1191 (2002).Google Scholar
  276. 276.
    B.-C. Hsu, S. T. Chang, T.-C. Chen, P.-S. Kuo, P. S. Chen, Z. Pei, and C. W Liu, A high efficient 820 nm MOS Ge quantum dot photodetector, IEEE Electron. Devices Lett. 24, 318–320 (2003).Google Scholar
  277. 277.
    A. Elfving, G. V. Hansson, and W.-X. Ni, SiGe (Ge-dot) heterojunction phototransis-tors for efficient light detection at 1.3–1.55 mm, Physica E 16, 528–532 (2003).Google Scholar
  278. 278.
    P. Boucaud, V. L. Thanh, S. Sauvage, D. Debarre, and D. Bouchier, Intraband absorption in Ge/Si self-assembled quantum dots, Appl. Phys. Lett. 74, 401–403 (1999).Google Scholar
  279. 279.
    C. Miesner, O. Rothig, K. Brunner, and G. Abstreiter, Intra-valence band photocurrent spectroscopy of self-assembled Ge dots in Si, Appl. Phys. Lett. 76, 1027–1029 (2000).Google Scholar
  280. 280.
    V. Le Thanh, V. Yam, P. Boucaud, Y. Zheng, and D. Bouchier, Strain-driven modification of the Ge/Si growth mode in stacked layers: A way to produce Ge islands having equal size in all layers, Thin Solid Films 369, 43–48 (2000).Google Scholar
  281. 281.
    A. I. Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, and Y. Y. Proskuryakov, Interlevel Ge/Si quantum dot infrared photodetector, J. Appl. Phys. 89, 5676–5681 (2001).Google Scholar
  282. 282.
    J. Konle, H. Presting, H. Kibbel, K. Thonke, and R. Sauer, Enhanced performance of silicon based photodetectors using silicon/germanium nanostructures, Solid-State Electron. 45, 1921–1925 (2001).Google Scholar
  283. 283.
    N. Rappaport, E. Finkman, P. Boucaud, S. Sauvage, T. Brunhes, V. Le Thanh, D. Bouchier, and S. E. Schacham, Photoconductivity of Ge/Si quantum dot photodetectors, Infrared Phys. Technol. 44, 513–516 (2003).Google Scholar
  284. 284.
    D. Buca, S. Winnerl, S. Lenk, C. Buchai, and D.-X. Xu, Fast time response from Si-SiGe undulating layer superlattices, Appl. Phys. Lett. 80, 4172–4174 (2002).Google Scholar
  285. 285.
    T. Fromherz, W. Mac, A. Hesse, G. Bauer, C. Miesner, K. Brunner, and G. Abstreiter, Intraband absorption and photocurrent spectroscopy of self-assembled p-type Si/SiGe quantum dots, Appl. Phys. Lett. 80, 2093–2095 (2002).Google Scholar
  286. 286.
    J. L. Liu, W. G. Wu, A. Balandin, G. L. Jin, and K. L. Wang, Intersubband absorption in boron-doped multiple Ge quantum dots, Appl. Phys. Lett. 74, 185–187 (1999).Google Scholar
  287. 287.
    A. I. Yakimov, A. V. Dvurechenskii, N. P. Stepina, and A. I. Nikiforov, Interlevel optical transitions and many-body effects in a dense array of Ge/Si quantum dots, Thin Solid Films 380, 82–85 (2000).Google Scholar
  288. 288.
    M. S. Kagan, I. V. Altukhov, V. P. Sinis, S. G. Thomas, K. L. Wang, K. A. Chao, and I. N. Yassievich, Terahertz emission of SiGe/Si quantum wells, Thin Solid Films 380, 237–239 (2000).Google Scholar
  289. 289.
    R. A. Soref, Silicon-based optoelectronics, Proc. IEEE 81, 1687–1706 (1993).Google Scholar
  290. 290.
    S. Luryi, A. Kastalsky, and J. C. Bean, New infrared detector on a silicon chip, IEEE Trans. Electron Devices 31, 1135–1139 (1984).Google Scholar
  291. 291.
    S. Fama, L. Colace, G. Masini, and G. Assanto, High performance germanium-on-silicon detectors for optical communications, Appl. Phys. Lett. 81, 586–588 (2002).Google Scholar
  292. 292.
    H. Temkin, T. P. Pearsall, J. C. Bean, R. A. Logan, and S. Luryi, GexSi1-x strained-layer superlattice waveguide photodetectors operating near 1.3 mm, Appl. Phys. Lett. 48, 963–965 (1986).Google Scholar
  293. 293.
    A. Spiett, T. Zinke, K. Petermann, E. Kasper, H. Kibbel, H.-J. Herzog, and H. Presting, Integration of waveguides and photodetectors in SiGe for l.3 mm operation, Photonics Technol. Lett. IEEE 6, 59–61 (1994).Google Scholar
  294. 294.
    S. B. Samavedam, M. T. Currie, T. A. Langdo, and E. A. Fitzgerald, High-quality germanium photodiodes integrated on silicon substrates using optimized relaxed graded buffers, Appl. Phys. Lett. 73, 2125–2127 (1998).Google Scholar
  295. 295.
    D. C. Houghton, Strain relaxation kinetics in Si1-xGex/Si heterostructures, J. Appl. Phys. 70, 2136–2151 (1991).Google Scholar
  296. 296.
    H. Lafontaine, D. C. Houghton, B. Bahierathan, D. D. Perovic, and J.-M. Baribeau, Si1-xGex critical thickness for surface wave generation during UHV-CVD growth at 525°C, in: Evolution of Expitaxial Structure and Morphology, edited by A. Zangwill, D. Jesson, D. Chambliss, and R. Clarke, Materials Research Society, Pittsburgh, PA, 1999, Vol. 399, pp. 413–418.Google Scholar
  297. 297.
    L. Tsybeskov and D. J. Lockwood, Quantum confinement in nanocrystalline silicon superlattices, Asian J. Phys. 9, 745–757 (2000).Google Scholar
  298. 298.
    D. J. Lockwood, Light emission in silicon, in: Silicon-Based Materials and Devices, edited by H. S. Nalwa, Academic, New York, 2001, Vol. 2, pp. 225–246.Google Scholar
  299. 299.
    L. Tsybeskov, K. D. Hirschman, S. P. Duttagupta, M. Zacharias, P. M. Fauchet, J. P. McCaffrey, and D. J. Lockwood, Nanocrystalline-silicon superlattice produced by controlled recrystallization, Appl. Phys. Lett. 72, 43–45 (1998).Google Scholar
  300. 300.
    T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J.-M. Lourtioz, C. Hernandez, Y. Campi-delli, O. Kermarrec, D. Bensahel, G. Faini, and I. Sagnes, Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition, Appl. Phys. Lett. 77, 1822–1824 (2000).Google Scholar
  301. 301.
    M. Stoffel, U. Denker, and O. G. Schmidt, Electroluminescence of self-assembled Ge hut clusters, Appl. Phys. Lett. 82, 3236–3238 (2003).Google Scholar
  302. 302.
    A. Alguno, N. Usami, T. Ujihara, K. Fujiwara, G. Sazaki, K. Nakajima, and Y. Shiraki, Enhanced quantum efficiency of solar cells with self-assembled Ge dots stacked in multilayer structure, Appl. Phys. Lett. 83, 1258–1260 (2003).Google Scholar
  303. 303.
    L. Naval, B. Jalali, L. Gomelsky, and J. M. Liu, Optimization of Si1-xGex/Si waveguide photodetectors operating at λ =1.3 μm, J. Lightwave Technol. 14, 787–797 (1996).Google Scholar
  304. 304.
    B. Jalali, L. Naval, and A. F. J. Levi, Si-based receivers for optical data links, J. Lightwave Technol. 12, 1930–1934 (1994).Google Scholar
  305. 305.
    M. El Kurdi, P. Boucaud, S. Sauvage, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, and I. Sagnes, Near-infrared waveguide photodetector with Ge/Si self-assembled quantum dots, Appl. Phys. Lett. 80, 509–511 (2002).Google Scholar
  306. 306.
    M. El Kurdi, P. Boucaud, S. Sauvage, G. Fishman, Y. C. O. Kermarrec, D. Bensahel, G. Saint-Girons, G. Patriarche, and I. Sagnes, Silicon-on-insulator and SiGe waveguide photodetectors with Ge/Si self-assembled islands, Physica E 16, 523–527 (2003).Google Scholar
  307. 307.
    S. Winnerl, D. Buca, S. Lenk, C. Buchai, S. Mantl, and D.-X. Xu, Fast IR Si/SiGe superlattice MSM photodetectors with buried CoSi2 contacts, Microelectron. Eng. 64, 205–209 (2002).Google Scholar
  308. 308.
    D.-X. Xu, S. Janz, H. Lafontaine, and M. R. T. Pearson, Photodetectors for 1.3 mm and 1.55 mm wavelengths using SiGe undulating MQW’s on SOI substrates, in: Proceedings of the SPIE Silicon-Based Optoelectronics, edited by D. C. Houghton and E. A. Fitzgerald, SPIE, San Jose, CA, 1999, Vol. 3630, pp. 50–57.Google Scholar
  309. 309.
    M. El Kurdi, P. Boucaud, S. Sauvage, G. Fishman, O. Kermarrec, Y Campidelli, D. Bensahel, G. Saint-Girons, G. Patriarche, and I. Sagnes, Silicon-on-insulator and SiGe waveguide photodetectors with Ge/Si self-assembled islands, Physica E 16, 523–527 (2003).Google Scholar
  310. 310.
    T. P. Pearsall, L. Colace, A. DiVergilio, W. Jäger, D. Stenkamp, G. Theodorou, H. Presting, E. Kasper, and K. Thonke, Spectroscopy of band-to-band optical transitions in Si-Ge alloys and superlattices, Phys. Rev. B 57, 9128–9140 (1998).Google Scholar
  311. 311.
    L. Colace, A. DiVergilio, S. Vaidyanathan, T. P. Pearsall, H. Presting, and E. Kasper, Photocurrent spectroscopy measurements of Si-Ge alloys and superlattices, Appl. Surf. Sci. 102, 272–278 (1996).Google Scholar
  312. 312.
    S. Winnerl, D. Buca, S. Lenk, C. Buchai, S. Mantl, and D.-X. Xu, MBE grown Si/SiGe undulating layer superlattices for infrared light detection, Mater. Sci. Eng. B 89, 73–76 (2002).Google Scholar
  313. 313.
    C. Miesner, K. Brunner, and G. Abstreiter, Lateral photodetectors with Ge quantum dots in Si, Infrared Phys. Technol. 42, 461–465 (2001).Google Scholar
  314. 314.
    S. K. Zhang, H. J. Zhu, F. Lu, Z. M. Jiang, and X. Wang, Coulomb charging effect in self-assembled Ge quantum dots studied by admittance spectroscopy, Phys. Rev. Lett. 80, 3340–3343 (1998).Google Scholar
  315. 315.
    C. Miesner, T. Asperger, K. Brunner, and G. Abstreiter, Capacitance-voltage and admittance spectroscopy of self-assembled Ge islands in Si, Appl. Phys. Lett. 77, 2704–2706 (2000).Google Scholar
  316. 316.
    K. Schmalz, I. N. Yassievich, P. Schittenhelm, and G. Abstreiter, Space-charge spectroscopy of self-assembled Ge-rich dots on Si grown by mbe, Phys. Rev. B 60, 1792–1798 (1999).Google Scholar
  317. 317.
    C. M. A. Kapteyn, M. Lion, R. Heitz, D. Bimberg, C. Miesner, T. Asperger, K. Brunner, and G. Abstreiter, Many-particle effects in Ge quantum dots investigated by time-resolved capacitance spectroscopy, Appl. Phys. Lett. 77, 4169–4171 (2000).Google Scholar
  318. 318.
    K.-M. Haendel, C. Lenz, U. Denker, O. G. Schmidt, K. Eberl, and R. J. Haug, Transport measurements of valence band holes in p-type SiGe quantum well structure containing Ge quantum dots, Physica E 13, 757–760 (2002).Google Scholar
  319. 319.
    M. W. Dashiell, C. Müller, N. Y. Jin-Phillipp, U. Denker, O. G. Schmidt, and K. Eberl, Low temperature epitaxial growth of germanium islands in active regions of silicon interband tunneling diodes, Mater. Sci. Eng. B 89, 106–110 (2002).Google Scholar
  320. 320.
    D. J. Lockwood, Light Emission in Silicon, Academic, New York, 1998.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Jean-Marc Baribeau
    • 1
  • Nelson L. Rowell
    • 2
  • David J. Lockwood
    • 1
  1. 1.Institute for Microstructural SciencesNational Research Council CanadaOttawaCanada
  2. 2.Institute for National Measurements StandardsNational Research Council CanadaOttawaCanada

Personalised recommendations