Skip to main content

Role of Wakefulness Area in the Brainstem Reticular Formation in Regulating Rapid Eye Movement Sleep

  • Chapter
Sleep and Sleep Disorders
  • 2099 Accesses

Abstract

Rapid eye movement sleep is a unique paradoxical state within sleep period. Normally it follows deep sleep, is maintained for varying duration and may terminate in either sleep or wake state. During REM sleep some neurons increase firing, the REM-ON neurons, while some others cease firing, the REM-OFF neurons. Although the mechanism is not completely known, these REM sleep -related neurons are likely to play a significant role in the initiation and maintenance of REM sleep. It was proposed that GABA may be involved in the cessation of REM-OFF neurons and the classical sleep and waking areas in the brain stem are likely to modulate the REM-ON and REM-OFF neurons for the regulation of REM sleep.

Results from our single neuronal activity experiments in freely behaving animals confirmed that the brain stem area, which induce wakefulness inhibit the REM-ON neurons but stimulate the REM-OFF neurons. Microinjection studies revealed that the increase in REM sleep by the cholinergic input (possibly from REM-ON neurons) to the locus coeruleus (where REM-OFF neurons are located) is mediated through GABA. Thus, it is proposed that during wakefulness the REM-ON neurons are inhibited while the REM-OFF neurons are active. During sleep gradually the awake-related neurons slow down withdrawing their effects on REM sleep related neurons. This causes an increase in the REM-ON neuronal activity inducing release of acetylcholine on the GABA-ergic neurons in the locus coeruleus. GABA then inhibits the REM-OFF neurons resulting in the initiation of REM sleep. The presence of GABA in optimum concentration maintains the duration of REM sleep episode.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aserinsky E, Kleitman N. Regularly occurring periods of eye motility and concomitant phenomena during sleep. Science 1953; 118:273–274.

    Article  CAS  PubMed  Google Scholar 

  2. Kleitman N. Sleep and wakefulness. Chicago: University of Chicago Press, 1939.

    Google Scholar 

  3. Guilleminault C. Narcolepsy syndrome. In: Kryger MH, Roth T, Dement WC, eds. Principles and Practice of Sleep Medicine. WB Saunders Co 1989:338–346.

    Google Scholar 

  4. El Mansari M, Sakai M, Jouvet M. Unitary characteristics of presumptive cholinergic tegmental neurons during sleep-waking cycle in freely moving cats. Exp Brain Res 1989; 76:519–529.

    Article  PubMed  Google Scholar 

  5. Kayama Y, Ohta M, Jodo E. Firing of possibly cholinergic neurons in the rat laterodorsal tegmental nucleus during sleep wakefulness. Brain Res 1992; 569:20–21.

    Article  Google Scholar 

  6. Sakai K, Kayama Y. Are there cholinergic and noncholinergic paradoxical sleep-on neurones in the pons? NeuroReport 1996; 7:2449–2453.

    Article  CAS  PubMed  Google Scholar 

  7. Chu NS, Bloom FE. Activity patterns of catecholamine-containing pontine neurons in the dorsolateral tegmentum of unrestrained cats. J Neurobiol 1974; 5:527–544.

    Article  CAS  PubMed  Google Scholar 

  8. Aston-Jones G, Bloom FE. Activity of norepinephrine containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1981; 1:876–886.

    CAS  PubMed  Google Scholar 

  9. McGinty DJ, Harper RW. Dorsal raphe neurons: Depression of firing during sleep in cats. Brain Res 1976; 101:569–575.

    Article  CAS  PubMed  Google Scholar 

  10. Vanni-Mercier G, Sakai K, Jouvet M. Waking state specific neurons in the caudal hypothalamus of the cat. C R Acad Sci 1984; 298:195–220.

    CAS  Google Scholar 

  11. Lin JS, Luppi PH, Salvert D et al. Histamine containing neurons in the cat hypothalamus. C R Acad Sci 1986; 303:371–376.

    CAS  Google Scholar 

  12. Mallick BN, Siegel JM, Fahringer H. Changes in pontine unit activity with REM sleep deprivation. Brain Res 1989; 515:94–98.

    Article  Google Scholar 

  13. Singh S, Mallick BN. Mild electrical stimulation of pontine tegmentum around locus coeruleus reduces rapid eye movement sleep. Neurosci Res 1996; 24:227–235.

    Article  CAS  PubMed  Google Scholar 

  14. Baghdoyan HA, Rodrigo-Anglio ML, McCarley RW. Site-specific enhancement and suppression of desynchronised sleep signs following cholinergic stimulation of three brainstem areas. Brain Res 1984; 306:39–52.

    Article  CAS  PubMed  Google Scholar 

  15. Vanni-Mercier G, Sakai K, Lin JS et al. Mapping of cholinoceptive brainstem structures responsible for the generation of paradoxical sleep in the cat. Arch Ital Biol 1989; 127:133–164.

    CAS  PubMed  Google Scholar 

  16. Yamamoto K, Mamelak AN, Quattrochi JJ et al. A cholinoceptive desynchronized sleep induction zone in the anterodorsal pontine tegmentum: Locus of the sensitive region. Neuroscience 1990; 39:279–293.

    Article  CAS  PubMed  Google Scholar 

  17. Datta S, Calvo JM, Quattrochi JJ et al. Long term enhancement of REM sleep following cholinergic stimulation. Neuroreport 1991; 2:619–222.

    Article  CAS  PubMed  Google Scholar 

  18. Cespuglio R, Gomez ME, Faradji H et al. Alterations in the sleep-waking cycle induced by cooling of the locus coeruleus area. EEG Clin Neurophysiol 1982; 54:570–578.

    Article  CAS  Google Scholar 

  19. Braun CM, Pivik RT. Effects of locus coeruleus lesions upon sleeping and waking in the rabbit. Brain Res 1981; 230:133–151.

    Article  CAS  PubMed  Google Scholar 

  20. Caballero A, De Andres I. Unilateral lesions in locus coeruleus area enhance paradoxical sleep. EEG Clin Neurophysiol 1986; 64:339–346.

    Article  CAS  Google Scholar 

  21. Hobson JA, McCarley RW, Wyzinski PW. Sleep cycle oscillation: Reciprocal discharge by two brain stem neuronal groups. Science 1975; 189:55–58.

    Article  CAS  PubMed  Google Scholar 

  22. Thankachan S, Islam F, Mallick BN. Behavior of brainstem neurons to spontaneous and induced EEG desynchronization during wakefulness and rapid eye movement sleep in freely moving cats. Sleep Res 1997; 26:54.

    Google Scholar 

  23. Sakai K. Executive mechanisms of paradoxical sleep. Arch Ital Biol 1988; 126:239–257.

    CAS  PubMed  Google Scholar 

  24. Jones B. Immunohistochemical study of choline acetyltransferase-immunoreactive processes and cells innervating the pontomedullary reticular formation in the rat. J Comp Neurol 1990; 295:485–514.

    Article  CAS  PubMed  Google Scholar 

  25. Baghdoyan HA, Mallios VJ, Duckrow RB et al. Localization of muscarinic receptor subtypes in brain stem areas regulating sleep. NeuroReport 1994; 5:1631–134.

    Article  CAS  PubMed  Google Scholar 

  26. Kodama T, Takahashi Y, Honda Y. Enhancement of acetylcholine release during paradoxical sleep in the laterodorsal tegmental field of the cat brain stem. Neurosci Lett 1990; 114:277–282.

    Article  CAS  PubMed  Google Scholar 

  27. Egan TM, North RA. Acetylcholine acts on m2-muscarinic receptors to excite rat locus coeruleus neurons. Eur J Pharmacol 1985; 85:733–735.

    CAS  Google Scholar 

  28. Alam MN, Kumari S, Malick BN. Role of GABA in acetylcholine induced locus coeruleus mediated increase in REM sleep, Sleep Res 1993; 22:541.

    Google Scholar 

  29. Mallick BN, Kaur S, Jha SK et al. Possible role of GABA in the regulation of REM sleep with special reference to REM-OFF neurons. In: Mallick BN, Inoue S, eds. Rapid Eye Movement Sleep. Marcel and Dekker Inc 1999:153–166.

    Google Scholar 

  30. Iijima K, Ohtomo K. Immunohistochemical study using GABA antiserum for demonstration of inhibitory neurons in the rat locus coeruleus. Am J Anat 1988; 181:183–194.

    Article  Google Scholar 

  31. Jones BE. Paradoxical sleep and its chemical/structural substrates in the brain. Neuroscience 1991; 40:637–656.

    Article  CAS  PubMed  Google Scholar 

  32. Ford B, Holmes CJ, Mainville L et al. GABA-ergic neurons in the rat pontomesencephalic tegmentum: Codistribution with cholinergic and other tegmental neurons projecting to the posterior lateral hypothalamus. J Comp Neurol 1995; 363:177–196.

    Article  CAS  PubMed  Google Scholar 

  33. Peyron C, Luppi PH, Rampon C et al. Location of the GABA-ergic neurons projecting to the dorsal raphe nucleus and the locus coeruleus of the rat. Soc Neurosci Abstr 1995; 21:373.

    Google Scholar 

  34. Olpe HR, Steinmann MW, Hall RG et al. GABA-A and GABA-B receptors in locus coeruleus: Effects of blockers. Eur J Pharmacol 1988; 149:183–185.

    Article  CAS  PubMed  Google Scholar 

  35. Luque JM, Malherbe P, Richards JG. Localization of GABA-A receptor subunit mRNAs in the rat locus coeruleus. Mol Brain Res 1994; 24:219–226.

    Article  CAS  PubMed  Google Scholar 

  36. Nitz D, Siegel JM. GABA release in the locus coeruleus as a function of the sleep/wake state. Neuroscience 1997; 78:795–801.

    Article  CAS  PubMed  Google Scholar 

  37. Kaur S, Saxena RN, Mallick BN. GABA in locus coeruleus regulates spontaneous rapid eye movement sleep by acting on GABA-A receptors in freely moving rats. Neurosci Lett 1997; 223:105–108.

    Article  CAS  PubMed  Google Scholar 

  38. Alam MN, Mallick BN. Differential acute influence of medial and lateral preoptic areas on sleep wakefulness in freely moving animals. Brain Res 1990; 525:242–248.

    Article  CAS  PubMed  Google Scholar 

  39. Timo-Iaria C, Negrao N, Schmidek WR et al. Phases and states of sleep in the rat. Physiol Behav 1970; 5:1057–1062.

    Article  CAS  PubMed  Google Scholar 

  40. Mallick BN, Kaur S, Saxena RN. Interactions between cholinergic and GABAergic neurotransmitters in and around the locus coeruleus for the induction and maintenance of rapid eye movement sleep in rats. Neuroscience 2001; 104:467–485.

    Article  CAS  PubMed  Google Scholar 

  41. Kaur S, Saxena RN, Mallick BN. GABAergic neurones in prepositus hypoglossi regulate REM sleep by its action on locus coeruleus in freely moving rats. Synapse 2001; 42:141–150.

    Article  CAS  PubMed  Google Scholar 

  42. Higo S, Ito K, Fuchs D et al. Anatomical interconnections of the pedunculopontine tegmental nucleus and the nucleus prepositus hypoglossi in the cat. Brain Res 1990; 536:79–85.

    Article  CAS  PubMed  Google Scholar 

  43. Dement WC. The occurrence of low voltage, fast electrophysiologic patterns during behavioral sleep in the cat. EEG Clin Neurophysiol 1958; 10:291–295.

    Article  CAS  Google Scholar 

  44. Jouvet M. Around the discovery of REM sleep in cats. In: Mallick BN, Inoue S, eds. Rapid Eye Movement sleep. V–IX. New York: Marcel and Dekker, 1999.

    Google Scholar 

  45. Mallick BN, Thankachan S, Islam F. Differential responses of Brain stem neurons during spontaneous and stimulation induced desynchronization of the cortical EEG in freely moving cats. Sleep Res Online 1998; 14:132–146.

    Google Scholar 

  46. Huttenlocher PR. Evoked and spontaneous activity in single units of medial brainstem during natural sleep and waking. J Neurophysiol 1961; 24:451–468.

    Google Scholar 

  47. Kasamatsu T. Maintained and evoked unit activity in the mesencephalic reticular formation of the freely behaving cat. Exp Neurol 1970; 28:450–470.

    Article  CAS  PubMed  Google Scholar 

  48. Manohar S, Noda H, Adey WR. Behavior of mesencephalic reticular neurons in sleep and wakefulness. Exp Neurol 1972; 34:140–157.

    Article  CAS  PubMed  Google Scholar 

  49. Tanaka DJ. Labeled NA release from rat cerebral cortex following electrical stimulation of LC. Brain Res 1976; 106:384–389.

    Article  CAS  PubMed  Google Scholar 

  50. Vanderwolf CH, Baker GB. The role of brain noradrenaline in cortical activation and behavior: A study of lesions of the locus coeruleus, medial thalamus and hippocampus-neocortex and of muscarinic blockade in the rat. Behav Brain Res 1996; 78:225–234.

    Article  CAS  PubMed  Google Scholar 

  51. Mallick BN, Adya HVA, Thankachan S. REM sleep deprivation alters factors affecting neuronal excitability: Role of norepinephrine and its possible mechanism of action. In: Mallick BN, Inoue S, eds. Rapid Eye Movement Sleep. Marcel and Dekker Inc., 1999:338–354.

    Google Scholar 

  52. Thakkar M, Portas C, McCarley RW. Chronic low-amplitude electrical stimulation of the laterodorsal tegmental nucleus of freely moving cats increases REM sleep. Brain Res 1996; 723:223–227.

    Article  CAS  PubMed  Google Scholar 

  53. Sakai K, Sastre JP, Kanamori N et al. State-specific neurons in the ponto-medullary reticular formation with special reference to the postural atonia during paradoxical sleep in the cat. In: Pompeiano O, Ajmone Marsan C, eds. Brain mechanisms and perceptual awareness. New York: Raven Press, 1981:405–429.

    Google Scholar 

  54. Chase MH, Morales FR, Boxer PA et al. Effect of stimulation of the nucleus reticularis gigantocellularis on the membrane potential of cat lumbar motor neurons during sleep and wake-fulness. Brain Res 1986; 386:237–244.

    Article  CAS  PubMed  Google Scholar 

  55. Morales FR, Engelhardt JK, Soja PJ et al. Motoneuron properties during motor inhibition produced by microinjection of carbachol into pontine reticular formation of the decerebrate cat. J Neurophysiol 1987; 57:1118–1129.

    CAS  PubMed  Google Scholar 

  56. Lai YY, Siegel JM. Muscle tone suppression and stepping produced by stimulation of midbrain and rostral pontine reticular formation. J Neurosci 1990; 10:2727–2734.

    CAS  PubMed  Google Scholar 

  57. Thankachan S, Islam F, Mallick BN. Role of wake inducing brain stem area on rapid eye movement sleep regulation in freely moving cats. Brain Res Bulletin 2001; 55:43–49.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience/Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Mallick, B.N., Kaur, S., Thankachan, S., Pal, D. (2006). Role of Wakefulness Area in the Brainstem Reticular Formation in Regulating Rapid Eye Movement Sleep. In: Sleep and Sleep Disorders. Springer, Boston, MA. https://doi.org/10.1007/0-387-27682-3_5

Download citation

Publish with us

Policies and ethics