Skip to main content

Nuclear Import of Agrobacterium T-DNA

  • Chapter

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Agrobacterium-mediated genetic transformation is a process by which genetic material is transported from the bacterium into the host nucleus, where it stably integrates. The transferred DNA (T-DNA) is escorted, by two bacterial proteins, as a single-stranded DNA-protein complex (a T-complex), which mediate its transport to the host nucleus. The large size and mass of this DNA-protein complex raise questions as to the molecular machinery and mechanism by which the T-complex passes the nuclear pore barrier. Recent studies have revealed the important role of specific host proteins in interacting with and guiding the T-complex through the nuclear pore, and to its point of integration. In this chapter, we summarize our knowledge of the function of T-DNA bacterial and host protein chaperones, and draw a model for their action during the nuclear import and intranuclear transport of Agrobacterium T-DNA.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gelvin SB. Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu Rev Plant Physiol Plant Mol Biol 2000; 51:223–256.

    PubMed  CAS  Google Scholar 

  2. Gelvin SB. Agrobacterium-mediated plant transformation: The biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 2003; 67:16–37.

    PubMed  CAS  Google Scholar 

  3. Tzfira T, Citovsky V. From host recognition to T-DNA integration: The function of bacterial and plant genes in the Agrobacterium-plant cell interaction. Mol Plant Pathol 2000; 1:201–212.

    CAS  Google Scholar 

  4. Tzfira T, Citovsky V. Partners-in-infection: Host proteins involved in the transformation of plant cells by Agrobacterium. Trends Cell Biol 2002; 12:121–129.

    PubMed  CAS  Google Scholar 

  5. Zupan J, Muth TR, Draper O et al. The transfer of DNA from Agrobacterium tumefaciens into plants: A feast of fundamental insights. Plant J 2000; 23:11–28.

    PubMed  CAS  Google Scholar 

  6. de Cleene M, de Ley J. The host range of crown gall. Bot Rev 1976; 42:389–466.

    Google Scholar 

  7. Piers KL, Heath JD, Liang X et al. Agrobacterium tumefaciens-mediated transformation of yeast. Proc Natl Acad Sci USA 1996; 93:1613–1618.

    PubMed  CAS  Google Scholar 

  8. de Groot MJ, Bundock P, Hooykaas PJJ et al. Agrobacterium tumefaciens-mediated transformation of filamentous fungi [published erratum appears in Nat Biotechnol 1998; 16:1074]. Nat Biotechnol 1998; 16:839–842.

    PubMed  Google Scholar 

  9. Gouka RJ, Gerk C, Hooykaas PJ et al. Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination. Nat Biotechnol 1999; 17:598–601.

    PubMed  CAS  Google Scholar 

  10. Kunik T, Tzfira T, Kapulnik Y et al. Genetic transformation of HeLa cells by Agrobacterium. Proc Natl Acad Sci USA 2001; 98:1871–1876.

    PubMed  CAS  Google Scholar 

  11. Gelvin S. Improving plant genetic engineering by manipulating the host. Trends Biotechnol 2003; 21:95–98.

    PubMed  CAS  Google Scholar 

  12. Peralta EG, Ream LW. T-DNA border sequences required for crown gall tumorigenesis. Proc Natl Acad Sci USA 1985; 82:5112–5116.

    PubMed  CAS  Google Scholar 

  13. Wang K, Stachel SE, Timmerman B et al. Site-specific nick occurs within the 25 bp transfer promoting border sequence following induction of vir gene expression in Agrobacterium tumefaciens. Science 1987; 235:587–591.

    CAS  Google Scholar 

  14. Armitage P, Walden R, Draper J. Plant genetic transformation and gene expression. In: Draper J, Scott R, Armitage P et al, eds. A Laboratory Manual. London: Blackwell Scientific Publications Ltd., 1988:1–67.

    Google Scholar 

  15. Draper J, Scott R, Armitage P et al. Plant genetic transformation and gene expression. A Laboratory Manual. London: Blackwell Scientific Publications Ltd., 1988.

    Google Scholar 

  16. Lee YW, Jin S, Sim WS et al. The sensing of plant signal molecules by Agrobacterium: genetic evidence for direct recognition of phenolic inducers by the VirA protein. Gene 1996; 179:83–88.

    PubMed  CAS  Google Scholar 

  17. McLean BG, Greene EA, Zambryski PC. Mutants of Agrobacterium VirA that activate vir gene expression in the absence of the inducer acetosyringone. J Biol Chem 1994; 269:2645–2651.

    PubMed  CAS  Google Scholar 

  18. Stachel SE, Messens E, Van Montagu M et al. Identification of the signal molecules produced by wounded plant cell that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 1985; 318:624–629.

    Google Scholar 

  19. Stachel SE, Nester EW, Zambryski PC. A plant cell factor induces Agrobacterium tumefaciens vir gene expression. Proc Natl Acad Sci USA 1986; 83:379–383.

    PubMed  CAS  Google Scholar 

  20. Turk SC, van Lange RP, Regensburg-Tuink TJG et al. Localization of the VirA domain involved in acetosyringone-mediated vir gene induction in Agrobacterium tumefaciens. Plant Mol Biol 1994; 25:899–907.

    PubMed  CAS  Google Scholar 

  21. Durrenberger F, Crameri A, Hohn B et al. Covalently bound VirD2 protein of Agrobacterium tumefaciens protects the T-DNA from exonucleolytic degradation. Proc Natl Acad Sci USA 1989; 86:9154–9158.

    PubMed  CAS  Google Scholar 

  22. Jasper F, Koncz C, Schell J et al. Agrobacterium T-strand production in vitro: sequence-specific cleavage and 5′ protection of single-stranded DNA templates by purified VirD2 protein. Proc Natl Acad Sci USA 1994; 91:694–698.

    PubMed  CAS  Google Scholar 

  23. Pansegrau W, Schoumacher F, Hohn B et al. Site-specific cleavage and joining of single-stranded DNA by VirD2 protein of Agrobacterium tumefaciens Ti plasmids: Analogy to bacterial conjugation. Proc Natl Acad Sci USA 1993; 90:11538–11542.

    PubMed  CAS  Google Scholar 

  24. Relic B, Andjelkovic M, Rossi L et al. Interaction of the DNA modifying proteins VirD1 and VirD2 of Agrobacterium tumefaciens: Analysis by subcellular localization in mammalian cells. Proc Natl Acad Sci USA 1998; 95:9105–9110.

    PubMed  CAS  Google Scholar 

  25. Scheiffele P, Pansegrau W, Lanka E. Initiation of Agrobacterium tumefaciens T-DNA processing: Purified proteins VirD1 and VirD2 catalyze site-and strand-specific cleavage of superhelical T-border DNA in vitro. J Biol Chem 1995; 270:1269–1276.

    PubMed  CAS  Google Scholar 

  26. Ward E, Barnes W. VirD2 protein of Agrobacterium tumefaciens very tightly linked to the 5′ end of T-strand DNA. Science 1988; 242:927–930.

    CAS  Google Scholar 

  27. Young C, Nester EW. Association of the VirD2 protein with the 5’ end of T-strands in Agrobacterium tumefaciens. J Bacteriol 1988; 170:3367–3374.

    PubMed  CAS  Google Scholar 

  28. Christie PJ, Ward JE, Winans SC et al. The Agrobacterium tumefaciens virE2 gene product is a single-stranded-DNA-binding protein that associates with T-DNA. J Bacteriol 1988; 170:2659–2667.

    PubMed  CAS  Google Scholar 

  29. Citovsky V, Wong ML, Zambryski PC. Cooperative interaction of Agrobacterium VirE2 protein with single stranded DNA: Implications for the T-DNA transfer process. Proc Natl Acad Sci USA 1989; 86:1193–1197.

    PubMed  CAS  Google Scholar 

  30. Sen P, Pazour GJ, Anderson D et al. Cooperative binding of Agrobacterium tumefaciens VirE2 protein to single-stranded DNA. J Bacteriol 1989; 171:2573–80.

    PubMed  CAS  Google Scholar 

  31. Vergunst AC, Schrammeijer B, den Dulk-Ras A et al. VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 2000; 290:979–982.

    PubMed  CAS  Google Scholar 

  32. Zupan J, Ward D, Zambryski PC. Assembly of the VirB transport complex for DNA transfer from Agrobacterium tumefaciens to plant cells. Curr Opin Microbiol 1998; 1:649–655.

    PubMed  CAS  Google Scholar 

  33. Gheysen G, Villarroel R, Van Montagu M. Illegitimate recombination in plants: a model for T-DNA integration. Genes Dev 1991; 5:287–297.

    PubMed  CAS  Google Scholar 

  34. Mayerhofer R, Koncz-Kalman Z, Nawrath C et al. T-DNA integration: a mode of illegitimate recombination in plants. EMBO J 1991; 10:697–704.

    PubMed  CAS  Google Scholar 

  35. Takano M, Egawa H, Ikeda JE et al. The structures of integration sites in transgenic rice. Plant J 1997; 11:353–361.

    PubMed  CAS  Google Scholar 

  36. Tinland B. The integration of T-DNA into plant genomes. Trends Plant Sci 1996; 1:178–184.

    Google Scholar 

  37. Bakó L, Umeda M, Tiburcio AF et al. The VirD2 pilot protein of Agrobacterium-transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants. Proc Natl Acad Sci USA 2003; 100:10108–10113.

    PubMed  Google Scholar 

  38. Mysore KS, Bassuner B, Deng XB et al. Role of the Agrobacterium tumefaciens VirD2 protein in T-DNA transfer and integration. Mol Plant-Microbe Interact 1998; 11:668–683.

    PubMed  CAS  Google Scholar 

  39. Dombek P, Ream LW. Functional domains of Agrobacterium tumefaciens single-stranded DNA-binding protein VirE2. J Bacteriol 1997; 179:1165–1173.

    PubMed  CAS  Google Scholar 

  40. Simone M, McCullen CA, Stahl LE et al. The carboxy-terminus of VirE2 from Agrobacterium tumefaciens is required for its transport to host cells by the virB-encoded type IV transport system. Mol Microbiol 2001; 41:1283–1293.

    PubMed  CAS  Google Scholar 

  41. Zhou XR, Christie PJ. Mutagenesis of the Agrobacterium VirE2 single-stranded DNA-binding pro tein identifies regions required for self-association and interaction with VirE1 and a permissive site for hybrid protein construction. J Bacteriol 1999; 181:4342–4352.

    PubMed  CAS  Google Scholar 

  42. Vergunst AC, van Lier MCM, den Dulk-Ras A et al. Recognition of the Agrobacterium VirE2 translocation signal by the VirB/D4 transport system does not require VirE1. Plant Physiol 2003; 133:978–988.

    PubMed  CAS  Google Scholar 

  43. Frary A, Hamilton CM. Efficiency and stability of high molecular weight DNA transformation: An analysis in tomato. Transgenic Res 2001; 10:121–132.

    PubMed  CAS  Google Scholar 

  44. Hamilton CM. A binary-BAC system for plant transformation with high-molecular-weight DNA. Gene 1997; 200:107–16.

    PubMed  CAS  Google Scholar 

  45. Kononov ME, Bassuner B, Gelvin SB. Integration of T-DNA binary vector ‘backbone’ sequences into the tobacco genome: Evidence for multiple complex patterns of integration. Plant J 1997; 11:945–57.

    PubMed  CAS  Google Scholar 

  46. Ramanathan V, Veluthambi K. Transfer of nonT-DNA portions of the Agrobacterium tumefaciens Ti plasmid pTiA6 from the left terminus of TL-DNA. Plant Mol Biol 1995; 28:1149–54.

    PubMed  CAS  Google Scholar 

  47. Wenck A, Czako M, Kanevski I et al. Frequent collinear long transfer of DNA inclusive of the whole binary vector during Agrobacterium-mediated transformation. Plant Mol Biol 1997; 34:913–22.

    PubMed  CAS  Google Scholar 

  48. Citovsky V, Zupan J, Warnick D et al. Nuclear localization of Agrobacterium VirE2 protein in plant cells. Science 1992; 256:1802–1805.

    PubMed  CAS  Google Scholar 

  49. Gelvin SB. Agrobacterium VirE2 proteins can form a complex with T strands in the plant cytoplasm. J Bacteriol 1998; 180:4300–4302.

    PubMed  CAS  Google Scholar 

  50. Sundberg C, Meek L, Carrol K et al. VirE1 protein mediates export of single-stranded DNA binding protein VirE2 from Agrobacterium tumefaciens into plant cells. J Bacteriol 1996; 178:1207–1212.

    PubMed  CAS  Google Scholar 

  51. Ward DV, Zambryski PC. The six functions of Agrobacterium VirE2. Proc Natl Acad Sci USA 2001; 98:385–386.

    PubMed  CAS  Google Scholar 

  52. Binns AN, Beaupre CE, Dale EM. Inhibition of VirB-mediated transfer of diverse substrates from Agrobacterium tumefaciens by the InQ plasmid RSF1010. J Bacteriol 1995; 177:4890–4899.

    PubMed  CAS  Google Scholar 

  53. Otten L, DeGreve H, Leemans J et al. Restoration of virulence of vir region mutants of A. tumefaciens strain B6S3 by coinfection with normal and mutant Agrobacterium strains. Mol Gen Genet 1984; 195:159–163.

    CAS  Google Scholar 

  54. Lee LY, Gelvin SB, Kado CI. pSa causes oncogenic suppression of Agrobacterium by inhibiting VirE2 protein export. J Bacteriol 1999; 181:186–196.

    PubMed  CAS  Google Scholar 

  55. Deng W, Chen L, Peng WT et al. VirE1 is a specific molecular chaperone for the exported single-stranded-DNA-binding protein VirE2 in Agrobacterium. Mol Microbiol 1999; 31:1795–1807.

    PubMed  CAS  Google Scholar 

  56. Sundberg CD, Ream LW. The Agrobacterium tumefaciens chaperone-like protein, VirE1, interacts with VirE2 at domains required for single-stranded DNA binding and cooperative interaction. J Bacteriol 1999; 181:6850–6855.

    PubMed  CAS  Google Scholar 

  57. Yusibov VM, Steck TR, Gupta V et al. Association of single-stranded transferred DNA from Agrobacterium tumefaciens with tobacco cells. Proc Natl Acad Sci USA 1994; 91:2994–2998.

    PubMed  CAS  Google Scholar 

  58. Citovsky V, Guralnick B, Simon MN et al. The molecular structure of Agrobacterium VirE2-single stranded DNA complexes involved in nuclear import. J Mol Biol 1997; 271:718–727.

    PubMed  CAS  Google Scholar 

  59. Hamilton CM, Frary AC, Lewis C et al. Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc Natl Acad Sci USA 1996; 93:9975–9979.

    PubMed  CAS  Google Scholar 

  60. Forbes DJ. Structure and function of the nuclear pore complex. Annu Rev Cell Biol 1992; 8:495–527.

    PubMed  CAS  Google Scholar 

  61. Dworetzky SI, Feldherr CM. Translocation of RNA-coated gold particles through the nuclear pores of oocytes. J Cell Biol 1988; 106:575–584.

    PubMed  CAS  Google Scholar 

  62. Pante N, Kann M. Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm. Mol Biol Cell 2002; 13:425–434.

    PubMed  CAS  Google Scholar 

  63. Briels WJ. The theory of polymer dynamics. Oxford: Clarendon Press, 1986.

    Google Scholar 

  64. Landau LD, Lifshitz EM. Statistical Physics. Oxford: Pergamon Press, 1980.

    Google Scholar 

  65. Fahrenkrog B, Aebi U. The nuclear pore complex: Nucleocytoplasmic transport and beyond. Nat Rev Mol Cell Biol 2003; 4:757–66.

    PubMed  CAS  Google Scholar 

  66. Suntharalingam M, Wente SR. Peering through the pore. Nuclear pore complex structure, assembly, and function. Dev Cell 2003; 4:775–789.

    PubMed  CAS  Google Scholar 

  67. Zambryski PC. Chronicles from the Agrobacterium-plant cell DNA transfer story. Annu Rev Plant Physiol Plant Mol Biol 1992; 43:465–490.

    CAS  Google Scholar 

  68. Howard E, Zupan J, Citovsky V et al. The VirD2 protein of A. tumefaciens contains a C-terminal bipartite nuclear localization signal: Implications for nuclear uptake of DNA in plant cells. Cell 1992; 68:109–118.

    PubMed  CAS  Google Scholar 

  69. Tinland B, Schoumacher F, Gloeckler V et al. The Agrobacterium tumefaciens virulence D2 protein is responsible for precise integration of T-DNA into the plant genome. EMBO J 1995; 14:3585–3595.

    PubMed  CAS  Google Scholar 

  70. Ziemienowicz A, Merkle T, Schoumacher F et al. Import of Agrobacterium T-DNA into plant nuclei: Two distinct functions of VirD2 and VirE2 proteins. Plant Cell 2001; 13:369–384.

    PubMed  CAS  Google Scholar 

  71. Citovsky V, Warnick D, Zambryski PC. Nuclear import of Agrobacterium VirD2 and VirE2 proteins in maize and tobacco. Proc Natl Acad Sci USA 1994; 91:3210–3214.

    PubMed  CAS  Google Scholar 

  72. Herrera-Estrella A, Van Montagu M, Wang K. A bacterial peptide acting as a plant nuclear targeting signal: The amino-terminal portion of Agrobacterium VirD2 protein directs a beta-galactosidase fusion protein into tobacco nuclei. Proc Natl Acad Sci USA 1990; 87:9534–9537.

    PubMed  CAS  Google Scholar 

  73. Rossi L, Hohn B, Tinland B. The VirD2 protein of Agrobacterium tumefaciens carries nuclear localization signals important for transfer of T-DNA to plant. Mol Gen Genet 1993; 239:345–353.

    PubMed  CAS  Google Scholar 

  74. Tinland B, Koukolikova-Nicola Z, Hall MN et al. The T-DNA-linked VirD2 protein contains two distinct nuclear localization signals. Proc Natl Acad Sci USA 1992; 89:7442–7446.

    PubMed  CAS  Google Scholar 

  75. Tzfira T, Citovsky V. Comparison between nuclear import of nopaline-and octopine-specific VirE2 protein of Agrobacterium in plant and animal cells. Mol Plant Pathol 2001; 2:171–176.

    CAS  Google Scholar 

  76. Koukolikova-Nicola Z, Raineri D, Stephens K et al. Genetic analysis of the virD operon of Agrobacterium tumefaciens: A search for functions involved in transport of T-DNA into the plant cell nucleus and in T-DNA integration. J Bacteriol 1993; 175:723–731.

    PubMed  CAS  Google Scholar 

  77. Shurvinton CE, Hodges L, Ream LW. A nuclear localization signal and the C-terminal omega sequence in the Agrobacterium tumefaciens VirD2 endonuclease are important for tumor formation. Proc Natl Acad Sci USA 1992; 89:11837–11841.

    PubMed  CAS  Google Scholar 

  78. Narasimhulu SB, Deng X-B, Sarria R et al. Early transcription of Agrobacterium T-DNA genes in tobacco and maize. Plant Cell 1996; 8:873–886.

    PubMed  CAS  Google Scholar 

  79. Zupan J, Citovsky V, Zambryski PC. Agrobacterium VirE2 protein mediates nuclear uptake of ssDNA in plant cells. Proc Natl Acad Sci USA 1996; 93:2392–2397.

    PubMed  CAS  Google Scholar 

  80. Sheng J, Citovsky V. Agrobacterium-plant cell interaction: Have virulence proteins-will travel. Plant Cell 1996; 8:1699–1710.

    PubMed  CAS  Google Scholar 

  81. Tinland B, Hohn B. Recombination between prokaryotic and eukaryotic DNA: integration of Agrobacterium tumefaciens T-DNA into the plant genome. Genet Eng 1995; 17:209–229.

    CAS  Google Scholar 

  82. Windels P, De Buck S, Van Bockstaele E et al. T-DNA integration in Arabidopsis chromosomes. Presence and origin of filler DNA sequences. Plant Physiol 2003; 133:2061–2068.

    PubMed  CAS  Google Scholar 

  83. Guralnick B, Thomsen G, Citovsky V. Transport of DNA into the nuclei of Xenopus oocytes by a modified VirE2 protein of Agrobacterium. Plant Cell 1996; 8:363–373.

    PubMed  CAS  Google Scholar 

  84. Ziemienowicz A, Görlich D, Lanka E et al. Import of DNA into mammalian nuclei by proteins originating from a plant pathogenic bacterium. Proc Natl Acad Sci USA 1999; 96:3729–3733.

    PubMed  CAS  Google Scholar 

  85. Rhee Y, Gurel F, Gafni Y et al. A genetic system for detection of protein nuclear import and export. Nat Biotechnol 2000; 18:433–437.

    PubMed  CAS  Google Scholar 

  86. Tzfira T, Vaidya M, Citovsky V. VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J 2001; 20:3596–3607.

    PubMed  CAS  Google Scholar 

  87. Williams RC, Spengler SJ. Fibers of RecA protein and complexes of RecA protein and single stranded fX174 DNA as visualized by negative-stain electron microscopy. J Mol Biol 1986; 192:110–118.

    Google Scholar 

  88. Flory J, Radding CM. Visualization of recA protein and its association with DNA: A priming effect of single-strand-binding protein. Cell 1982; 28:747–56.

    PubMed  CAS  Google Scholar 

  89. Flory J, Tsang SS, Muniyappa K. Isolation and visualization of active presynaptic filaments of recA protein and single-stranded DNA. Proc Natl Acad Sci USA 1984; 81:7026–30.

    PubMed  CAS  Google Scholar 

  90. Ballas N, Citovsky V. Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proc Natl Acad Sci USA 1997; 94:10723–10728.

    PubMed  CAS  Google Scholar 

  91. Deng W, Chen L, Wood DW et al. Agrobacterium VirD2 protein interacts with plant host cyclophilins. Proc Natl Acad Sci USA 1998; 95:7040–7045.

    PubMed  CAS  Google Scholar 

  92. Fields S, Song O-K. A novel genetic system to detect protein-protein interactions. Nature 1989; 340:245–246.

    PubMed  CAS  Google Scholar 

  93. Hollenberg SM, Sternglanz R, Cheng PF et al. Identification of a new family of tissue-specific basic helix-loop-helix proteins with a two-hybrid system. Mol Cell Biol 1995; 15:3813–3822.

    PubMed  CAS  Google Scholar 

  94. Duina AA, Chang HC, Marsh JA et al. A cyclophilin function in Hsp90-dependent signal transduction. Science 1996; 274:1713–1715.

    PubMed  CAS  Google Scholar 

  95. Fischer G, Wittmann-Liebold B, Lang K et al. Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature 1989; 337:476–478.

    PubMed  CAS  Google Scholar 

  96. Hayman GT, Miernyk JA. The nucleotide and deduced amino acid sequences of a peptidyl-prolyl cis-trans isomerase from Arabidopsis thaliana. Biochim Biophys Acta 1994; 1219:536–538.

    PubMed  CAS  Google Scholar 

  97. Hunter T. Prolyl isomerases and nuclear function. Cell 1998; 92:141–143.

    PubMed  CAS  Google Scholar 

  98. Lippuner V, Chou IT, Scott SV et al. Cloning and characterization of chloroplast and cytosolic forms of cyclophilin from Arabidopsis thaliana. J Biol Chem 1994; 269:7863–7868.

    PubMed  CAS  Google Scholar 

  99. Marks AR. Cellular functions of immunophilins. Physiol Rev 1996; 76:631–649.

    PubMed  CAS  Google Scholar 

  100. Takahashi N, Hayano T, Suzuki M. Peptidyl-prolyl cis-trans isomerase is the cyclosporin A-binding protein cyclophilin. Nature 1989; 337:473–475.

    PubMed  CAS  Google Scholar 

  101. Handschumacher RE, Harding MW, Rice J et al. Cyclophilin: A specific cytosolic binding protein for cyclosporin A. Science 1984; 226:544–547.

    PubMed  CAS  Google Scholar 

  102. Baker EK, Colley NJ, Zuker CS. The cyclophilin homolog NinaA functions as a chaperone, forming a stable complex in vivo with its protein target rhodopsin. EMBO J 1994; 13:4886–4895.

    PubMed  CAS  Google Scholar 

  103. Meyer K, Leube MP, Grill E. A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science 1994; 264:1452–1455.

    PubMed  CAS  Google Scholar 

  104. Leung J, Bouvier-Durand M, Morris P-C et al. Arabidopsis ABA response gene ABU: Features of a calcium-modulated protein phosphatase. Science 1994; 264:1448–1452.

    PubMed  CAS  Google Scholar 

  105. Nigg EA. Nucleocytoplasmic transport: Signals, mechanisms and regulation. Nature 1997; 386:779–787.

    PubMed  CAS  Google Scholar 

  106. Powers MA, Forbes DJ. Cytosolic factors in nuclear import: what’s importin? Cell 1994; 79:931–934.

    PubMed  CAS  Google Scholar 

  107. Peifer M, Berg S, Reynolds AB. A repeating amino acid motif shared by proteins with diverse cellular roles. Cell 1994; 76:789–791.

    PubMed  CAS  Google Scholar 

  108. Görlich D, Mattaj IW. Nucleocytoplasmic transport. Science 1996; 271:1513–1518.

    PubMed  Google Scholar 

  109. Loeb JDJ, Schlenstedt G, Pellman D et al. The yeast nuclear import receptor is required for mitosis. Proc Natl Acad Sci USA 1995; 92:7647–7651.

    PubMed  CAS  Google Scholar 

  110. Schlenstedt G, Hurt E, Doye V et al. Reconstitution of nuclear protein transport with semi-intact yeast cells. J Cell Biol 1993; 123:785–798.

    PubMed  CAS  Google Scholar 

  111. Zhu Y, Nam J, Humara JM et al. Identification of Arabidopsis rat mutants. Plant Physiol 2003; 132:494–505.

    PubMed  CAS  Google Scholar 

  112. Coin F, Frit P, Viollet B et al. TATA binding protein discriminates between different lesions on DNA, resulting in a transcription decrease. Mol Biol Cell 1998; 18:3907–3914.

    CAS  Google Scholar 

  113. Vichi P, Coin F, Renaud JP et al. Cisplatin-and UV-damaged DNA lure the basal transcription factor TFIID/TBP. Embo J 1997; 16:7444–56.

    PubMed  CAS  Google Scholar 

  114. Balajee AS, Bohr VA. Genomic heterogeneity of nucleotide excision repair. Gene 2000; 250:15–30.

    PubMed  CAS  Google Scholar 

  115. van der Krol AR, Chua N-H. The basic domain of plant B-ZIP proteins facilitates import of a reporter protein into plant nuclei. Plant Cell 1991; 3:667–675.

    PubMed  Google Scholar 

  116. Tzfira T, Vaidya M, Citovsky V. Increasing plant susceptibility to Agrobacterium infection by overexpression of the Arabidopsis VIP1 gene. Proc Natl Acad Sci USA 2002; 99:10435–10440.

    PubMed  CAS  Google Scholar 

  117. Avivi Y, Morad V, Ben-Meir H et al. Reorganization of specific chromosomal domains and activetion of silent genes in plant cell acquiring pluripotentiality. Dev Dyn 2004; in press.

    Google Scholar 

  118. Newell CA. Plant transformation technology. Developments and applications. Mol Biotechnol 2000; 16:53–65.

    PubMed  CAS  Google Scholar 

  119. Rakoczy-Trojanowska M. Alternative methods of plant transformation—a short review. Cell Mol Biol Lett 2002; 7:849–58.

    PubMed  Google Scholar 

  120. Pemberton LF, Rosenblum JS, Blobel G. Nuclear import of the TATA-binding protein: mediation by the karyopherin Kap114p and a possible mechanism for intranuclear targeting. J Cell Biol 1999; 145:1407–1417.

    PubMed  CAS  Google Scholar 

  121. Schrammeijer B, Dulk-Ras Ad A, Vergunst AC et al. Analysis of Vir protein translocation from Agrobacterium tumefaciens using Saccharomyces cerevisiae as a model: Evidence for transport of a novel effector protein VirE3. Nucleic Acids Res 2003; 31:860–868.

    PubMed  CAS  Google Scholar 

  122. Schrammeijer B, Risseeuw E, Pansegrau W et al. Interaction of the virulence protein VirF of Agrobacterium tumefaciens with plant homologs of the yeast Skpl protein. Curr Biol 2001; 11:258–262.

    PubMed  CAS  Google Scholar 

  123. Chook YM, Blobel G. Karyopherins and nuclear import. Curr Opin Struct Biol 2001; 11:703–715.

    PubMed  CAS  Google Scholar 

  124. Komeili A, O’Shea EK. New perspectives on nuclear transport. Annu Rev Genet 2001; 35:341–364.

    PubMed  CAS  Google Scholar 

  125. Marte B. Passage through the nuclear pore. Nat Cell Biol 2001; 3:E135.

    PubMed  CAS  Google Scholar 

  126. Quimby BB, Corbett AH. Nuclear transport mechanisms. Cell Mol Life Sci 2001; 58:1776–1773.

    Google Scholar 

  127. Hubner S, Smith HM, Hu W et al. Plant importin alpha binds nuclear localization sequences with high affinity and can mediate nuclear import independent of importin beta. J Biol Chem 1999; 274:22610–22617.

    PubMed  CAS  Google Scholar 

  128. Hicks GR, Smith HMS, Lobreaux S et al. Nuclear import in permeabilized protoplasts from higher plants has unique features. Plant Cell 1996; 8:1337–1352.

    PubMed  CAS  Google Scholar 

  129. Matsuki R, Iwasaki T, Shoji K et al. Isolation and characterization of two importin-beta genes from rice. Plant Cell Physiol 1998; 39:879–884.

    PubMed  CAS  Google Scholar 

  130. Citovsky V, Zambryski PC. Transport of nucleic acids through membrane channels: Snaking through small holes. Annu Rev Microbiol 1993; 47:167–197.

    PubMed  CAS  Google Scholar 

  131. Mehlin H, Daneholt B, Skoglund U. Translocation of a specific premessenger ribonucleoprotein particle through the nuclear pore studied with electron microscope tomography. Cell 1992; 69:605–613.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Tzfira, T., Lacroix, B., Citovsky, V. (2005). Nuclear Import of Agrobacterium T-DNA. In: Nuclear Import and Export in Plants and Animals. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27747-1_6

Download citation

Publish with us

Policies and ethics