Advertisement

Policy-Based Resource Sharing in Streaming Overlay Networks

  • K. Selçuk Candan
  • Yusuf Akca
  • Wen-Syan Lit
Chapter
  • 428 Downloads
Part of the Web Information Systems Engineering and Internet Technologies Book Series book series (WISE, volume 2)

Abstract

In this chapter, we discuss peer-to-peer media streaming overlay network architectures and introduce a policy-based architecture for streaming live media from media sources to end-users over independently owned and operated networks. This architecture (mSON) efficiently supports multiple simultaneous media streams, with different sources and user populations, through shared overlay resources. The overlay network infrastructure takes into account the existence of multiple content providers (media sources) and minimizes its footprint to use available resources most effectively. In the meanwhile, it prevents resources from being overutilized to prevent congestions, service rejections, and jitters in the streams users receive. We report experimental results that show that the policy-based mSON achieves these tasks efficiently and effectively.

Keywords

Overlay networks multicasting live media streaming policy-based QoS peer-to-peer adaptation multi-source multi-sink 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acharya, S. and Smith, B. (2000). Middleman: A video caching proxy server. In NOSSDAV.Google Scholar
  2. Akamai Technology (2005). http://www.akamai.com/.Google Scholar
  3. Albrightson, R., Garcia-Luna-Aceves, J.J., and Boyle, J. (1994). Eigrp-a fast routing protocol based on distance vectors. In Networld/Interop.Google Scholar
  4. Amir, Yair, Awerbuch, Baruch, Danilov, Claudiu, and Stanton, Jonathan (2002). Global flow control for wide area overlay networks: a cost-benefit approach. In OPENARCH, pages 155–166.Google Scholar
  5. Andersen, David G., Balakrishnan, Hari, Kaashoek, M. Frans, and Morris, Robert (2001). Resilient overlay networks. In Proc. SOSP 2001, Banff, Canada.Google Scholar
  6. Banerjee, S., Kommareddy, C., Kar, K., Bhattacharjee, B., and Khuller, S. (2003). Construction of an efficient overlay multicast infrastructure for realtime applications. In IEEE INFOCOM, pages 1521–1531.Google Scholar
  7. Banerjee, Suman, Bhattacharjee, Bobby, and Kommareddy, Christopher (2002). Scalable application layer multicast. SIGCOMM Comput. Commun. Rev., 32(4):205–217.CrossRefGoogle Scholar
  8. Birrer, S. and Bustamante, F.E. (2005). Nemo — resilient peer-to-peer multicast without the cost. In MMCN.Google Scholar
  9. Birrer, S., Lu, D., Bustamante, F.E., Y. Qiao, and Dinda, P. (2004). Fatnemo: building a resilient multi-source multicast fat-tree. In Ninth International Workshop on Web Content Caching and Distribution.Google Scholar
  10. Blum, Avrim, Chalasani, Prasad, Coppersmith, Don, Pulleyblank, Bill, Raghavan, Prabhakar, and Sudan, Madhu (1994). The minimum latency problem. In STOC’ 94: Proceedings of the twenty-sixth annual ACM symposium on Theory of computing, pages 163–171.Google Scholar
  11. C-StarOne (2005). http://www.centerspan.com/.Google Scholar
  12. Castro, M., Druschel, P., Kermarrec, A., and Rowstron, A. (2002). SCRIBE: A large-scale and decentralized application-level multicast infrastructure. IEEE Journal on Selected Areas in communications (JSAC), 20(8).Google Scholar
  13. Castro, M., Druschel, P., Kermarrec, A.-M., Nandi, A., Rowstron, A.I.T., and Singh, A. (2003a). Splitstream: high-bandwidth multicast in cooperative environments. In SOSP, pages 298–313.Google Scholar
  14. Castro, M., Jones, M.B., Kermarrec, A.-M., Rowstron, A., Theimer, M., Wang, H., and Wolman, A. (2003b). An evaluation of scalable application-level multicast built using peer-to-peer overlay networks. In IEEE INFOCOM.Google Scholar
  15. Chawathe, Y., McCane, S., and Brewer, E. (2002). An architecture for Internet content distribution as an infrastructure service. http://yatin.chawathe.com/∼yatin/papers/scattercast.ps.Google Scholar
  16. Chu, Y.-H., Rao, S.G., and Zhang, H. (2000). A case for end system multicast. In Measurement and modeling of computer systems, pages 1–12.Google Scholar
  17. Cui, Y., Li, B., and Nahrstedt, K. (2004). ostream: asynchronous streaming multicast in application-layer overlay networks. IEEE Journal on Selected Areas in Communications, 22(1).Google Scholar
  18. Cui, Y and Nahrstedt, K. (2003). Layered peer-to-peer streaming. In NOSS DAV’ 03: Proceedings of the 13th international workshop on Network and operating systems support for digital audio and video, pages 162–171.Google Scholar
  19. Cui, Y., Xue, Y., and Nahrstedt, K. (2003). Optimal resource allocation in overlay multicast. In ICNP, pages 71–83.Google Scholar
  20. Deshpande, H., Bawa, M., and Garcia-Molina, H. (2001). Streaming live media over a peer-to-peer network. Technical Report 2001-30, Stanford University.Google Scholar
  21. Eriksson, H. (1994). MBone: the multicast backbone. Communications of the ACM, pages 54–60.Google Scholar
  22. Garcia-Lunes-Aceves, J. J. (1993). Loop-free routing using diffusing computations. IEEE/ACM Trans. Netw., 1(1):130–141.CrossRefGoogle Scholar
  23. Jin, S., Bestavros, A., and Iyengar, A. (2002). Accelerating Internet streaming media delivery using network-aware partial caching. In International Conference on Distributed Computing Systems.Google Scholar
  24. Kar, K., Sarkar, S., and Tassiulas, L. (2001). Optimization based rate control for multirate multicast sessions. In INFOCOM, pages 123–132.Google Scholar
  25. Kelly, F., Maulloo, A., and Tan, D. (1998). Rate control in communication networks: shadow prices, proportional fairness and stability. Journal of the Operational Research Society, 49(3):237–252.CrossRefGoogle Scholar
  26. Lim, L. K., Gao, J., Ng, T. S. E., Chandra, P. R., Steenkiste, P., and Zhang, H. (2001). Customizable virtual private network service with QoS. Computer Networks, pages 137–151.Google Scholar
  27. Miao, Z. and Ortega, A. (1999). Proxy caching for efficient video services over the Internet. In PVW.Google Scholar
  28. M.S. Kim, Lam, S.S., and Lee, D.-Y. (2003). Optimal distribution tree for Internet streaming media. In ICDCS, pages 116–125.Google Scholar
  29. Murthy, S. and Garcia-Lunes-Aceves, J. J. (1995). Dynamics of a loop-free path-finding algorithm. In IEEE Globecom, pages 1347–1351.Google Scholar
  30. Nguyen, T. and Zakhor, A. (2002). Distributed video streaming over the Internet. In Multimedia Computing and Networking (MMCN).Google Scholar
  31. Padmanabhan, V.N., Wang, H.J., Chou, P.A., and Sripanidkulchai, K. (2002). Distributing streaming media content using cooperative networking. In NOSSDAV, pages 177–186.Google Scholar
  32. Pai, V., Kumar, K., Tamilmani, K., Sambamurthy, V., and Mohr, A. E. (2005). Chainsaw: eliminating trees from overlay multicast. In 4th International Workshop on Peer-to-Peer Systems.Google Scholar
  33. Passmore, D. and Freeman, J. (1997). The virtual LAN technology. Technical Report 200374-001, 3COM.Google Scholar
  34. Rajaie, R., Yu, H., Handley, M., and Estrin, D. (2000). Multimedia proxy caching mechanism for quality adaptive streaming applications on the Internet. In INFOCOM.Google Scholar
  35. RealNetworks (2005). http://www.real.com/.Google Scholar
  36. Schmid, Andreas and Steigner, Christoph (2002). Avoiding counting to infinity in distance vector routing. Telecommunication Systems, 19(3-4):497–514.CrossRefGoogle Scholar
  37. Scott, C., Wolfe, P., and Erwin, M. (1998). Virtual private networks. OReilly, Sebastopol.Google Scholar
  38. Sen, S., Rexford, J., and Towsley, D. (1999). Proxy prefix caching for multimedia servers. In INFOCOM.Google Scholar
  39. Shi, S. and Turner, J. (2002). Routing in overlay multicast networks. In IEEE INFOCOM, pages 1200–1208.Google Scholar
  40. Su, G. and Yemini, Y. (2001). Virtual Active Networks: Towards multi-edged network computing. Computer Networks, pages 153–168.Google Scholar
  41. Takahashi, E., Steenkiste, P., Gao, J., and Fischer, A. (1999). A programming interface for network resource management. In Proceedings of the 1999 IEEE Open Architectures and Network Programming, pages 34–44.Google Scholar
  42. Touch, J. (2001). Dynamic Internet overlay deployment and management using the X-Bone. Computer Networks, pages 117–135.Google Scholar
  43. Tran, D.A., Hua, K.A., and Do, T.T. (2003). Zigzag: an efficient peer-to-peer scheme for media streaming. In INFOCOM.Google Scholar
  44. Wang, Y, Zhang, Z. L., Du, D. H., and Su, D. (1998). A network conscious approach to end-to-end delivery over wide-area networks using proxy servers. In INFOCOM.Google Scholar
  45. Xu, D., Hefeeda, M., Hambrusch, S.E., and Bhargava, B.K. (2002). On peer-to-peer media streaming. In ICDCS, pages 363–371.Google Scholar
  46. Yang, J. (2003). Deliver multimedia streams with flexible qos via a multicast DAG. In ICDCS, pages 126–137.Google Scholar
  47. Zegura, Ellen W., Calvert, Kenneth L., and Bhattacharjee, Samrat (1996). How to model an internetwork. In INFOCOM, pages 594–602.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • K. Selçuk Candan
    • 1
    • 2
  • Yusuf Akca
    • 1
  • Wen-Syan Lit
    • 1
    • 3
  1. 1.NEC Laboratories AmericaCupertinoUSA
  2. 2.CSE Dept.Arizona State UniversityTempeUSA
  3. 3.IBM Almaden Research LabsSan JoseUSA

Personalised recommendations