Skip to main content

Regulation of 1D-myo-Inositol-3-Phosphate Synthase in Yeast

  • Chapter

Part of the book series: Subcellular Biochemistry ((SCBI,volume 39))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitken, J.F., vanHeusden, G.P., Temkin, M., and Dowhan, W., 1990, The gene encoding the phosphatidylinositol transfer protein is essential for cell growth. J. Biol. Chem. 265: 4711–4717.

    PubMed  CAS  Google Scholar 

  • Ambroziak, J., and Henry, S.A., 1994, INO2 and INO4 gene products, positive regulators of phospholipid biosynthesis in Saccharomyces cerevisiae, form a complex that binds to the INO1 promoter. J. Biol. Chem. 269: 15344–15349.

    PubMed  CAS  Google Scholar 

  • Antonsson, B., Montessuit, S., Friedli, L., Payton, M.A., and Paravicini, G., 1994, Protein kinase C in yeast. Characteristics of the Saccharomyces cerevisiae PKC1 gene product. J Biol. Chem. 269: 16821–16828.

    PubMed  CAS  Google Scholar 

  • Arndt, K.M., Ricupero-Hovasse, S., and Winston, F., 1995, TBP mutants defective in activated transcription in vivo. EMBO J. 14: 1490–1497.

    PubMed  CAS  Google Scholar 

  • Ashburner, B.P., and Lopes, J.M., 1995a, Autoregulated expression of the yeast INO2 and INO4 helix-loop-helix activator genes effects cooperative regulation on their target genes. Mol. Cell. Biol. 15: 1709–1715.

    PubMed  CAS  Google Scholar 

  • Ashburner, B.P., and Lopes, J.M., 1995b, Regulation of yeast phospholipid biosynthesis involves two superimposed mechanisms. Proc. Natl. Acad. Sci. U.S.A. 92: 9722–9726.

    Article  PubMed  CAS  Google Scholar 

  • Bachhawat, N., Ouyang, Q., and Henry, S.A., 1995, Functional characterization of an inositolsensitive upstream activation sequence in yeast: A cis-regulatory element responsible for inositol-choline mediated regulation of phospholipid biosynthesis. J. Biol. Chem. 270: 25087–25095.

    Article  PubMed  CAS  Google Scholar 

  • Bailis, A.M., Poole, M.A., Carman, G.M., and Henry, S.A., 1987, The membrane-associated enzyme phosphatidylserine synthase is regulated at the level of mRNA abundance. Mol. Cell. Biol. 7: 167–176.

    PubMed  CAS  Google Scholar 

  • Bankaitis, V.A., Malehorn, D.E., Emr, S.D., and Greene, R., 1989, The Saccharomyces cerevisiae SEC14 gene encodes a cytosolic factor that is required for transport of secretory proteins from the yeast Golgi complex. J. Cell Biol. 108: 1271–1281.

    Article  PubMed  CAS  Google Scholar 

  • Carlson, M., 1999, Glucose repression in yeast. Curr. Opin. Microbiol. 2: 202–207.

    Article  PubMed  CAS  Google Scholar 

  • Carman, G.M., and Henry, S.A., 1989, Phospholipid biosynthesis in yeast. Ann. Rev. Biochem. 58: 635–669.

    Article  PubMed  CAS  Google Scholar 

  • Carman, G.M., and Henry, S.A., 1999, Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Prog. Lipid Res. 38: 361–399.

    Article  PubMed  CAS  Google Scholar 

  • Chang, H.J., 2001, Role of the unfolded protein response pathway in phospholipid biosynthesis and membrane trafficking in Saccharomyces cerevisiae. Department of Biological Sciences, Carnegie Mellon University.

    Google Scholar 

  • Chang, H.J., Jones, E.W., and Henry, S.A., 2002, Role of the unfolded protein response pathway in regulation of INO1 and in the sec14 bypass mechanism in Saccharomyces cerevisiae. Genetics 162: 27–43.

    Google Scholar 

  • Chang, L., and Karin, M., 2001, Mammalian MAP kinase signalling cascades. Nature 410: 37–40.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, R.E., and Walter, P., 1997, Translational attenuation mediated by an mRNA intron. Curr. Biol. 7: 850–859.

    Article  PubMed  CAS  Google Scholar 

  • Chen, I.W., and Charalampous, F.C., 1963, A soluble enzyme system from yeast which catalyzes the biosynthesis of inositol from glucose. Biochem. Biophys. Res. Commun. 12: 62–67.

    Article  PubMed  CAS  Google Scholar 

  • Chen, I.W., and Charalampous, F.C., 1965, Biochemical studies on inositol. 8. Purification and properties of the enzyme system which converts glucose 6-phosphate to inositol. J. Biol. Chem. 240: 3507–3512.

    PubMed  CAS  Google Scholar 

  • Cleves, A., McGee, T., and Bankaitis, V., 1991a, Phospholipid transfer proteins: A biological debut. Trends Cell. Biol. 1: 30–34.

    Article  PubMed  CAS  Google Scholar 

  • Cleves, A.E., McGee, T., Whitters, E.A., Champion, K.M., Aitken, J.R., Dowhan, W., Goebl, M., and Bankaitis, V.A., 1991b, Mutations in the CDP-choline pathway for phospholipid biosynthesis bypass the requirement for an essential phospholipid transfer protein. Cell 64: 789–800.

    Article  PubMed  CAS  Google Scholar 

  • Cox, J.S., Chapman, R.E., and Walter, P., 1997, The unfolded protein response coordinates the production of endoplasmic reticulum protein and endoplasmic reticulum membrane. Mol. Biol. Cell 8: 1805–1814.

    PubMed  CAS  Google Scholar 

  • Cox, J.S., Shamu, C.E., and Walter, P., 1993, Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73: 1197–1206.

    Article  PubMed  CAS  Google Scholar 

  • Cox, J.S., and Walter, P., 1996, A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 87: 391–404.

    Article  PubMed  CAS  Google Scholar 

  • Culbertson, M.R., Donahue, T.F., and Henry, S.A., 1976a, Control of inositol biosynthesis in Saccharomyces cerevisiae: Properties of a repressible enzyme system in extracts of wild type (Ino +) cells. J. Bacteriol. 126: 232–242.

    PubMed  CAS  Google Scholar 

  • Culbertson, M.R., Donahue, T.F., and Henry, S.A., 1976b, Control of inositol biosynthesis in Saccharomyces cerevisiae: Inositol-phosphate synthetase mutants. J. Bacteriol. 126: 243–250.

    PubMed  CAS  Google Scholar 

  • Culbertson, M.R., and Henry, S.A., 1975, Inositol-requiring mutants of Saccharomyces cerevisiae. Genetics 80: 23–40.

    PubMed  CAS  Google Scholar 

  • Daum, G., Lees, N.D., Bard, M., and Dickson, R., 1998, Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast 14: 1471–1510.

    Article  PubMed  CAS  Google Scholar 

  • Davies, S.P., Carling, D., Munday, M.R., and Hardie, D.G., 1992, Diurnal rhythm of phosphorylation of rat liver acetyl-CoA carboxylase by the AMP-activated protein kinase, demonstrated using freeze-clamping. Effects of high fat diets. Eur. J. Biochem. 203: 615–623.

    Article  PubMed  CAS  Google Scholar 

  • Dean-Johnson, M., and Henry, S.A., 1989, Biosynthesis of inositol in yeast: Primary structure of myo-inositol 1-phosphate synthase locus and functional characterization of its structural gene, the INO1 locus. J. Biol. Chem. 264: 1274–1283.

    PubMed  CAS  Google Scholar 

  • Dietz, M., Heyken, W.T., Hoppen, J., Geburtig, S., and Schuller, H.J., 2003, TFIIB and subunits of the SAGA complex are involved in transcriptional activation of phospholipid biosynthetic genes by the regulatory protein Ino2 in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 48: 1119–1130.

    Article  PubMed  CAS  Google Scholar 

  • Donahue, T.F., and Henry, S.A., 1981a, Inositol mutants of Saccharomyces cerevisiae: Mapping the ino1 locus and characterizing alleles of the ino1, ino2 and ino4 loci. Genetics 98: 491–503.

    CAS  Google Scholar 

  • Donahue, T.F., and Henry, S.A., 1981b, myo-Inositol-1-phosphate synthase: Characteristics of the enzyme and identification of its structural gene in yeast. J. Biol. Chem. 256: 7077–7085.

    PubMed  CAS  Google Scholar 

  • Elkhaimi, M., Kaadige, M.R., Kamath, D., Jackson, J.C., Biliran, H., Jr. and Lopes, J.M., 2000, Combinatorial regulation of phospholipid biosynthetic gene expression by the UME6, SIN3 and RPD3 genes. Nucleic Acids Res. 28: 3260–3167.

    Article  Google Scholar 

  • Errede, B., Cade, R.M., Yashar, B.M., Kamada, Y., Levin, D.E., Irie, K., and Matsumoto, K., 1995, Dynamics and organization of MAP kinase signal pathways. Mol. Reprod. Dev. 42: 477–485.

    Article  PubMed  CAS  Google Scholar 

  • Furter-Graves, E.M., Hall, B.D., and Furter, R., 1994, Role of a small RNA pol II subunit in TATA to transcription start site spacing. Nucleic Acids Res. 22: 4932–4936.

    PubMed  CAS  Google Scholar 

  • Gardenour, K.R., Levy, J., and Lopes, J.M., 2004, Identification of novel dominant INO2c mutants with an Opi-phenotype. Mol. Microbiol. 52: 1271–1280.

    Article  PubMed  CAS  Google Scholar 

  • Gavin, A.C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J.M., Michon, A.M., Cruciat, C.M., Remor, M., Hofert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., Rudi, T., Gnau, V., Bauch, A., Bastuck, S., Huhse, B., Leutwein, C., Heurtier, M.A., Copley, R.R., Edelmann, A., Querfurth, E., Rybin, V., Drewes, G., Raida, M., Bouwmeester, T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G., and Superti-Furga, G., 2002, Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415: 141–147.

    Article  PubMed  CAS  Google Scholar 

  • Graves, J.A., and Henry, S.A., 2000, Regulation of the yeast INO1 gene: The products of the INO2, INO4, and OPI1 regulatory genes are not required for repression in response to inositol. Genetics 154: 1485–1495.

    PubMed  CAS  Google Scholar 

  • Greenberg, M., Goldwasser, P., and Henry, S., 1982a, Characterization of a yeast regulatory mutant constitutive for inositol-1-phosphate synthase. Mol. Gen. Genet. 186: 157–163.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, M.L., Klig, L.S., Letts, V.A., Loewy, B.S., and Henry, S.A., 1983, Yeast mutant defective in phosphatidylcholine synthesis. J. Bacteriol. 153: 791–799.

    PubMed  CAS  Google Scholar 

  • Greenberg, M.L., and Lopes, J.M., 1996, Genetic regulation of phospholipid biosynthesis in yeast. Microbiol. Rev. 60: 1–20.

    PubMed  CAS  Google Scholar 

  • Greenberg, M.L., Reiner, B., and Henry, S.A., 1982b, Regulatory mutations of inositol biosynthesis in yeast: Isolation of inositol-excreting mutants. Genetics 100: 19–33.

    PubMed  CAS  Google Scholar 

  • Griac, P., 1997, Regulation of yeast phospholipid biosynthetic genes in phosphatidylserine decarboxylase mutants. J. Bacteriol. 179: 5843–5848.

    PubMed  CAS  Google Scholar 

  • Griac, P., and Henry, S.A., 1996, Phosphatidylcholine biosynthesis in Saccharomyces cerevisiae: Effects on regulation of phospholipid synthesis and respiratory competence. In: Op den Kamp, J.A.F. (ed.), NATO ASI Series: Molecular Dynamics of Biological Membranes. Springer, Verlag, pp. 339–346.

    Google Scholar 

  • Griac, P., Swede, M.J., and Henry, S.A., 1996, The role of phosphatidylcholine biosynthesis in the regulation of the INO1 gene of yeast. J. Biol. Chem. 271: 25692–25698.

    Article  PubMed  CAS  Google Scholar 

  • Gustin, M.C., Albertyn, J., Alexander, M., and Davenport, K., 1998, MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 62: 1264–1300.

    PubMed  CAS  Google Scholar 

  • Heinisch, J.J., Lorberg, A., Schmitz, H.P., and Jacoby, J.J., 1999, The protein kinase C-mediated MAP kinase pathway involved in the maintenance of cellular integrity in Saccharomyces cerevisiae. Mol. Microbiol. 32: 671–680.

    Article  PubMed  CAS  Google Scholar 

  • Henry, S.A., and Patton-Vogt, J.L., 1998, Genetic regulation of phospholipid metabolism: Yeast as a model eukaryote. In: Moldave, K. (ed.), Progress in Nucleic Acid Research and Molecular Biology. Academic Press Inc., San Diego, CA, USA, pp. 133–179.

    Google Scholar 

  • Hirsch, J.P., 1987, cis- and trans-acting regulation of the INO1 gene of Saccharomyces cerevisiae. Ph.D. thesis, Albert Einstein College of Medicine.

    Google Scholar 

  • Hirsch, J.P., and Henry, S.A., 1986, Expression of the Saccharomyces cerevisiae inositol-1-phosphate synthase (INO1) gene is regulated by factors that affect phospholipid synthesis. Mol. Cell. Biol. 6: 3320–3328.

    PubMed  CAS  Google Scholar 

  • Hirschhorn, J.N., Brown, S.A., Clark, C.D., and Winston, F., 1992, Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev. 6: 2288–2298.

    PubMed  CAS  Google Scholar 

  • Homann, M.J., Bailis, A.M., Henry, S.A., and Carman, G.M., 1987b, Coordinate regulation of phospholipid biosynthesis by serine in Saccharomyces cerevisiae. J. Bacteriol. 169: 3276–3280.

    PubMed  CAS  Google Scholar 

  • Hudak, K.A., Lopes, J.M., and Henry, S.A., 1994, A pleiotropic phospholipid biosynthetic regulatory mutation in Saccharomyces cerevisiae is allelic to sin3 (sdi1, ume4, rpd1). Genetics 136: 475–483.

    PubMed  CAS  Google Scholar 

  • Irie, K., Takase, M., Lee, K.S., Levin, D.E., Araki, H., Matsumoto, K., and Oshima, Y., 1993, MKK1 and MKK2, which encode Saccharomyces cerevisiae mitogen-activated protein kinasekinase homologs, function in the pathway mediated by protein kinase C. Mol. Cell. Biol. 13: 3076–3083.

    PubMed  CAS  Google Scholar 

  • Ives, E.B., Nichols, J., Wente, S.R., and York, J.D., 2000, Biochemical and functional characterization of inositol 1,3,4,5,6-pentakisphosphate 2-kinases. J. Biol. Chem. 275: 36575–36583.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, J.C., and Lopes, J.M., 1996, The yeast UME6 gene is required for both negative and positive transcriptional regulation of phospholipid biosynthetic gene expression. Nucleic Acids Res. 24: 1322–1329.

    Article  PubMed  CAS  Google Scholar 

  • Jesch, S.A., Zhao, X., Wells, M.T., and Henry, S.A., 2005, Genome-wide analysis reveals inositol, not choline, as the major effector of Ino2p-Ino4p and unfolded protein response target gene expression in yeast. J. Biol. Chem. 280: 9106–9118.

    Article  PubMed  CAS  Google Scholar 

  • Kaadige, M.R., and Lopes, J.M., 2003, Opi1p, Ume6p and Sin3p control expression from the promoter of the INO2 regulatory gene via a novel regulatory cascade. Mol. Microbiol. 48: 823–832.

    Article  PubMed  CAS  Google Scholar 

  • Kagiwada, S., Hosaka, K., Murata, M., Nikawa, J., and Takatsuki, A., 1998, The Saccharomyces cerevisiae SCS2 gene product, a homolog of a synaptobrevin-associated protein, is an integral membrane protein of the endoplasmic reticulum and is required for inositol metabolism. J. Bacteriol. 180: 1700–1708.

    PubMed  CAS  Google Scholar 

  • Kawahara, T., Yanagi, H., Yura, T., and Mori, K., 1997, Endoplasmic reticulum stress-induced mRNA splicing permits synthesis of transcription factor Hac1p/Ern4p that activates the unfolded protein response. Mol. Biol. Cell 8: 1845–1862.

    PubMed  CAS  Google Scholar 

  • Kiyono, K., Miura, K., Kushima, Y., Hikiji, T., Fukushima, M., Shibuya, I., and Ohta, A., 1987, Primary structure and product characterization of the Saccharomyces cerevisiae CHO1 gene that encodes phosphatidylserine synthase. J. Biochem. 102: 1089–1100.

    PubMed  CAS  Google Scholar 

  • Klig, L.S., and Henry, S.S., 1984, Isolation of the yeast INO1 gene: Located on an autonomously replicating plasmid, the gene is fully regulated. Proc. Natl. Acad. Sci. U.S.A. 81: 3816–3820.

    Article  PubMed  CAS  Google Scholar 

  • Klig, L.S., Homann, M.J., Carman, G.M., and Henry, S.A., 1985, Coordinate regulation of phospholipid biosynthesis in Saccharomyces cerevisiae: Pleiotropically constitutive opi1 mutant. J. Bacteriol. 162: 1135–1141.

    PubMed  CAS  Google Scholar 

  • Klig, L.S., Homann, M.J., Kohlwein, S.D., Kelley, M.J., Henry, S.A., and Carman, G.M., 1988a, Saccharomyces cerevisiae mutant with a partial defect in the synthesis of CDP-diacylglycerol and altered regulation of phospholipid biosynthesis. J. Bacteriol. 170: 1878–1886.

    PubMed  CAS  Google Scholar 

  • Klig, L.S., Hoshizaki, D.K., and Henry, S.A., 1988b, Isolation of the yeast INO4 gene, a positive regulator of phospholipid biosynthesis. Curr. Genet. 13: 7.

    Article  PubMed  CAS  Google Scholar 

  • Kodaki, T., Hosaka, K., Nikawa, J.-I., and Yamashita, S., 1991a, Identification of the upstream activation sequences responsible for the expression and regulation of the PEM1 and PEM2 genes encoding the enzymes of the phosphatidylethanolamine methylation pathway in Saccharomyces cerevisiae. J. Biochem. 109: 276–287.

    PubMed  CAS  Google Scholar 

  • Kodaki, T., Nikawa, J., Hosaka, K., and Yamashita, S., 1991b, Functional analysis of the regulatory region of the yeast phosphatidylserine synthase gene, PSS. J. Biochem. 173: 7992–7995.

    CAS  Google Scholar 

  • Kodaki, T., and Yamashita, S., 1987, Yeast phosphatidylethanolamine methylation pathway. J. Biol. Chem. 262: 15428–15435.

    PubMed  CAS  Google Scholar 

  • Kodaki, T., and Yamashita, S., 1989, Characterization of the methyltransferases in the yeast phosphatidylethanolamine methylation pathway by selective gene disruption. Eur. J. Biochem. 185: 243–251.

    Article  PubMed  CAS  Google Scholar 

  • Kohno, K., Normington, K., Sambrook, J., Gething, M.-J., and Mori, K., 1993, The promoter region of the yeast KAR2 (BiP) gene contains a regulatory domain that responds to the presence of unfolded proteins in the endoplasmic reticulum. Mol. Cell. Biol. 13: 877–890.

    PubMed  CAS  Google Scholar 

  • Lamping, E., Paltauf, F., Henry, S.A., and Kohlwein, S.D., 1995, Isolation and characterization of a mutant of Saccharomyces cerevisiae with pleiotropic deficiencies in transcriptional activation and repression. Genetics 137: 55–65.

    Google Scholar 

  • Lee, K.S., Irie, K., Gotoh, Y., Watanabe, Y., Araki, H., Nishida, E., Matsumoto, K., and Levin, D.E., 1993, A yeast mitogen-activated protein kinase homolog (Mpk1p) mediates signalling by protein kinase C. Mol. Cell. Biol. 13: 3067–3075.

    PubMed  CAS  Google Scholar 

  • Lee, K.S., and Levin, D.E., 1992, Dominant mutations in a gene encoding a putative protein kinase (BCK1) bypass the requirement for a Saccharomyces cerevisiae protein kinase C homolog. Mol. Cell. Biol. 12: 172–182.

    PubMed  CAS  Google Scholar 

  • Lee, T.I., Rinaldi, N.J., Robert, F., Odom, D.T., Bar-Joseph, Z., Gerber, G.K., Hannett, N.M., Harbison, C.T., Thompson, C.M., Simon, I., Zeitlinger, J., Jennings, E.G., Murray, H.L., Gordon, D.B., Ren, B., Wyrick, J.J., Tagne, J.B., Volkert, T.L., Fraenkel, E., Gifford, D.K., and Young, R.A., 2002, Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298: 799–804.

    Article  PubMed  CAS  Google Scholar 

  • Letts, V.A., and Henry, S.A., 1985, Regulation of phospholipid synthesis in phosphatidylserine synthase-deficient (cho1) mutants of Saccharomyces cerevisiae. J. Bacteriol. 163: 560–567.

    PubMed  CAS  Google Scholar 

  • Levin, D., Fields, F.O., Kunisawa, R., Bishop, J.M., and Thorner, J., 1990, A candidate protein kinase C gene, PKC1, is required for the S. cerevisiae cell cycle. Cell 62: 312–224.

    Article  Google Scholar 

  • Levin, D.E., Bowers, B., Chen, C.Y., Kamada, Y., and Watanabe, M., 1994, Dissecting the protein kinase C/MAP kinase signalling pathway of Saccharomyces cerevisiae. Cell. Mol. Biol. Res. 40: 229–239.

    PubMed  CAS  Google Scholar 

  • Levin, D.E., and Errede, B., 1995, The proliferation of MAP kinase signaling pathways in yeast. Curr. Opin. Cell. Biol. 7: 197–202.

    Article  PubMed  CAS  Google Scholar 

  • Lo, W.-S., Duggan, L., Tolga Emre, N.C., Belotserkovskya, R., Lane, W.S., Shiekhattar, R., and Berger, S.L., 2001, Snf1 — a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. Science 293: 1142–1146.

    Article  PubMed  CAS  Google Scholar 

  • Loewen, C.J., Roy, A., and Levine, T.P., 2003, A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP. EMBO J. 22: 2025–2035.

    Article  PubMed  CAS  Google Scholar 

  • Loewen, C.J.R., Gaspar, M.L., Jesch, S.A., Delon, C., Ktistakis, N.T., Henry, S.A., and Levine, T.P., 2004, Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. Science 304: 1644–1647.

    Article  PubMed  CAS  Google Scholar 

  • Loewy, B.S., and Henry, S.A., 1984, The INO2 and INO4 loci of Saccharomyces cerevisiae are pleiotropic regulatory genes. Mol. Cell. Biol. 4: 2479–2485.

    PubMed  CAS  Google Scholar 

  • Lopes, J.M., and Henry, S.A., 1991, Interaction of trans and cis regulatory elements in the INO1 promoter of Saccharomyces cerevisiae. Nucleic Acids Res. 19: 3987–3994.

    PubMed  CAS  Google Scholar 

  • Lopes, J.M., Hirsch, J.P., Chorgo, P.A., Schulze, K.L., and Henry, S.A., 1991, Analysis of sequences in the INO1 promoter that are involved in its regulation by phospholipid precursors. Nucleic Acids Res. 19: 1687–1693.

    PubMed  CAS  Google Scholar 

  • Lopes, J.M., Schulze, K.L., Yates, J.W., Hirsch, J.P., and Henry, S.A., 1993, The INO1 promoter of Saccharomyces cerevisiae includes an upstream repressor sequence (URS1) common to a diverse set of yeast genes. J. Bacteriol. 175: 4235–4238.

    PubMed  CAS  Google Scholar 

  • Maeda, T., and Eisenberg, F., Jr., 1980, Purification, structure, and catalytic properties of L-myo-inositol-1-phosphate synthase from rat testis. J. Biol. Chem. 255: 8458–8464.

    PubMed  CAS  Google Scholar 

  • Majumder, A., Duttagupta, S., Goldwasser, P., Donahue, T., and Henry, S., 1981, The mechanism of interallelic complementation at the INO1 locus in yeast: Immunological analysis of mutants. Mol. Gen. Genet. 184: 347–354.

    Article  PubMed  CAS  Google Scholar 

  • Majumder, A.L., Chatterjee, A., Dastidar, K.G., and Majee, M., 2003, Diversification and evolution of L-myo-inositol 1-phosphate synthase. FEBS Lett. 553: 3–10.

    Article  PubMed  CAS  Google Scholar 

  • Majumder, A.L., Johnson, M.D., and Henry, S.A., 1997, 1L-myo-inositol 1-phosphate synthase. Biochim. Biophys. Acta 1348: 245–256.

    PubMed  CAS  Google Scholar 

  • McGee, T.P., Skinner, H.B., Whitters, E.A., Henry, S.A., and Bankaitis, V.A., 1994, A phosphatidylinositol transfer protein controls the phosphatidylcholine content of yeast Golgi membranes. J. Cell Biol. 124: 273–287.

    Article  PubMed  CAS  Google Scholar 

  • McGraw, P., and Henry, S.A., 1989, Mutations in the Saccharomyces cerevisiae opi3 gene: Effects on phospholipid methylation, growth and cross-pathway regulation of inositol synthesis. Genetics 122: 317–330.

    PubMed  CAS  Google Scholar 

  • Mori, K., Ma, W., Gething, M.-J., and Sambrook, J., 1993, A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell 74: 743–756.

    Article  PubMed  CAS  Google Scholar 

  • Mori, K., Ogawa, N., Kawahara, T., Yanagi, H., and Yura, T., 2000, mRNA splicing-mediated C-terminal replacement of transcription factor Hac1p is required for efficient activation of the unfolded protein response. Proc. Natl. Acad. Sci. 97: 4660–4665.

    Article  PubMed  CAS  Google Scholar 

  • Mori, K., Sant, A., Kohno, K., Normington, K., Gething, M.-J., and Sambrook, J.F., 1992, A 22 bp cis-acting element is necessary and sufficient for the induction of the yeast KAR2 (BiP) gene by unfolded proteins. EMBO J. 11: 2583–2593.

    PubMed  CAS  Google Scholar 

  • Nikawa, J.-I., and Yamashita, S., 1992, IRE1 encodes a putative protein kinase containing a membrane-spanning domain and is required for inositol prototrophy in Saccharomyces cerevisiae. Mol. Microbiol. 6: 1441–1446.

    PubMed  CAS  Google Scholar 

  • Nikoloff, D.M., and Henry, S.A., 1994, Functional characterization of the INO2 gene of Saccharomyces cerevisiae. J. Biol. Chem. 269: 7402–7411.

    PubMed  CAS  Google Scholar 

  • Nikoloff, D.M., McGraw, P., and Henry, S.A., 1992, The INO2 gene of Saccharomyces cerevisiae encodes a helix-loop-helix protein that is required for activation of phospholipid synthesis. Nucleic Acids Res. 20: 3253.

    PubMed  CAS  Google Scholar 

  • Nishizuka, Y., 1984a, The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308: 693–698.

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka, Y., 1984b, Turnover of inositol phospholipids and signal transduction. Science 225: 1365–1370.

    PubMed  CAS  Google Scholar 

  • Nishizuka, Y., 1986, Studies and perspectives of protein kinase C. Science 233: 305–312.

    PubMed  CAS  Google Scholar 

  • Nonet, M., and Young, R., 1989, Intragenic and extragenic suppressors of mutations in the heptapeptide repeat domain of Saccharomyces cerevisiae RNA polymerase II. Genetics 123: 715–724.

    PubMed  CAS  Google Scholar 

  • Odom, A.R., Stahlberg, A., Wente, S.R., and York, J.D., 2000, A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science 287: 2026–2029.

    Article  PubMed  CAS  Google Scholar 

  • Ouyang, Q., Ruiz-Noriega, M., and Henry, S.A., 1999, The REG1 gene product is required for repression of INO1 and other inositol-sensitive upstream activating sequence-containing genes of yeast. Genetics 152: 89–100.

    PubMed  CAS  Google Scholar 

  • Paltauf, F., Kohlwein, S., and Henry, S.A., 1992, Regulation and compartmentalization of lipid synthesis in yeast. In: Pringle, J. (ed.), The Molecular and Cellular Biology of the Yeast Saccharomyces. Cold Spring Harbor Laboratory Press, Plainview, NY, USA, pp. 415–500.

    Google Scholar 

  • Pappas, D.L., Jr., and Hampsey, M., 2000, Functional interaction between Ssu72 and the Rpb2 subunit of RNA polymerase II in Saccharomyces cerevisiae. Mol. Cell. Biol. 20: 8343–8351.

    Article  PubMed  CAS  Google Scholar 

  • Patil, C., and Walter, P., 2001, Intracellular signaling from the endoplasmic reticulum to the nucleus: The unfolded protein response in yeast and mammals. Curr. Opin. Cell Biol. 13: 349–356.

    Article  PubMed  CAS  Google Scholar 

  • Patton-Vogt, J.L., Griac, P., Sreenivas, A., Bruno, V., Dowd, S., Swede, M.J., and Henry, S.A., 1997, Role of the yeast phosphatidylinositol/phosphatidylcholine transfer protein (Sec14p) in phosphatidylcholine turnover and INO1 regulation. J. Biol. Chem. 272: 20873–20883.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, C.L., and Herskowitz, I., 1992, Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell 68: 573–583.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, C.L., Kruger, W., and Herskowitz, I., 1991, A functional interaction between the C-terminal domain of RNA polymerase II and the negative regulator SIN1. Cell 64: 1135–1143.

    Article  PubMed  CAS  Google Scholar 

  • Pittner, F., Tovorova, J.J., Karnitskaya, E.Y., Khoklov, A.S., and Hoffmann-Ostenhof, O., 1979, Myo-inositol 1-phosphate synthase from Streptomyces griseus (studies on the biosynthesis of cyclitols, XXXVIII). Mol. Cell. Biochem. 25: 43.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Noriega, M., 2000, Signal transduction and phospholipid biosynthesis in yeast: The role of the glucose response pathway. Department of Biological Sciences, Carnegie Mellon University, p. 157.

    Google Scholar 

  • Saiardi, A., Caffrey, J.J., Snyder, S.H., and Shears, S.B., 2000, Inositol polyphosphate multikinase (ArgRIII) determines nuclear mRNA export in Saccharomyces cerevisiae. FEBS Lett. 468: 28–32.

    Article  PubMed  CAS  Google Scholar 

  • Saiardi, A., Erdjument-Bromage, H., Snowman, A.M., Tempst, P., and Snyder, S.H., 1999, Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases. Curr. Biol. 9: 1323–1326.

    Article  PubMed  CAS  Google Scholar 

  • Saiardi, A., Nagata, E., Luo, H.R., Snowman, A.M., and Snyder, S.H., 2001, Identification and characterization of a novel inositol hexakisphosphate kinase. J. Biol. Chem. 276: 39179–39185.

    Article  PubMed  CAS  Google Scholar 

  • Santiago, T.C., and Mamoun, C.B., 2003, Genome expression analysis in yeast reveals novel transcriptional regulation by inositol and choline and new regulatory functions for Opi1p, Ino2p, and Ino4p. J. Biol. Chem. 278: 38723–38730.

    Article  PubMed  CAS  Google Scholar 

  • Scafe, C., Chao, D., Lopes, J., Hirsch, J.P., Henry, S., and Young, R.A., 1990a, RNA polymerase II C-terminal repeat influences response to transcriptional enhancer signals. Nature 347: 491–494.

    Article  PubMed  CAS  Google Scholar 

  • Scafe, C., Martin, C., Nonet, M., Podos, S., Okamura, S., and Young, R.A., 1990b, Conditional mutations occur predominantly in highly conserved residues of RNA polymerase II subunits. Mol. Cell. Biol. 10: 1270–1275.

    PubMed  CAS  Google Scholar 

  • Scafe, C., Nonet, M., and Young, R.A., 1990c, RNA polymerase II mutants defective in transcription of a subset of genes. Mol. Cell. Biol. 10: 1010–1016.

    PubMed  CAS  Google Scholar 

  • Schüller, H.-J., Richter, K., Hoffmann, B., Ebbert, R., and Schweizer, E., 1995, DNA binding site of the yeast heteromeric Ino2p/Ino4p basic helix-loop-helix transcription factor: Structural requirements as defined by saturation mutagenesis. FEBS Lett. 370: 149–152.

    Article  PubMed  Google Scholar 

  • Schüller, H.J., Schorr, R., Hoffman, B., and Schweizer, E., 1992, Regulatory gene INO4 of yeast phospholipid biosynthesis is positively autoregulated and functions as a transactivator of fatty acid synthase genes FAS1 and FAS2 from Saccharomyces cerevisiae. Nucleic Acids Res. 20: 5955–5961.

    PubMed  Google Scholar 

  • Schwank, S., Ebbert, R., Rautenstrauss, K., Schweizer, E., and Schuller, H.-J., 1995, Yeast transcriptional activator INO2 interacts as an Ino2p/Ino4p basic helix-loop-helix heteromeric complex with the inositol/choline-responsive element necessary for expression of phospholipid biosynthetic genes in Saccharomyces cerevisiae. Nucleic Acids Res. 23: 230–237.

    PubMed  CAS  Google Scholar 

  • Shen, H., and Dowhan, W., 1996, Reducation of CDP-diacylglycerol synthase activity results in the excretion of inositol by Saccharomyces cerevisiae. J. Biol. Chem. 271: 29043–29048.

    Article  PubMed  CAS  Google Scholar 

  • Shen, H., and Dowhan, W., 1997, Regulation of phospholipid biosynthetic enzymes by the level of CDP-diacylglycerol synthase activity. J. Biol. Chem. 272: 11215–11220.

    Article  PubMed  CAS  Google Scholar 

  • Shen, X., Xiao, H., Ranallo, R., Wu, W.H., and Wu, C., 2003, Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 299: 112–114.

    Article  PubMed  CAS  Google Scholar 

  • Shirra, M.K., and Arndt, K.M., 1999, Evidence for the involvement of the Glc7-Reg1 phosphatase and the Snf1-Snf4 kinase in the regulation of INO1 transcription in Saccharomyces cerevisiae. Genetics 152: 73–87.

    PubMed  CAS  Google Scholar 

  • Shirra, M.K., Patton-Vogt, J., Ulrich, A., Liuta-Tehlivets, O., Kohlwein, S.D., Henry, S.A., and Arndt, K.M., 2001, Inhibition of acetyl coenzyme A carboxylase activity restores expression of the INO1 gene in a snf1 mutant strain of Saccharomyces cerevisiae. Mol. Cell. Biol. 21: 5710–5722.

    Article  PubMed  CAS  Google Scholar 

  • Sidrauski, C., Cox, J.S., and Walter, P., 1996, tRNA Ligase is required for regulated mRNA splicing in the unfolded protein response. Cell 87: 405–413.

    Article  PubMed  CAS  Google Scholar 

  • Slekar, K.H., and Henry, S.A., 1995, SIN3 works through two different promoter elements to regulate INO1 gene expression in yeast. Nucleic Acids Res. 23: 1964–1969.

    PubMed  CAS  Google Scholar 

  • Sreenivas, A., and Carman, G.M., 2003, Phosphorylation of the yeast phospholipid synthesis regulatory protein Opi1p by protein kinase A. J. Biol. Chem. 278: 20673–20680.

    Article  PubMed  CAS  Google Scholar 

  • Sreenivas, A., Patton-Vogt, J.L., Bruno, V., Griac, P., and Henry, S.A., 1998, A role for phospholipase D (Pld1p) in growth, secretion, and regulation of membrane lipid synthesis in yeast. J. Biol. Chem. 273: 16635–16638.

    Article  PubMed  CAS  Google Scholar 

  • Sreenivas, A., Villa-Garcia, M.J., Henry, S.A., and Carman, G.M., 2001, Phosphorylation of the yeast phospholipid synthesis regulatory protein Opi1p by protein kinase C. J. Biol. Chem. 276: 29915–29923.

    Article  PubMed  CAS  Google Scholar 

  • Steger, D.J., Haswell, E.S., Miller, A.L., Wente, S.R., and O’Shea, E.K., 2003, Regulation of chromatin remodeling by inositol polyphosphates. Science 299: 114–116.

    Article  PubMed  CAS  Google Scholar 

  • Summers, E.F., Letts, V.A., McGraw, P., and Henry, S.A., 1988, Saccharomyces cerevisiae cho2 mutants are deficient in phospholipid methylation and cross-pathway regulation of inositol synthesis. Genetics 120: 909–922.

    PubMed  CAS  Google Scholar 

  • Swede, M.J., 1994, Isolation and characterization of novel regulatory mutants of phospholipid biosynthesis in Saccharomyces cerevisiae. Department of Biological Sciences, Carnegie Mellon University.

    Google Scholar 

  • Swede, M.J., Hudak, K.A., Lopes, J.M., and Henry, S.A., 1992, Strategies for generating phospholipid synthesis mutants in yeast. In Dennis, E.A. (ed.), Methods in Enzymology: Phospholipid Biosynthesis. Academic Press, Inc., San Diego, CA, USA, pp. 21–34.

    Google Scholar 

  • Treisman, R., 1996, Regulation of transcription by MAP kinase cascades. Curr. Opin. Cell Biol. 8: 205–215.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, C., Blank, M., Strohman, B., and Schuller, H.J., 1999, Overproduction of the Opi1 repressor inhibits transcriptional activation of structural genes required for phospholipid biosynthesis in the yeast Saccharomyces cerevisiae. Yeast 15: 843–854.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, C., Dietz, M., Wittmann, J., Albrecht, A., and Schuller, H.-J., 2001, The negative regulator Opi1 of phospholipid biosynthesis in yeast contacts the pleiotropic repressor Sin3 and the transcriptional activator Ino2. Mol. Microbiol. 41: 155–166.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, M., Chen, C.Y., and Levin, D.E., 1994, Saccharomyces cerevisiae PKC1 encodes a protein kinase C (PKC) homolog with a substrate specificity similar to that of mammalian PKC. J. Biol. Chem. 269: 16829–16836.

    PubMed  CAS  Google Scholar 

  • White, M.J., Hirsch, J.P., and Henry, S.A., 1991, The OPI1 gene of Saccharomyces cerevisiae, a negative regulator of phospholipid biosynthesis, encodes a protein containing polyglutamine tracts and a leucine zipper. J. Biol. Chem. 266: 863–872.

    PubMed  CAS  Google Scholar 

  • Woods, A., Munday, M.R., Scott, J., Yang, X., Carlson, M., and Carling, D., 1994, Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo. J. Biol. Chem. 269: 19509–19515.

    PubMed  CAS  Google Scholar 

  • Xie, Z., Fang, M., Rivas, M.P., Faulkner, A.J., Sternweis, P.C., Engebrecht, J., and Bankaitis, V.A., 1998, Phospholipase D activity is required for suppression of yeast phosphatidylinositol transfer protein defects. Proc. Natl. Acad. Sci U.S.A. 95: 12346–12351.

    Article  PubMed  CAS  Google Scholar 

  • York, J.D., Odom, A.R., Murphy, R., Ives, E.A., and Wente, S.R., 1999, A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient mRNA export. Science 285: 96–100.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Nunez, L.R., Henry, S.A. (2006). Regulation of 1D-myo-Inositol-3-Phosphate Synthase in Yeast. In: Majumder, A.L., Biswas, B.B. (eds) Biology of Inositols and Phosphoinositides. Subcellular Biochemistry, vol 39. Springer, Boston, MA . https://doi.org/10.1007/0-387-27600-9_6

Download citation

Publish with us

Policies and ethics