Skip to main content

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 473 Accesses

Conclusions

Although the nuclear import of DNA may not be a normal event in the cell, mechanisms do exist for its transport. Some of these have evolved over a billion years, as viruses and other pathogens have perfected ways to invade the host, while others appear to be fortuitous piracy, as in the case of the SV40 enhancer which binds to proteins on their way to the nucleus. Regardless, the mechanism is the same: NLS-containing proteins, either provided by the host or pathogen, bind to the DNA and target it to the nucleus. The goal of all gene therapy approaches is to target enough DNA to the nuclei of cells to obtain sufficient expression for a therapeutic effect. As is well accepted, one of the major barriers to this goal is the nuclear envelope and our relative inability to target substantial amounts of DNA to the nucleus. By characterizing and understanding the mechanisms of DNA nuclear import we can begin to exploit these pathways to increase the nuclear targeting of genes for transfection, transgenic plant production, and ultimately, gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbanti-Brodano G, Swetly P, Koprowski H. Early events in the infection of permissive cells with simian virus 40: Adsorption, penetration, and uncoating. J Virol 1970; 6:78–86.

    PubMed  CAS  Google Scholar 

  2. Beltinger C, Saragovi HU, Smith RM et al. Binding, uptake, and intracellular trafficking of phosphorothioate-modified oligodeoxynucleotides. J Clin Invest 1995; 95:1814–1823.

    PubMed  CAS  Google Scholar 

  3. Bennett M, Pinol-Roma S, Staknis D et al. Differential binding of heterogeneous nuclear ribonucle-oproteins to mRNA precursors prior to spliceosome assembly in vitro. Mol Cell Biol 1992; 12:3165–75.

    PubMed  CAS  Google Scholar 

  4. Bergan R, Connell Y, Fahmy B et al. Electroporation enhances c-myc antisense oligodeoxynucleotide efficacy. Nucleic Acids Res 1993; 21:3567–3573.

    PubMed  CAS  Google Scholar 

  5. Browning CL, Culberson DE, Aragon IV et al. The developmentally regulated expression of serum response factor plays a key role in the control of smooth muscle-specific genes. Dev Biol 1998; 194:18–37.

    PubMed  CAS  Google Scholar 

  6. Brunner S, Sauer T, Carotta S et al. Cell cycle dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus. Gene Therapy 2000; 7:401–407.

    PubMed  CAS  Google Scholar 

  7. Bukrinsky MI and Haffar OK. HIV-1 nuclear import: Matrix protein is back on center stage, this time together with Vpr. Mol Med 1998; 4:138–143.

    PubMed  CAS  Google Scholar 

  8. Capecchi MR. High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 1980; 22:479–88.

    PubMed  CAS  Google Scholar 

  9. Carson JA, Fillmore RA, Schwartz RJ et al. The smooth muscle gamma-actin gene promoter is a molecular target for the mouse bagpipe homologue, mNkx3-l, and serum response factor. J Biol Chem 2000; 275:39061–39072.

    PubMed  CAS  Google Scholar 

  10. Chang D, Cai X, Consigli RA. Characterization of the DNA binding properties of polyomavirus capsid proteins. J Virol 1993; 67:6327–6331.

    PubMed  CAS  Google Scholar 

  11. Clever J, Kasamatsu H. Simian virus 40 Vp2/3 small structural proteins harbor their own nuclear transport signal. Virology 1991; 181:78–90.

    PubMed  CAS  Google Scholar 

  12. Clever J, Yamada M, Kasamatsu H. Import of simian virus 40 virions through nuclear pore complexes. Proc Natl Acad Sci USA 1991; 88:7333–7337.

    PubMed  CAS  Google Scholar 

  13. Clever JL, Dean DA, Kasamatsu H. Identification of a DNA-binding domain within the simian virus 40 capsid proteins Vp2 and Vp3. J Biol Chem 1993; 268:20877–20883.

    PubMed  CAS  Google Scholar 

  14. Coonrod A, Li FQ, Horwitz M. On the mechanism of DNA transfection: efficient gene transfer without viruses. Gene Ther 1997; 4:1313–1321.

    PubMed  CAS  Google Scholar 

  15. Crooke ST. Molecular mechanisms of action of antisense drugs. Biochim Biophys Acta 1999; 1489:31–44.

    PubMed  CAS  Google Scholar 

  16. Cullen BR. Journey to the center of the cell. Cell 2001; 105:697–700.

    PubMed  CAS  Google Scholar 

  17. Davis LI, Blobel G. Identification and characterization of a nuclear pore complex protein. Cell 1986; 45:699–709.

    PubMed  CAS  Google Scholar 

  18. Dean BS, Byrd JN Jr, Dean DA. Nuclear targeting of plasmid DNA in human corneal cells. Cur. Eye Res. 1999; 19:66–75.

    CAS  Google Scholar 

  19. Dean DA. Import of plasmid DNA into the nucleus is sequence specific. Exp. Cell Res. 1997; 230:293–302.

    PubMed  CAS  Google Scholar 

  20. Dean DA, Dean BS, Muller S et al. Sequence requirements for plasmid nuclear entry. Exp Cell Res 1999; 253:713–722.

    PubMed  CAS  Google Scholar 

  21. Diacumakos EG, Gershey EL. Uncoating and gene expression of simain virus 40 in CV-1 cell nuclei inoculated by microinjection. J Virol 1977; 24:903–906.

    PubMed  CAS  Google Scholar 

  22. Doh SG, Vahlsing HL, Hartikka J et al. Spatial-temporal patterns of gene expression in mouse skeletal muscle after injection of lacZ plasmid DNA. Gene Ther 1997; 4:648–663.

    PubMed  CAS  Google Scholar 

  23. Dowty ME, Williams P, Zhang G et al. Plasmid DNA entry into postmitotic nuclei of primary rat myotubes. Proc Natl Acad Sci USA 1995; 92:4572–4576.

    PubMed  CAS  Google Scholar 

  24. Dvorchik BH. The disposition (ADME) of antisense oligonucleotides. Curr Opin Mol Ther 2000; 2:253–257.

    PubMed  CAS  Google Scholar 

  25. Dynan WS, Chervitz SA. Characterization of a minimal simian virus 40 late promoter: enhancer elements in the 72-base-pair repeat not required. J Virol 1989; 63:1420–1427.

    PubMed  CAS  Google Scholar 

  26. Dynan WS, Tjian R. The promoter-specific transcription factor Spl binds to upstream sequences in the SV40 early promoter. Cell 1983; 35:79–87.

    PubMed  CAS  Google Scholar 

  27. Fasbender A, Zabner J, Zeiher BG et al. A low rate of cell proliferation and reduced DNA uptake limit cationic lipid-meidated gene tranfer to primary cultures of ciliated human airway epithelia. Gene Therapy 1997; 4:1173–1180.

    PubMed  CAS  Google Scholar 

  28. Finlay DR, Newmeyer DD, Price TM et al. Inhibition of in vitro nuclear transport by a lectin that binds to nuclear pores. J Cell Biol 1987; 104:189–200.

    PubMed  CAS  Google Scholar 

  29. Geselowitz DA, Neckers LM. Analysis of oligonucleotide binding, internalization, and intracellular trafficking utilizing a novel radiolabeled crosslinker. Antisense Res Dev 1992; 2:17–25.

    PubMed  CAS  Google Scholar 

  30. Gharakhanian E, Takahashi J, Kasamatsu H. The carboxyl 35 amino acids of SV40 Vp3 are essential for its nuclear accumulation. Virology 1987; 157:440–448.

    PubMed  CAS  Google Scholar 

  31. Glotzer JB, Michou A-I, Baker A et al. Microtubule-independent motility and nuclear targeting of adenoviruses with fluorescently labeled genomes. J Virol 2001; 75:2421–2434.

    PubMed  CAS  Google Scholar 

  32. Graessman M and Graessman A. Regulation of SV40 gene expression. Adv Cancer Res 1981; 35:111–149.

    Google Scholar 

  33. Graessman M, Menne J, Liebler M et al. Helper activity for gene expression, a novel function of the SV40 enhancer. Nucleic Acids Res 1989; 17:6603–6612.

    Google Scholar 

  34. Greber UF, Suomalainen M, Stidwill RP et al. The role of the nuclear pore complex in adenovirus DNA entry. Embo J 1997; 16:5998–6007.

    PubMed  CAS  Google Scholar 

  35. Guralnick B, Thomsen G, Citovsky V. Transport of DNA into the nuclei of Xenopus oocytes by a modified VirE2 protein of Agrobacterium. Plant Cell 1996; 8:363–373.

    PubMed  CAS  Google Scholar 

  36. Hagstrom JE, Ludtke JJ, Bassik MC et al. Nuclear import of DNA in digitonin-permeabilized cells. J Cell Sci 1997; 110:2323–2331.

    PubMed  CAS  Google Scholar 

  37. Hanss B, Leal-Pinto E, Bruggeman LA et al. Identification and characterization of a cell membrane nucleic acid channel. Proc Nad Acad Sci USA 1998; 95:1921–1926.

    CAS  Google Scholar 

  38. Hartig R, Shoeman RL, Janetzko A et al. Active nuclear import of single-stranded oligonucleotides and their complexes with non-karyophilic macromolecules. Biol Cell 1998; 90:407–426.

    PubMed  CAS  Google Scholar 

  39. Hartig R, Shoeman RL, Janetzko A et al. DNA-mediated transport of the intermediate filament protein vimentin into the nucleus of cultured cells. J Cell Sci 1998; 111:3573–3584.

    PubMed  CAS  Google Scholar 

  40. Hartikka J, Sawdey M, Cornefert-Jensen F et al. An improved plasmid DNA expression vector for direct injection into skeletal muscle. Hum Gene Ther 1996; 7:1205–1217.

    PubMed  CAS  Google Scholar 

  41. Heinzinger NK, Bukrinsky MI, Haggerty SA et al. The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc Natl Acad Sci USA 1994; 91:7311–7315.

    PubMed  CAS  Google Scholar 

  42. Islam A, Handley SL, Thompson KS et al. Studies on uptake, sub-cellular trafficking and efflux of antisense oligodeoxynucleotides in glioma cells using self-assembling cationic lipoplexes as delivery systems. J Drug Target 2000; 7:373–382.

    PubMed  CAS  Google Scholar 

  43. James MB, Giorgio TD. Nuclear-associated plasmid, but not cell-associated plasmid, is correlated with transgene expression in cultured mammalian cells. Mol Ther 2000; 1:339–346.

    PubMed  CAS  Google Scholar 

  44. Jenkins Y, McEntee M, Weis K et al. Characterization of HIV-1 vpr nuclear import: analysis of signals and pathways. J Cell Biol 1998; 143:875–885.

    PubMed  CAS  Google Scholar 

  45. Juliano RL, Yoo H. Aspects of the transport and delivery of antisense oligonucleotides. Curr Opin Mol Ther 2000; 2:297–303.

    PubMed  CAS  Google Scholar 

  46. Kann M, Bischof A, Gerlich WH. In vitro model for the nuclear transport of the hepadnavirus genome. J Virol 1997; 71:1310–1316.

    PubMed  CAS  Google Scholar 

  47. Kann M, Sodeik B, Vlachou A et al. Phosphorylation-dependent binding of hepatitis B virus core particles to the nuclear pore complex. J Cell Biol 1999; 145:45–55.

    PubMed  CAS  Google Scholar 

  48. Kasamatsu H, Nakanishi A. How do animal DNA viruses get to the nucleus? Annu Rev Microbiol 1998; 52:627–686.

    PubMed  CAS  Google Scholar 

  49. Kopchick JJ, Ju G, Skalka AM et al. Biological activity of cloned retroviral DNA in microinjected cells. Proc Natl Acad Sci USA 1981; 78:4383–4387.

    PubMed  CAS  Google Scholar 

  50. Kovacs AM, Zimmer WE. Cell specific transcription of the smooth muscle g-actin gene requires both positive and negative acting cis-elements. Gene Exp 1998; 7:115–129.

    CAS  Google Scholar 

  51. Lartey R, Citovsky V. Nucleic acid transport in plant-pathogen interactions. Genet Eng 1997; 19:201–214.

    CAS  Google Scholar 

  52. Lechardeur D, Sohn K-J, Haardt M et al. Metabolic instability of plasmid DNA in the cytosol: A potential barrier to gene transfer. Gene Ther 1999; 6:482–497.

    PubMed  CAS  Google Scholar 

  53. Levin AA. A review of the issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotides. Biochim Biophys Acta 1999; 1489:69–84.

    PubMed  CAS  Google Scholar 

  54. Lewis PF, Emerman M. Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J Virol 1994; 68:510–516.

    PubMed  CAS  Google Scholar 

  55. Loke SL, Stein CA, Zhang XH et al. Characterization of oligonucleotide transport into living cells. Proc Natl Acad Sci USA 1989; 86:3474–3478.

    PubMed  CAS  Google Scholar 

  56. Lorenz P, Baker BF, Bennett CF et al. Phosphorothioate antisense oligonucleotides induce the formation of nuclear bodies. Mol Biol Cell 1998; 9:1007–1023.

    PubMed  CAS  Google Scholar 

  57. Lorenz P, Misteli T, Baker BF et al. Nucleocytoplasmic shuttling: a novel in vivo property of antisense phosphorothioate oligodeoxynucleotides. Nucleic Acids Res 2000; 28:582–592.

    PubMed  CAS  Google Scholar 

  58. Manthorpe M, Cornefert-Jensen F, Hartikka J et al. Gene therapy by intramuscular injection of plasmid DNA: Studies on firefly luciferase gene expression in mice. Hum Gene Ther 1993; 4:419–431.

    PubMed  CAS  Google Scholar 

  59. Marwick C. First “antisense” drug will treat CMV retinitis. Jama 1998; 280:871.

    PubMed  CAS  Google Scholar 

  60. Matlack KE, Misselwitz B, Plath K et al. BiP acts as a molecular ratchet during posttranslational transport of prepro-alpha factor across the ER membrane. Cell 1999; 97:553–564.

    PubMed  CAS  Google Scholar 

  61. Mesika A, Grigoreva I, Zohar M et al. A regulated, NFkappaB-assisted import of plasmid DNA into mammalian cell nuclei. Mol Ther 2001; 3:653–657.

    PubMed  CAS  Google Scholar 

  62. Miller DG, Adam MA, Miller AD. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 1990; 10:4239–4242.

    PubMed  CAS  Google Scholar 

  63. Mirzayans R, Remy AA, Malcom PC. Differential expression and stability of foreign genes introduced into human fibroblasts by nuclear versus cytoplasmic microinjection. Mutation Res 1992; 281:115–122.

    PubMed  CAS  Google Scholar 

  64. Nakanishi A, Clever J, Yamada M et al. Association with capsid proteins promotes nuclear targeting of simian virus 40. Proc Natl Acad Sci USA 1996; 93:96–100.

    PubMed  CAS  Google Scholar 

  65. Newmeyer DD, Finlay DR, Forbes DJ. In vitro transport of a fluorescent nuclear protein and exclusion of non-nuclear proteins. J Cell Biol 1986; 103:2091–2102.

    PubMed  CAS  Google Scholar 

  66. Newmeyer DD, Forbes DJ. Nuclear import can be separated into distinct steps in vitro: Nuclear pore binding and translocation. Cell 1988; 52:641–653.

    PubMed  CAS  Google Scholar 

  67. Newmeyer DD, Forbes DJ. An N-ethylmaleimide-sensitive cytosolic factor necessary for nuclear protein import: requirement in signal-mediated binding to the nuclear pore. J Cell Biol 1990; 110:547–557.

    PubMed  CAS  Google Scholar 

  68. Newmeyer DD, Lucocq JM, Bürglin TR et al. Assembly in vitro of nuclei active in nuclear protein transport: ATP is required for nucleoplasmin accumulation. EMBO J 1986; 5:501–510.

    PubMed  CAS  Google Scholar 

  69. Ojala PM, Sodeik B, Ebersold MW et al. Herpes simplex virus type 1 entry into host cells: reconstitution of capsid binding and uncoating at the nuclear pore complex in vitro. Mol Cell Biol 2000; 20:4922–4931.

    PubMed  CAS  Google Scholar 

  70. Piñol-Roma S and Dreyfuss G. Transcription-dependent and transcription-independent nuclear transport of hnRNP proteins. Science 1991; 253:312–314.

    PubMed  Google Scholar 

  71. Piñol-Roma S and Dreyfuss G. Shuttling of pre-mRNA binding proteins between nucleus and cytoplasm. Nature 1992; 355:730–732.

    PubMed  Google Scholar 

  72. Popov S, Rexach M, Ratner L et al. Viral protein R regulates docking of the HIV-1 preintegration complex to the nuclear pore complex. J Biol Chem 1998; 273:13347–13352.

    PubMed  CAS  Google Scholar 

  73. Popov S, Rexach M, Zybarth G et al. Viral protein R regulates nuclear import of the HIV-1 pre-integration complex. Embo J 1998; 17:909–917.

    PubMed  CAS  Google Scholar 

  74. Relic B, Andjelkovic M, Rossi L et al. Interaction of the DNA modifying proteins VirD1 and VirD2 of Agrobacterium tumefaciens: analysis by subcellular localization in mammalian cells. Proc Natl Acad Sci USA 1998; 95:9105–9110.

    PubMed  CAS  Google Scholar 

  75. Rossi L, Hohn B, Tinland B. The VirD2 protein of Agrobacterium tumefaciens carries nuclear localization signals important for transfer of T-DNA to plant. Mol Gen Genet 1993; 239:345–353.

    PubMed  CAS  Google Scholar 

  76. Rossi L, Hohn B and Tinland B. Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein of Agrobacterium tumefaciens. Proc Natl Acad Sci USA 1996; 93:126–130.

    PubMed  CAS  Google Scholar 

  77. Salman H, Zbaida D, Rabin Y et al. Kinetics and mechanism of DNA uptake into the cell nucleus. Proc Natl Acad Sci USA 2001; 98:7247–7252.

    PubMed  CAS  Google Scholar 

  78. Saphire ACS, Guan T, Schirmer EC et al. Nuclear import of adenovirus DNA in vitro involves the nuclear protein import pathway and hsc70*. J Biol Chem 2000; 275:4298–4304.

    PubMed  CAS  Google Scholar 

  79. Sebestyén MG, Ludtke JL, Bassik MC et al. DNA vector chemistry: the covalent attachment of signal peptides to plasmid DNA. Nature Biotech. 1998; 16:80–85.

    Google Scholar 

  80. Sheng J and Citovsky V. Agrobacterium-plant cell DNA transport: have virulence proteins, will travel. Plant Cell 1996; 8:1699–1710.

    PubMed  CAS  Google Scholar 

  81. Simon SM, Peskin CS and Oster GF. What drives the translocation of proteins? Proc Natl Acad Sci USA 1992; 89:3770–3774.

    PubMed  CAS  Google Scholar 

  82. Sodeik B, Ebersold MW, Helenius A. Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J Cell Biol 1997; 136:1007–1021.

    PubMed  CAS  Google Scholar 

  83. Soussi T. DNA-binding properties of the major structural protein of simian virus 40. J Virol 1986; 59:740–742.

    PubMed  CAS  Google Scholar 

  84. Thornburn AM, Alberts AS. Efficient expression of miniprep plasmid DNA after needle micro-injection into somatic cells. Biotechniques 1993; 14:356–358.

    Google Scholar 

  85. Tseng W, Haselton F, Giogio T. Transfection by cationic liposomes using simultaneous single cell measurements of plasmid delivery and transgene expression. J Biol Chem 1997; 272:25641–25647.

    PubMed  CAS  Google Scholar 

  86. Utvik JK, Nja A, Gundersen K. DNA injection into single cells of intact mice. Hum Gene Ther 1999; 10:291–300.

    PubMed  CAS  Google Scholar 

  87. Vacik J, Dean BS, Zimmer WE et al. Cell-specific nuclear import of plasmid DNA. Gene Ther 1999; 6:1006–1014.

    PubMed  CAS  Google Scholar 

  88. van Loo ND, Fortunati E, Ehlert E et al. Baculovirus infection of nondividing mammalian cells: mechanisms of entry and nuclear transport of capsids. J Virol 2001; 75:961–970.

    PubMed  Google Scholar 

  89. Vodicka MA, Koepp DM, Silver PA et al. HIV-1 Vpr interacts with the nuclear transport pathway to promote macrophage infection. Genes Dev 1998; 12:175–185.

    PubMed  CAS  Google Scholar 

  90. von Schwedler U, Kornbluth RS and Trono D. The nuclear localization signal of the matrix protein of human immunodeficiency virus type 1 allows the establishment of infection in macrophages and quiescent T lymphocytes. Proc Nad Acad Sci USA 1994; 91:6992–6996.

    Google Scholar 

  91. Whittaker GR, Helenius A. Nuclear import and export of viruses and virus genomes. Virology 1998; 246:1–23.

    PubMed  CAS  Google Scholar 

  92. Wildeman AG. Regulation of SV40 early gene expression. Biochem Cell Biol 1988; 66:567–577.

    PubMed  CAS  Google Scholar 

  93. Wilson GL, Dean BS, Wang G et al. Nuclear import of plasmid DNA in digitonin-permeabilized cells requires both cytoplasmic factors and specific DNA sequences. J Biol Chem 1999; 274:22025–22032.

    PubMed  CAS  Google Scholar 

  94. Wolff JA, Ludtke JJ, Acsadi G et al. Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. Hum Mol Genetics 1992; 1:363–369.

    CAS  Google Scholar 

  95. Wolff JA, Malone RW, Williams P et al. Direct gene transfer into mouse muscle in vivo. Science 1990; 247:1465–1468.

    PubMed  CAS  Google Scholar 

  96. Wu-Pong S, Weiss TL, Hunt CA. Antisense c-myc oligonucleotide cellular uptake and activity. Antisense Res Dev 1994; 4:155–163.

    PubMed  CAS  Google Scholar 

  97. Wychowski C, Benichou D, Girard M. A domain of SV40 capsid polypeptide Vpl that specifies migration into the cell nucleus. EMBO J 1986; 5:2569–2576.

    PubMed  CAS  Google Scholar 

  98. Wychowski C, Benichou D, Girard M. The intranuclear localization of simian virus 40 polypeptides Vp2 and Vp3 depends on a specific amino acid sequence. J Virol 1987; 61:3862–3869.

    PubMed  CAS  Google Scholar 

  99. Yakubov LA, Deeva EA, Zarytova VF et al. Mechanism of oligonucleotide uptake by cells: involvement of specific receptors? Proc Natl Acad Sci USA 1989; 86:6454–6458.

    PubMed  CAS  Google Scholar 

  100. Yamada M, Kasamatsu H. Role of nuclear pore complex in simian virus 40 nuclear targeting. J Virol 1993; 67:119–130.

    PubMed  CAS  Google Scholar 

  101. Ye G-J, Vaughan KT, Vallee RB et al. The herpes simplex virus 1 UL34 protein interacts with a cytoplasmic dynein intermediate chain and targets nuclear membrane. J Virol 2000; 74:1355–1363.

    PubMed  CAS  Google Scholar 

  102. Yew NS, Wysokenski DM, Wang KX et al. Optimization of plasmid vectors for high-level expression in lung epithelial cells. Hum Gene Ther 1997; 8:575–584.

    PubMed  CAS  Google Scholar 

  103. Young JL, Byrd JN, Wyatt CR et al. Endothelial cell-specific plasmid nuclear import. Mol Biol Cell 1999; 10S:443a.

    Google Scholar 

  104. Zabner J, Fasbender AJ, Moninger T et al. Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem 1995; 270:18997–19007.

    PubMed  CAS  Google Scholar 

  105. Zelphati O, Liang X, Hobart P et al. Gene chemistry: functionally and conformationally intact fluorescent plasmid DNA. Hum Gene Ther 1999; 10:15–24.

    PubMed  CAS  Google Scholar 

  106. Ziemienowicz A, Gorlich D, Lanka E et al. Import of DNA into mammalian nuclei by proteins originating from a plant pathogenic bacterium. Proc Nad Acad Sci USA 1999; 96:3729–3733.

    CAS  Google Scholar 

  107. Ziemienowicz A, Merkle T, Schoumacher F et al. Import of Agrobacterium T-DNA into Plant Nuclei. Two distinct functions of vird2 and vire2 proteins. Plant Cell 2001; 13:369–384.

    PubMed  CAS  Google Scholar 

  108. Zupan J, Muth TR, Draper O et al. The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J 2000; 23:11–28.

    PubMed  CAS  Google Scholar 

  109. Zupan JR, Citovsky V. Zambryski P. Agrobacterium VirE2 protein mediates nuclear uptake of single-stranded DNA in plant cells. Proc Nad Acad Sci USA 1996; 93:2392–2397.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Dean, D.A., Gokay, K.E. (2005). Nuclear Import of DNA. In: Nuclear Import and Export in Plants and Animals. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27747-1_12

Download citation

Publish with us

Policies and ethics