Skip to main content

Nuclear Export

Shuttling across the Nuclear Pore

  • Chapter
Nuclear Import and Export in Plants and Animals

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 462 Accesses

Abstract

One of the distinguishing features of eukaryotic cells is the compartmentalization of genetic information within a membrane-enclosed nucleus. The double membrane of the nuclear envelope separates the nucleus and the cytoplasm, and all macromolecu-lar exchange across the nuclear envelope takes place through large protein channels termed the nuclear pore complexes (NPCs). The molecules that are exchanged between these two com-partments range in size from ions and other small molecules to large complexes such as the 5OS ribosome and other large ribonucleoprotein complexes. In contrast to ions and small proteins that diffuse across the NPC, macromolecular movement is an active process. Active nucleocy-toplasmic transport allows for the proper compartmentalization of nuclear proteins involved in transcription, replication of DNA, and remodeling of chromatin. Transport also is necessary for mRNAs, tRNAs, and rRNAs that are transcribed in the nucleus but ultimately function in the cytoplasm. This growing awareness of the role of nuclear transport in regulating gene ex-pression has paralleled a remarkable increase in our knowledge of the nuclear transport process itself. Far from acting as static “localization signals” the sequences specifying nuclear location act in combination with other signals to alter the steady-state distribution of nuclear proteins. Thus, the concept of nuclear proteins shuttling between nucleus and cytoplasm has emerged as a dominant principle in understanding nuclear import and export. It is impossible to look at nuclear export in isolation without considering nuclear import rates. This has proven to be a barrier in understanding nuclear export as a process with distinct features and requirements. The number of import and export carriers identified has grown to include factors specific for classes of nuclear components and more general factors. In addition, it is clear that movement through the nuclear pore complex is dictated by properties of both the pore and the carrier molecules themselves. These properties are reflected in binding interactions that may facilitate movement across the nuclear pore and perhaps provide for directionality of transport. In this brief chapter, we will give a brief overview of the nuclear pore complex, methods for examining nuclear export and shutding, the nature of the transport machinery and nuclear export carri-ers. We will then attempt to combine these into a coherent model for understanding nuclear import and export. We do not claim that this is a comprehensive overview. A number of excel-lent reviews of this type have recendy appeared (see for example refs. 1,2). What we hope to do is point out some novel aspects of nuclear export and emphasize some recent findings which suggest that factors other than traditional transport carriers may be involved and regulate the process of nuclear shuttling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gorlich D, Kutay U. Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 1999; 15:607–660.

    Article  PubMed  CAS  Google Scholar 

  2. Kuersten S, Ohno M, Mattaj IW. Nucleocytoplasmic transport: Ran, beta and beyond. Trends Cell Biol 2001; 11:497–503.

    Article  PubMed  CAS  Google Scholar 

  3. Hanover JA. The nuclear pore: At the crossroads. FASEB J 1992; 6:2288–2295.

    PubMed  CAS  Google Scholar 

  4. Rout MP, Blobel G. Isolation of the yeast nuclear pore complex. J Cell Biol 1993; 123:771–783.

    Article  PubMed  CAS  Google Scholar 

  5. Holzenburg RR, Buhle A, Jarnik ELJ et al. Corelation between structure and mass distribution of the nuclear pore complex and of distinct pore complex componets. J Cell Biol 1990; 110:883–894.

    Article  PubMed  Google Scholar 

  6. Davis LI, Blobel G. Identification and characterization of a nuclear pore complex protein. Cell 1986; 45:699–709.

    Article  PubMed  CAS  Google Scholar 

  7. Davis LI, Blobel G. Nuclear pore complex contains a family of glycoproteins that includes p62: Glycosylation through a previously unidentified cellular pathway. Proc Natl Acad Sci USA 1987; 84:7552–7556.

    Article  PubMed  CAS  Google Scholar 

  8. Hanover JA, Cohen CK, Willingham MC et al. O-linked N-acetylglucosamine is attached to pro teins of the nuclear pore. Evidence for cytoplasmic and nucleoplasmic glycoproteins. J Biol Chem 1987; 262:9887–9894.

    PubMed  CAS  Google Scholar 

  9. Cronshaw JM, Krutchinsky AN, Zhang W et al. Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol 2002; 158:915–927.

    Article  PubMed  CAS  Google Scholar 

  10. D’Onofrio M, Starr CM, Park MK et al. Partial cDNA sequence encoding a nuclear pore protein modified by O-linked N-acetylglucosamine. Proc Natl Acad Sci USA 1988; 85:9595–9599.

    Article  PubMed  CAS  Google Scholar 

  11. Hanover JA. Glycan-dependent signaling: O-linked N-acetylglucosamine. FASEB J 2001; 15:1865–1876.

    Article  PubMed  CAS  Google Scholar 

  12. Rout MP, Aitchison JD, Suprapto A et al. The yeast nuclear pore complex: Composition, architecture, and transport mechanism. J Cell Biol 2000; 148:635–651.

    Article  PubMed  CAS  Google Scholar 

  13. Goldstein L. Localization of nucleus-specific protein as shown by transplantation experiments in Amoebae proteus. Exp Cell Res 1958; 15:635–637.

    Article  PubMed  CAS  Google Scholar 

  14. Borer RA, Lehner CF, Eppenberger HM et al. Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell 1989; 56:379–390.

    Article  PubMed  CAS  Google Scholar 

  15. Fischer U, Huber J, Boelens WC et al. The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 1995; 82:475–483.

    Article  PubMed  CAS  Google Scholar 

  16. Schmidt-Zachmann MS, Dargemont C, Kuhn LC et al. Nuclear export of proteins: The role of nuclear retention. Cell 1993; 74:493–504.

    Article  PubMed  CAS  Google Scholar 

  17. Elion EA. How to monitor nuclear shuttling. Methods Enzymol 2002; 351:607–622.

    Article  PubMed  CAS  Google Scholar 

  18. Wen W, Harootunian AT, Adams SR et al. Heat-stable inhibitors of cAMP-dependent protein kinase carry a nuclear export signal. J Biol Chem 1994; 269:32214–32220.

    PubMed  CAS  Google Scholar 

  19. Love DC, Sweitzer TD, Hanover JA. Reconstitution of HIV-1 rev nuclear export: Independent requirements for nuclear import and export. Proc Natl Acad Sci USA 1998; 95:10608–10613.

    Article  PubMed  CAS  Google Scholar 

  20. Holaska JM, Paschal BM. A cytosolic activity distinct from crm1 mediates nuclear export of protein kinase inhibitor in permeabilized cells. Proc Natl Acad Sci USA 1998; 95:14739–14744.

    Article  PubMed  CAS  Google Scholar 

  21. Ossareh-Nazari B, Bachelerie F, Dargemont C. Evidence for a role of CRM1 in signal-mediated nuclear protein export. Science 1997; 278:141–144.

    Article  PubMed  CAS  Google Scholar 

  22. Kehlenbach RH, Dickmanns A, Gerace L. Nucleocytoplasmic shuttling factors including Ran and CRM1 mediate nuclear export of NFAT In vitro. J Cell Biol 1998; 141:863–874.

    Article  PubMed  CAS  Google Scholar 

  23. Chook YM, Blobel G. Karyopherins and nuclear import. Curr Opin Struct Biol 2001; 11:703–715.

    Article  PubMed  CAS  Google Scholar 

  24. Conti E. Structures of importins. Results Probl Cell Differ 2002; 35:93–113.

    PubMed  CAS  Google Scholar 

  25. Conti E, Izaurralde E. Nucleocytoplasmic transport enters the atomic age. Curr Opin Cell Biol 2001; 13:310–319.

    Article  PubMed  CAS  Google Scholar 

  26. Fornerod M, Ohno M. Exportin-mediated nuclear export of proteins and ribonucleoproteins. Results Probl Cell Differ 2002; 35:67–91.

    PubMed  CAS  Google Scholar 

  27. Moroianu J. Distinct nuclear import and export pathways mediated by members of the karyopherin beta family. J Cell Biochem 1998; 70:231–239.

    Article  PubMed  CAS  Google Scholar 

  28. Strom AC, Weis K. Importin-beta-like nuclear transport receptors. Genome Biol 2001; 2:RE–VIEWS3008.

    Article  Google Scholar 

  29. Ullman KS, Powers MA, Forbes DJ. Nuclear export receptors: From importin to exportin. Cell 1997; 90:967–970.

    Article  PubMed  CAS  Google Scholar 

  30. Wozniak RW, Rout MP, Aitchison JD. Karyopherins and kissing cousins. Trends Cell Biol 1998; 8:184–188.

    Article  PubMed  CAS  Google Scholar 

  31. Imamoto N. Diversity in nucleocytoplasmic transport pathways. Cell Struct Funct 2000; 25:207–216.

    Article  PubMed  CAS  Google Scholar 

  32. Holaska JM, Black BE, Love DC et al. Calreticulin is a receptor for nuclear export. J Cell Biol 2001; 152:127–140.

    Article  PubMed  CAS  Google Scholar 

  33. Sweitzer TD, Hanover JA. Calmodulin activates nuclear protein import: A link between signal transduction and nuclear transport. Proc Natl Acad Sci USA 1996; 93:14574–14579.

    Article  PubMed  CAS  Google Scholar 

  34. Pruschy M, Ju Y, Spitz L, et al. Facilitated nuclear transport of calmodulin in tissue culture cells. J Cell Biol 1994; 127:1527–1536.

    Article  PubMed  CAS  Google Scholar 

  35. Forwood JK, Harley V, Jans DA. The C-terminal nuclear lodization signal of the sex-determining region Y (SRY) high mobility group domain mediates nuclear import through importin betal. J Biol Chem 2001; 276:46575–46582.

    Article  PubMed  CAS  Google Scholar 

  36. Ossareh-Nazari B, Gwizdek C, Dargemont C. Protein export from the nucleus. Traffic 2001; 2:684–689.

    Article  PubMed  CAS  Google Scholar 

  37. Kehlenbach RH, Dickmanns A, Kehlenbach A et al. A role for RanBPl in the release of CRM1 from the nuclear pore complex in a terminal step of nuclear export. J Cell Biol 1999; 145:645–657.

    Article  PubMed  CAS  Google Scholar 

  38. Black BE, Holaska JM, Levesque L et al. NXTl is necessary for the terminal step of Crm1-mediated nuclear export. J Cell Biol 2001; 152:141–155.

    Article  PubMed  CAS  Google Scholar 

  39. Mahajan R, Delphin C, Guan T et al. A small ubiquitin-related polypeptide involved in targeting RanGAPl to nuclear pore complex protein RanBP2. Cell 1997; 88:97–107.

    Article  PubMed  CAS  Google Scholar 

  40. Lei EP, Silver PA. Protein and RNA export from the nucleus. Dev Cell 2002; 2:261–272.

    Article  PubMed  CAS  Google Scholar 

  41. Siomi MC. The molecular mechanisms of messenger RNA nuclear export. Cell Struct Funct 2000; 25:227–235.

    Article  PubMed  CAS  Google Scholar 

  42. Aitchison JD, Rout MP. The road to ribosomes. Filling potholes in the export pathway. J Cell Biol 2000; 151:F23–6.

    Article  PubMed  CAS  Google Scholar 

  43. Reed R, Hurt E. A conserved mRNA export machinery coupled to premRNA splicing. Cell 2002; 108:523–531.

    Article  PubMed  CAS  Google Scholar 

  44. Kressler D, Linder P, de La Cruz J. Protein tran-acting factors involved in ribosome biogenesis in Saccharomyces cedrevisiae Mol Cell Biol 1999; 19:7897–7912.

    PubMed  CAS  Google Scholar 

  45. Ho JHN, Johnson AW. Nmd 3 encodes an essential cytoplasmic protein required for stable 60S subunits in Saccharomyces cerevisiae Mol Cell Biol 2000; 19:2389–2399.

    Google Scholar 

  46. Bataille N, Helser T, Fried HM. Cytplsamic transport of ribosomal subunits microinjected into the Xenopus laevis ooctye nucleus: A generalized, facilitated process. J Cell Biol 1990; 1111:1571–1582.

    Article  Google Scholar 

  47. Arts GJ, Kuerstein S, Romby P et al. The role of exportin-t in selective nuclear export of mature tRNAs. EMBO J 1998; 17:7430–7441.

    Article  PubMed  CAS  Google Scholar 

  48. Daneholt, B. A look at messenger RNP moving through the nuclear pore. Cell 1997; 88:585–588.

    Article  PubMed  CAS  Google Scholar 

  49. Strambio dCC, Rout MP. TAPping into transport. Nat Cell Biol 1999; 1:E31–3.

    Article  Google Scholar 

  50. Thakurta AG, Whalen WA, Yoon JH et al. Crp79p, like Mex67p, is an auxiliary mRNA export factor in Schizosaccharomyces pombe. Mol Biol Cell 2002; 13:2571–2584.

    Article  PubMed  CAS  Google Scholar 

  51. Yoon JH, Love DC, Guhathakurta A et al. Mex67p of Schizosaccharomyces pombe interacts with Raelp in mediating mRNA export. Mol Cell Biol 2000; 20:8767–8782.

    Article  PubMed  CAS  Google Scholar 

  52. Strasser K, Bassler J, Hurt E. Binding of the Mex67p/Mtr2p heterodimer to FXFG, GLFG and FG repeat nucleoporins is essential for nuclear mRNA export. J Cell Biol 2000; 150:695–706.

    Article  PubMed  CAS  Google Scholar 

  53. Santos-Rosa H, Morenos H, Simos G et al. Nuclear mRNA export requires complex formation between Mex67p and Mtr2p at the nuclear pores. Mol Cell Biol 1998; 18:6826–6838.

    PubMed  CAS  Google Scholar 

  54. Herold A, Suyama M, Rodrigues JP et al. TAP (NXF1) belongs to a multigene family of putative RNA export factors with a conserved modular structure. Mol Cell Biol 2000; 20:8996–9008.

    Article  PubMed  CAS  Google Scholar 

  55. York JD, Odom AR, Murphy R et al. A phopholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 1999; 285:96–100.

    Article  PubMed  CAS  Google Scholar 

  56. Feng Y Wente SR, Majerus PW. Overexpression of the inositol phosphatase SopB in human 293 cells stimulates cellular chloride influx and inhibits nuclear mRN A export. Proc Natl Acad Sci USA 2001; 9:875–879.

    Article  Google Scholar 

  57. Ishii K, Arib G, Lin C et al. Chromatin boundaries in budding yeast: The nuclear. Pore Connection Cell 2002; 109:551–562.

    CAS  Google Scholar 

  58. Hinshaw JE, Carragher BO, Milligan RA. Architecture and design of the nuclear pore complex. Cell 1992; 69:1133–1141.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Hanover, J.A., Love, D.C. (2005). Nuclear Export. In: Nuclear Import and Export in Plants and Animals. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27747-1_8

Download citation

Publish with us

Policies and ethics