Skip to main content

The Mechanistic Relationship between NREM Sleep and Anesthesia

  • Chapter
Sleep and Sleep Disorders

Abstract

The mechanisms by which both natural sleep and anesthesia generate and maintain a loss of consciousness are currently the focus of much investigation. The neuronal networks of substrates mediating endogenous regulation of consciousness level are complex. Much research has focused on understanding the neural correlates of wakefulness, NREM sleep, REM sleep and transitions between sleep and wake states, but a molecular basis for these behavioral alterations is only beginning to emerge. Mechanisms governing anesthesia, the pharmacological modulation of consciousness level, which shares the key common feature of loss of response to external stimuli with endogenous sleep, are even less clear. Several qualitative similarities between sleep and anesthesia suggest that pharmacological “sleep” may be transduced via activation of existing neurological pathways involved in promoting natural sleep. This chapter reviews how these mechanisms may intersect and outlines the neurochemical, pharmacological, and anatomical evidence that two classes of anesthetic drugs exert their hypnotic effects, at least in part, by duplicating activities of specific brain regions important for initiating and maintaining endogenous NREM sleep. Experiments demonstrate that anesthetic agents that are proven, or postulated, to act on α2-adrenoceptors (e.g., dexmedetomidine, clonidine) and GABAA receptors (e.g., muscimol, propofol, and pentobarbital, isoflurane) induce a loss of consciousness, at least in part, via activation of endogenous nonrapid eye movement (NREM) sleep-promoting pathways at different junctions. One critical difference relates to the fact that the noradrenergic neurons within the locus coeruleus maintain their “awake” activity during hypnosis produced by compounds putatively mediated via the GABAA receptor while this collection of neurons is inactive during hypnosis produced by α2-adrenoceptor agonists. This crucial difference may represent the reasons for the qualitative differences in the sedative/hypnotic response produced by these classes of anesthetic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shafer A. Metaphor and anesthesia. Anesthesiology 1995; 83(6):1331–42.

    Article  CAS  PubMed  Google Scholar 

  2. Amzica F, Steriade M. The K-complex: Its slow (<1-Hz) rhythmicity and relation to delta waves. Neurology 1997; 49(4):952–9.

    CAS  PubMed  Google Scholar 

  3. Rampil IJ. A primer for EEG signal processing in anesthesia. Anesthesiology 1998; 89(4):980–1002.

    Article  CAS  PubMed  Google Scholar 

  4. Sleigh JW, Andrzejowski J, Steyn-Ross A et al. The bispectral index: A measure of depth of sleep? Anesth Analg 1999; 88(3):659–61.

    Article  CAS  PubMed  Google Scholar 

  5. Tung A, Lynch JP, Roizen MF. Use of the bis monitor to detect onset of naturally occurring sleep. J Clin Monit Comput 2002; 17(1):37–42.

    Article  PubMed  Google Scholar 

  6. Alkire MT, Pomfrett CJ, Haier RJ et al. Functional brain imaging during anesthesia in humans: Effects of halothane on global and regional cerebral glucose metabolism. Anesthesiology 1999; 90(3):701–9.

    Article  CAS  PubMed  Google Scholar 

  7. Vahle-Hinz C, Detsch O, Siemers M et al. Local GABA(A) receptor blockade reverses isoflurane’s suppressive effects on thalamic neurons in vivo. Anesth Analg 2001; 92(6):1578–84.

    Article  CAS  PubMed  Google Scholar 

  8. Bergmann BM, Kushida CA, Everson CA et al. Sleep deprivation in the rat: II. Methodology. Sleep 1989; 12(1):5–12.

    CAS  PubMed  Google Scholar 

  9. Tung A, Szafran MJ, Bluhm B et al. Sleep deprivation potentiates the onset and duration of loss of righting reflex induced by propofol and isoflurane. Anesthesiology 2002; 97(4):906–11.

    Article  CAS  PubMed  Google Scholar 

  10. Tung A, Bluhm B, Mendelson WB. The hypnotic effect of propofol in the medial preoptic area of the rat. Life Sci 2001; 69(7):855–62.

    Article  CAS  PubMed  Google Scholar 

  11. Mendelson WB, Martin JV. Characterization of the hypnotic effects of triazolam microinjections into the medial preoptic area. Life Sci 1992; 50(15):1117–28.

    Article  CAS  PubMed  Google Scholar 

  12. Mendelson WB. Sleep induction by microinjection of pentobarbital into the medial preoptic area in rats. Life Sci 1996; 59(22):1821–8.

    Article  CAS  PubMed  Google Scholar 

  13. McGinty DJ, Sterman MB. Sleep suppression after basal forebrain lesions in the cat. Science 1968; 160(833):1253–5.

    Article  CAS  PubMed  Google Scholar 

  14. Ali M, Jha SK, Kaur S et al. Role of GABA-A receptor in the preoptic area in the regulation of sleep-wakefulness and rapid eye movement sleep. Neurosci Res 1999; 33(3):245–50.

    Article  CAS  PubMed  Google Scholar 

  15. Hales TG, Lambert JJ. The actions of propofol on inhibitory amino acid receptors of bovine adrenomedullary chromaffin cells and rodent central neurones. Br J Pharmacol 1991; 104(3):619–28.

    CAS  PubMed  Google Scholar 

  16. Shyr MH, Tsai TH, Yang CH et al. Propofol anesthesia increases dopamine and serotonin activities at the somatosensory cortex in rats: A microdialysis study. Anesth Analg 1997; 84(6):1344–8.

    Article  CAS  PubMed  Google Scholar 

  17. Violet JM, Downie DL, Nakisa RC et al. Differential sensitivities of mammalian neuronal and muscle nicotinic acetylcholine receptors to general anesthetics. Anesthesiology 1997; 86(4):866–74.

    Article  CAS  PubMed  Google Scholar 

  18. Flood P, Ramirez-Latorre J, Role L. Alpha 4 beta 2 neuronal nicotinic acetylcholine receptors in the central nervous system are inhibited by isoflurane and propofol, but alpha 7-type nicotinic acetylcholine receptors are unaffected. Anesthesiology 1997; 86(4):859–65.

    Article  CAS  PubMed  Google Scholar 

  19. Tung A, Lynch JP, Mendelson WB. Prolonged sedation with propofol in the rat does not result in sleep deprivation. Anesth Analg 2001; 92(5):1232–6.

    Article  CAS  PubMed  Google Scholar 

  20. Keifer JC, Baghdoyan HA, Becker L et al. Halothane decreases pontine acetylcholine release and increases EEG spindles. Neuroreport 1994; 5(5):577–80.

    Article  CAS  PubMed  Google Scholar 

  21. Mortazavi S, Thompson J, Baghdoyan HA et al. Fentanyl and morphine, but not remifentanil, inhibit acetylcholine release in pontine regions modulating arousal. Anesthesiology 1999; 90(4):1070–7.

    Article  CAS  PubMed  Google Scholar 

  22. Meuret P, Backman SB, Bonhomme V et al. Physostigmine reverses propofol-induced unconsciousness and attenuation of the auditory steady state response and bispectral index in human volunteers. Anesthesiology 2000; 93(3):708–17.

    Article  CAS  PubMed  Google Scholar 

  23. Keifer JC, Baghdoyan HA, Lydic R. Sleep disruption and increased apneas after pontine microinjection of morphine. Anesthesiology 1992; 77(5):973–82.

    Article  CAS  PubMed  Google Scholar 

  24. Lydic R, Keifer JC, Baghdoyan HA et al. Microdialysis of the pontine reticular formation reveals inhibition of acetylcholine release by morphine. Anesthesiology 1993; 79(5):1003–12.

    Article  CAS  PubMed  Google Scholar 

  25. Capece ML, Baghdoyan HA, Lydic R. Opioids activate G proteins in REM sleep-related brain stem nuclei of rat. Neuroreport 1998; 9(13):3025–8.

    Article  CAS  PubMed  Google Scholar 

  26. Kshatri AM, Baghdoyan HA, Lydic R. Cholinomimetics, but not morphine, increase antinociceptive behavior from pontine reticular regions regulating rapid-eye-movement sleep. Sleep 1998; 21(7):677–85.

    CAS  PubMed  Google Scholar 

  27. Sherin JE, Shiromani PJ, McCarley RW et al. Activation of ventrolateral preoptic neurons during sleep. Science 1996; 271(5246):216–9.

    Article  CAS  PubMed  Google Scholar 

  28. Chou TC, Bjorkum AA, Gaus SE et al. Afferents to the ventrolateral preoptic nucleus. J Neurosci 2002; 22(3):977–90.

    CAS  PubMed  Google Scholar 

  29. Gallopin T, Fort P, Eggermann E et al. Identification of sleep-promoting neurons in vitro. Nature 2000; 404(6781):992–5.

    Article  CAS  PubMed  Google Scholar 

  30. Lu J, Bjorkum AA, Xu M et al. Selective activation of the extended ventrolateral preoptic nucleus during rapid eye movement sleep. J Neurosci 2002; 22(11):4568–76.

    CAS  PubMed  Google Scholar 

  31. Gaus SE, Strecker RE, Tate BA et al. Ventrolateral preoptic nucleus contains sleep-active, galaninergic neurons in multiple mammalian species. Neuroscience 2002; 115(1):285–94.

    Article  CAS  PubMed  Google Scholar 

  32. Sherin JE, Elmquist JK, Torrealba F et al. Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J Neurosci 1998; 18(12):4705–21.

    CAS  PubMed  Google Scholar 

  33. Lin JS, Sakai K, Jouvet M. Evidence for histaminergic arousal mechanisms in the hypothalamus of cat. Neuropharmacology 1988; 27(2):111–22.

    Article  CAS  PubMed  Google Scholar 

  34. Steininger TL, Alam MN, Gong H et al. Sleep-waking discharge of neurons in the posterior lateral hypothalamus of the albino rat. Brain Res 1999; 840(1–2):138–47.

    Article  CAS  PubMed  Google Scholar 

  35. Yang QZ, Hatton GI. Electrophysiology of excitatory and inhibitory afferents to rat histaminergic tuberomammillary nucleus neurons from hypothalamic and forebrain sites. Brain Res 1997; 773(1–2):162–72.

    Article  CAS  PubMed  Google Scholar 

  36. Lu J, Greco MA, Shiromani P et al. Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J Neurosci 2000; 20(10):3830–42.

    CAS  PubMed  Google Scholar 

  37. Nelson LE, Guo TZ, Lu J et al. The sedative component of anesthesia is mediated by GABAA receptors in an endogenous sleep pathway. Nat Neurosci 2002; 5(10):979–984.

    Article  CAS  PubMed  Google Scholar 

  38. Bremer F. Cerebral hypnogenic centers. Ann Neurol 1977; 2(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  39. Saper CB, Chou TC, Scammell TE. The sleep switch: Hypothalamic control of sleep and wakefulness. Trends Neurosci 2001; 24(12):726–31.

    Article  CAS  PubMed  Google Scholar 

  40. Chemelli RM, Willie JT, Sinton CM et al. Narcolepsy in orexin knockout mice: Molecular genetics of sleep regulation. Cell 1999; 98(4):437–51.

    Article  CAS  PubMed  Google Scholar 

  41. Marcus JN, Aschkenasi CJ, Lee CE et al. Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 2001; 435(1):6–25.

    Article  CAS  PubMed  Google Scholar 

  42. Meyer HH. Zur theorie de alkoholnarkose. I. Mitt. Welche eigenschaft der anasthetika bedingt ihre narkotische wirkung? Arch Exp Path Pharmakol 1899; 42:109.

    Article  Google Scholar 

  43. Kaufman RD. Biophysical mechanisms of anesthetic action: Historical perspective and review of current concepts. Anesthesiology 1977; 46(1):49–62.

    Article  CAS  PubMed  Google Scholar 

  44. Roth SH. Membrane and cellular actions of anesthetic agents. Fed Proc 1980; 39(5):1595–9.

    CAS  PubMed  Google Scholar 

  45. Eger EI2, Koblin DD. Unitary versus multiple mechanisms of anesthesia. Anesthesiology 1995; 83(6):1368.

    Article  PubMed  Google Scholar 

  46. Franks NP, Lieb WR. Do general anaesthetics act by competitive binding to specific receptors? Nature 1984; 310(5978):599–601.

    Article  CAS  PubMed  Google Scholar 

  47. Patel AJ, Honore E, Lesage F et al. Inhalational anesthetics activate two-poredomain background K+ channels. Nat Neurosci 1999; 2(5):422–6.

    Article  CAS  PubMed  Google Scholar 

  48. Franks NP, Lieb WR. Molecular and cellular mechanisms of general anaesthesia. Nature 1994; 367(6464):607–14.

    Article  CAS  PubMed  Google Scholar 

  49. Anis NA, Berry SC, Burton NR et al. The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br J Pharmacol 1983; 79(2):565–75.

    CAS  PubMed  Google Scholar 

  50. Jevtovic-Todorovic V, Todorovic SM, Mennerick S et al. Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nat Med 1998; 4(4):460–3.

    Article  CAS  PubMed  Google Scholar 

  51. Franks NP, Dickinson R, de Sousa SL et al. How does xenon produce anaesthesia? Nature 1998; 396(6709):324.

    Article  CAS  PubMed  Google Scholar 

  52. Krasowski MD, Harrison NL. General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci 1999; 55(10):1278–303.

    Article  CAS  PubMed  Google Scholar 

  53. Thompson SA, Wafford K. Mechanism of action of general anaesthetics—new information from molecular pharmacology. Curr Opin Pharmacol 2001; 1(1):78–83.

    Article  CAS  PubMed  Google Scholar 

  54. Mihic SJ, Ye Q, Wick MJ et al. Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature 1997; 389(6649):385–9.

    Article  CAS  PubMed  Google Scholar 

  55. Adodra S, Hales TG. Potentiation, activation and blockade of GABAA receptors of clonal murine hypothalamic GT1-7 neurones by propofol. Br J Pharmacol 1995; 115(6):953–60.

    CAS  PubMed  Google Scholar 

  56. Reynolds DS, Rosahl TW, Cirone J et al. Sedation and anesthesia mediated by distinct GABA(A) receptor isoforms. J Neurosci 2003; 23(24):8608–8617.

    CAS  PubMed  Google Scholar 

  57. McKernan RM, Rosahl TW, Reynolds DS et al. Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABA(A) receptor alpha1 subtype. Nat Neurosci 2000; 3(6):587–592.

    Article  CAS  PubMed  Google Scholar 

  58. Reynolds DS, McKernan RM, Dawson GR. Anxiolytic-like action of diazepam: Which GABA(A) receptor subtype is involved? Trends Pharmacol Sci 2001; 22(8):402–403.

    Article  CAS  PubMed  Google Scholar 

  59. Rudolph U, Crestani F, Benke D et al. Benzodiazepine actions mediated by specific gamma-aminobutyric acid(A) receptor subtypes. Nature 1999; 401(6755):796–800.

    Article  CAS  PubMed  Google Scholar 

  60. Low K, Crestani F, Keist R et al. Molecular and neuronal substrate for the selective attenuation of anxiety. Science 2000; 290(5489):131–4.

    Article  CAS  PubMed  Google Scholar 

  61. Sanger DJ, Morel E, Perrault G. Comparison of the pharmacological profiles of the hypnotic drugs, zaleplon and zolpidem. Eur J Pharmacol 1996; 313(1–2):35–42.

    Article  CAS  PubMed  Google Scholar 

  62. Ebert TJ, Hall JE, Barney JA et al. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology 2000; 93(2):382–94.

    Article  CAS  PubMed  Google Scholar 

  63. Lakhlani PP, MacMillan LB, Guo TZ et al. Substitution of a mutant alpha2a-adrenergic receptor via “hit and run” gene targeting reveals the role of this subtype in sedative, analgesic, and anesthetic-sparing responses in vivo. Proc Natl Acad Sci USA 1997; 94(18):9950–5.

    Article  CAS  PubMed  Google Scholar 

  64. MacDonald E, Scheinin M. Distribution and pharmacology of alpha 2-adrenoceptors in the central nervous system. J Physiol Pharmacol 1995; 46(3):241–58.

    CAS  PubMed  Google Scholar 

  65. Aston-Jones G, Rajkowski J, Kubiak P et al. Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. J Neurosci 1994; 14(7):4467–80.

    CAS  PubMed  Google Scholar 

  66. Correa-Sales C, Rabin BC, Maze M. A hypnotic response to dexmedetomidine, an alpha 2 agonist, is mediated in the locus coeruleus in rats. Anesthesiology 1992; 76(6):948–52.

    Article  CAS  PubMed  Google Scholar 

  67. Correa-Sales C, Nacif-Coelho C, Reid K et al. Inhibition of adenylate cyclase in the locus coeruleus mediates the hypnotic response to an alpha 2 agonist in the rat. J Pharmacol Exp Ther 1992; 263(3):1046–9.

    CAS  PubMed  Google Scholar 

  68. Williams JT, North RA. Catecholamine inhibition of calcium action potentials in rat locus coeruleus neurones. Neuroscience 1985; 14(1):103–9.

    Article  CAS  PubMed  Google Scholar 

  69. Williams JT, Henderson G, North RA. Characterization of alpha 2-adrenoceptors which increase potassium conductance in rat locus coeruleus neurones. Neuroscience 1985; 14(1):95–101.

    Article  CAS  PubMed  Google Scholar 

  70. Birnbaumer L, Abramowitz J, Brown AM. Receptor-effector coupling by G proteins. Biochim Biophys Acta 1990; 1031(2):163–224.

    CAS  PubMed  Google Scholar 

  71. Nacif-Coelho C, Correa-Sales C, Chang LL et al. Perturbation of ion channel conductance alters the hypnotic response to the alpha 2-adrenergic agonist dexmedetomidine in the locus coeruleus of the rat. Anesthesiology 1994; 81(6):1527–34.

    Article  CAS  PubMed  Google Scholar 

  72. Guo TZ, Tinklenberg J, Oliker R et al. Central alpha 1-adrenoceptor stimulation functionally antagonizes the hypnotic response to dexmedetomidine, an alpha 2-adrenoceptor agonist. Anesthesiology 1991; 75(2):252–6.

    Article  CAS  PubMed  Google Scholar 

  73. Nelson LE, Lu J, Guo TZ et al. The /alpha/2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep pathway to produce its hypnotic response. Anesthesiology 2003; 98(2):428–436.

    Article  CAS  PubMed  Google Scholar 

  74. Hunter JC, Fontana DJ, Hedley LR et al. Assessment of the role of alpha2-adrenoceptor subtypes in the antinociceptive, sedative and hypothermic action of dexmedetomidine in transgenic mice. Br J Pharmacol 1997; 122(7):1339–44.

    Article  CAS  PubMed  Google Scholar 

  75. Guo TZ, Davies MF, Kingery WS et al. Nitrous oxide produces antinociceptive response via alpha2B and/or alpha2C adrenoceptor subtypes in mice. Anesthesiology 1999; 90(2):470–6.

    Article  CAS  PubMed  Google Scholar 

  76. Aurell J, Elmqvist D. Sleep in the surgical intensive care unit: Continuous polygraphic recording of sleep in nine patients receiving postoperative care. Br Med J (Clin Res Ed) 1985; 290(6474):1029–32.

    Article  CAS  Google Scholar 

  77. Cronin AJ, Keifer JC, Davies MF et al. Postoperative sleep disturbance: Influences of opioids and pain in humans. Sleep 2001; 24(1):39–44.

    CAS  PubMed  Google Scholar 

  78. Krska J, MacLeod TN. Sleep quality and the use of benzodiazepine hypnotics in general practice. J Clin Pharm Ther 1995; 20(2):91–6.

    Article  CAS  PubMed  Google Scholar 

  79. Shiihara Y, Nogami T, Chigira M et al. Sleep-wake rhythm during stay in an intensive care unit: A week’s long-term recording of skin potentials. Psychiatry Clin Neurosci 2001; 55(3):279–80.

    Article  CAS  PubMed  Google Scholar 

  80. Sveinsson IS. Postoperative psychosis after heart surgery. J Thorac Cardiovasc Surg 1975; 70(4):717–26.

    CAS  PubMed  Google Scholar 

  81. Venn RM, Bradshaw CJ, Spencer R et al. Preliminary UK experience of dexmedetomidine, a novel agent for postoperative sedation in the intensive care unit. Anaesthesia 1999; 54(12):1136–42.

    Article  CAS  PubMed  Google Scholar 

  82. Jones MEP, Coull JT, Egan TD et al. The effects of dexmedetomidine and midazolam on functional brain activity during rest and tasking. Anesthesiol 2003; in press.

    Google Scholar 

  83. Chen HI, Tang YR. Sleep loss impairs inspiratory muscle endurance. Am Rev Respir Dis 1989; 140(4):907–9.

    CAS  PubMed  Google Scholar 

  84. White DP, Douglas NJ, Pickett CK et al. Sleep deprivation and the control of ventilation. Am Rev Respir Dis 1983; 128(6):984–6.

    CAS  PubMed  Google Scholar 

  85. Kornfeld DS. Psychiatric view of the intensive care unit. Br Med J 1969; 1(636):108–10.

    Article  CAS  PubMed  Google Scholar 

  86. Brown R, Pang G, Husband AJ et al. Suppression of immunity to influenza virus infection in the respiratory tract following sleep disturbance. Reg Immunol 1989; 2(5):321–5.

    CAS  PubMed  Google Scholar 

  87. Everson CA, Bergmann BM, Rechtschaffen A. Sleep deprivation in the rat: III. Total sleep deprivation. Sleep 1989; 12(1):13–21.

    CAS  PubMed  Google Scholar 

  88. Everson CA. Sustained sleep deprivation impairs host defense. Am J Physiol 1993; 265(5 Pt 2):1148–54.

    Google Scholar 

  89. Everson CA, Toth LA. Systemic bacterial invasion induced by sleep deprivation. Am J Physiol Regul Integr Comp Physiol 2000; 278(4):905–16.

    Google Scholar 

  90. Rechtschaffen A, Bergmann BM, Gilliland MA et al. Effects of method, duration, and sleep stage on rebounds from sleep deprivation in the rat. Sleep 1999; 22(1):11–31.

    CAS  PubMed  Google Scholar 

  91. Krachman SL, D’Alonzo GE, Criner GJ. Sleep in the intensive care unit. Chest 1995; 107(6):1713–20.

    Article  CAS  PubMed  Google Scholar 

  92. Beller JP, Pottecher T, Lugnier A et al. Prolonged sedation with propofol in ICU patients: Recovery and blood concentration changes during periodic interruptions in infusion. Br J Anaesth 1988; 61(5):583–8.

    Article  CAS  PubMed  Google Scholar 

  93. Ortells MO, Lunt GG. Evolutionary history of the ligand-gated ion-channel superfamily of receptors. Trends Neurosci 1995; 18(3):121–127.

    Article  CAS  PubMed  Google Scholar 

  94. Bonnert TP, McKernan RM, Farrar S et al. Theta, a novel gamma-aminobutyric acid type A receptor subunit. Proc Natl Acad Sci USA 1999; 96(17):9891–9896.

    Article  CAS  PubMed  Google Scholar 

  95. Mehta AK, Ticku MK. An update on GABAA receptors. Brain Res Brain Res Rev 1999; 29(2–3):196–217.

    Article  CAS  PubMed  Google Scholar 

  96. Barnard EA, Skolnick P, Olsen RW et al. International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: Classification on the basis of subunit structure and receptor function. Pharmacol Rev 1998; 50(2):291–313.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience/Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Nelson, L.E., Franks, N.P., Maze, M. (2006). The Mechanistic Relationship between NREM Sleep and Anesthesia. In: Sleep and Sleep Disorders. Springer, Boston, MA. https://doi.org/10.1007/0-387-27682-3_6

Download citation

Publish with us

Policies and ethics