Skip to main content

Inositol in Bacteria and Archaea

  • Chapter

Part of the book series: Subcellular Biochemistry ((SCBI,volume 39))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agam, G., Shamir, A., Shaltiel, G., and Greenberg, M.L., 2002, myo-Inositol-1-phosphate (MIP) synthase: A possible target for antibipolar drugs. Bipolar Disord. 4(Suppl 1): 15–20.

    PubMed  Google Scholar 

  • Bachawarat, N., and Mande, S.C., 1999, Identification of the INO1 gene of Mycobacterium tuberculosis H37Rv reveals a novel class of inositol-1-phosphate synthase enzyme. J. Mol. Biol. 291: 531–536.

    Google Scholar 

  • Bachawarat, N., and Mande, S.C., 2000, Complex evolution of the inositol-1-phosphate synthase gene among archaea and eubacteria. Trends Genet. 16: 111–113.

    Google Scholar 

  • Balmer, Y., Stritt-Etter, A., Hirasawa, M., Jacquot, J.P., Keryer, E., Knaff, D.B., and Schurmann, P., 2001, Oxidation-reduction and activation properties of chloroplast fructose 1,6-bisphosphatase with mutated regulatory site. Biochemistry 40: 15444–15450.

    PubMed  CAS  Google Scholar 

  • Belisle, J.T., Brandt, M.E., Radolf, J.D., and Norgard, M.V., 1994, Fatty acids of Treponema pallidum and Borrelia burgdorferi lipoproteins. J. Bacteriol. 176: 2151–2157.

    PubMed  CAS  Google Scholar 

  • Brennan, P.J., 2003, Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis 83: 91–97.

    PubMed  CAS  Google Scholar 

  • Brennan, P.J., and Ballou, C.E., 1968, Phosphatidylmyoinositol monomannoside in Propionibacterium shermanii. Biochem. Biophys. Res. Commun. 30: 69–75.

    PubMed  CAS  Google Scholar 

  • Brennan, P.J., and Lehane, D.P., 1971, The phospholipids of corynebacteria. Lipids 6: 401–409.

    PubMed  CAS  Google Scholar 

  • Buchmeier, N.A., Newton, G.L., Koledin, T., and Fahey, R.C., 2003, Association of mycothiol with protection of Mycobacterium tuberculosis from toxic oxidants and antibiotics. Mol. Microbiol. 47: 1723–1732.

    PubMed  CAS  Google Scholar 

  • Chang, S.F., Ng, D., Baird, L., and Georgopoulos, C., 1991, Analysis of an Escherichia coli dnaB temperature-sensitive insertion mutation and its cold-sensitive extragenic suppressor. J. Biol. Chem. 266: 3654–3660.

    PubMed  CAS  Google Scholar 

  • Chen, L., and Roberts, M.F., 1998, Cloning and expression of the inositol monophosphatase gene from Methanococcus jannaschii and characterization of the enzyme. Appl. Environ. Microbiol. 64: 2609–2615.

    PubMed  CAS  Google Scholar 

  • Chen, L., and Roberts, M.F., 1999, Characterization of a tetrameric inositol monophosphatase from the hyperthermophilic bacterium Thermotoga maritima. Appl. Environ. Microbiol. 65: 4559–4567.

    PubMed  CAS  Google Scholar 

  • Chen, L., and Roberts, M.F., 2000, Overexpression, purification, and analysis of complementation behavior of E. coli SuhB protein: Comparison with bacterial and archaeal inositol monophosphatases. Biochemistry 39: 4145–4153.

    PubMed  CAS  Google Scholar 

  • Chen, L., Spiliotis, E., and Roberts, M.F., 1998, Biosynthesis of Di-myo-inositol-1,1′-phosphate, a novel osmolyte in hyperthermophilic archaea. J. Bacteriol. 180: 3785–3792.

    PubMed  CAS  Google Scholar 

  • Chen, L., Zhou, C., Yang, H., and Roberts, M.F., 2000, Inositol-1-phosphate synthase from Archaeoglobus fulgidus is a class II aldolase. Biochemistry 39: 12415–12423.

    PubMed  CAS  Google Scholar 

  • Chi, H., Tiller, G.E., Dasouki, M.J., Romano, P.R., Wang, J., O’Keefe, R.J., Puzas, J.E., Rosier, R.N., and Reynolds, P.R., 1999, Multiple inositol polyphosphate phosphatase: evolution as a distinct group within the histidine phosphatase family and chromosomal localization of the human and mouse genes to chromosomes 10–23 and 19. Genomics 56: 324–336.

    PubMed  CAS  Google Scholar 

  • Cho, J.S., Lee, C.W., Kang, S.H., Lee, J.C., Bok, J.D., Moon, Y.S., Lee, H.G., Kim, S.C., and Choi, Y.J., 2003, Purification and characterization of a phytase from Pseudomonas syringae MOK1. Curr. Microbiol. 47: 290–294.

    PubMed  CAS  Google Scholar 

  • Ciulla, R.A., Burggraf, S., Stetter, K O., and Roberts, M.F., 1994, Occurrence and role of di-myo-inositol-1,1′-phosphate in Methanococcus igneus. Appl. Environ. Microbiol. 60: 3660–3664.

    PubMed  CAS  Google Scholar 

  • Downing, J.F., Pasula, R., Wright, J.R., Twigg, H.L., III, and Martin, W.J., II, 1995 Surfactant protein A promotes attachment of Mycobacterium tuberculosis to alveolar macrophages during infection with human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 92: 4848–4852.

    PubMed  CAS  Google Scholar 

  • Elsbach, P., and Weiss, J., 1988, Phagocytosis of bacteria and phospholipid degradation. Biochim. Biophys. Acta 947: 29–52.

    PubMed  CAS  Google Scholar 

  • Essen, L.O., Perisic, O., Cheung, R., Katan, M., and Williams, R.L., 1996, Crystal structure of a mammalian phosphoinositide-specific phospholipase C δ. Nature 380: 595–602.

    PubMed  CAS  Google Scholar 

  • Feng, J., Wehbi, H., and Roberts, M.F., 2002, Role of tryptophan residues in interfacial binding of phosphatidylinositol-specific phospholipase C. J. Biol. Chem. 277: 19867–19875.

    PubMed  CAS  Google Scholar 

  • Ferguson, J.S., Voelker, D.R., McCormack, F.X., and Schlessinger, L.S., 1999, Surfactant protein D binds to Mycobacterium tuberculosis bacilli and lipoarabinomannan via carbohydrate-lectin interactions resulting in reduced phagocytosis of the bacteria by macrophages. J. Immunol. 163: 312–321.

    PubMed  CAS  Google Scholar 

  • Ferguson, M.A., Low, M.G., and Cross, G.A., 1985, Glycosyl-sn-1,2-dimyristylphosphatidylinositol is covalently linked to Trypanosoma brucei variant surface glycoprotein. J. Biol. Chem. 260: 14547–14555.

    PubMed  CAS  Google Scholar 

  • Fisher, S.K., Novak, J.E., and Agranoff, W., 2002, Inositol and higher inositol phosphates in neural tissues: Homeostasis, metabolism and functional significance. J. Neurochem. 82: 736–754.

    PubMed  CAS  Google Scholar 

  • Goren, M.B., 1984. Biosynthesis and structures of phospholipids and sulfatides. In: Kubica, G.P., and Wayne, L.G. (eds.), The Mycobacteria: A Sourcebook. Marcel Dekker, Inc., New York, pp. 379–415.

    Google Scholar 

  • Greiner, R., Farouk, A., Alminger, M.L., and Carlsson, N.G., 2002, The pathway of dephosphorylation of myo-inositol hexakisphosphate by phytate-degrading enzymes of different Bacillus sp. Can. J. Microbiol. 48: 986–994.

    PubMed  CAS  Google Scholar 

  • Griffith, O.H., and Ryan, M., 1999, Bacterial phosphatidylinositol-specific phospholipase C: Structure, function, and interaction with lipids. Biochim. Biophys. Acta 1441: 237–254.

    PubMed  CAS  Google Scholar 

  • Heinz, D.W., Essen, L.O., and Williams, R.L., 1998, Structural and mechanistic comparison of prokaryotic and eukaryotic phosphoinositide-specific phospholipases C. J. Mol. Biol. 275: 635–650.

    PubMed  CAS  Google Scholar 

  • Heinz, D.W., Ryan, M., Bullock, T.L., and Griffith, O.H., 1995, Crystal structure of the phosphatidylinositol-specific phospholipase C from Bacillus cereus in complex with myo-inositol. EMBO J. 14: 3855–3863.

    PubMed  CAS  Google Scholar 

  • Hirst, P.H., Riley, A.M., Mills, S.J., Spiers, I.D., Poyner, D.R., Freeman, S., Potter, B.V., Smith, A.W., 1999, Inositol polyphosphate-mediated iron transport in Pseudomonas aeruginosa. J. Appl. Microbiol. 86: 537–543.

    PubMed  CAS  Google Scholar 

  • Hoppe, H.C., de Wet, B.J., Cywes, C., Daffe, M., and Ehlers, M.R., 1997, Identification of phosphatidylinositol mannoside as a mycobacterial adhesin mediating both direct and opsonic binding to nonphagocytic mammalian cells. Infect. Immun. 65: 3896–3905.

    PubMed  CAS  Google Scholar 

  • Inada, T., and Nakamura, Y., 1995, Lethal double-stranded RNA processing activity of ribonuclease III in the absence of suhB protein of Escherichia coli. Biochimie 77: 294–302.

    PubMed  CAS  Google Scholar 

  • Inada, T., and Nakamura, Y., 1996, Autogenous control of the suhB gene expression of Escherichia coli. Biochimie 78: 209–212.

    PubMed  CAS  Google Scholar 

  • Jackson, M., Crick, D.C., and Brennan, P.J., 2000, Phosphatidylinositol is an essential phospholipids of mycobacteria. J. Biol. Chem. 275: 30092–30099.

    PubMed  CAS  Google Scholar 

  • Jacquot, J.P., Lopez-Jaramillo, J., Miginiac-Maslow, M., Lemaire, S., Cherfils, J., Chueca, A., and Lopez, J., 1997, Cysteine-153 is required for redox regulation of pea chloroplast fructose-1,6-bisphosphatase. FEBS Lett. 401: 143–147.

    PubMed  CAS  Google Scholar 

  • Janczarek, M., and Skorupska, A., 2001, The Rhizobium leguminosarum bv. Trifolii pssB gene product is an inositol monophosphatase that influences exopolysaccharide synthesis. Arch. Microbiol. 175: 143–151.

    PubMed  CAS  Google Scholar 

  • Johnson, K.A., Chen, L., Yang, H., Roberts, M.F., and Stec, B., 2001, Crystal structure and catalytic mechanism of the MJ0109 gene product: A bifunctional enzyme with inositol monophosphatase and fructose 1,6-bisphosphatase activities. Biochemistry 40: 618–630.

    PubMed  CAS  Google Scholar 

  • Kataoka, T., and Nojima, S., 1967, The phospholipid compositions of some Actinomycetes. Biochim. Biophys. Acta 144: 681–683.

    PubMed  CAS  Google Scholar 

  • Klichko, V.I., Miller, J., Wu, A., Popv, S.G., and Alibekk, K., 2003, Anaerobic induction of Bacillus anthracis hemolytic activity. Biochem. Biophys. Res. Commun. 303: 855–862.

    PubMed  CAS  Google Scholar 

  • Kozloff, L.M., Turner, M.A., and Arellanno, F., 1991a, Formation of bacterial membrane icenucleating lipoglcoprotein complexes. J. Bacteriol. 173: 6528–6536.

    PubMed  CAS  Google Scholar 

  • Kozloff, L.M., Turner, M.A., Arellanno, F., and Lute, M., 1991b, Phosphatidylinositol, a phospholipid of ice-nucleating bacteria. J. Bacteriol. 173: 2053–2060.

    PubMed  CAS  Google Scholar 

  • Lee, D.C., Cottrill, M.A., Forsberg, C.W., and Jia, Z., 2003, Functional insights revealed by the crystal structures of Escherichia coli glucose-1-phosphatase. J. Biol. Chem. 278: 31412–31418.

    PubMed  CAS  Google Scholar 

  • Levery, S.B., Toledo, M.S., Straus, A.H., and Takahashi, H.K., 1998, Structure elucidation of sphingolipids from the mycopathogen Paracoccidiodes brasiliensis: An immunodominant β-galactofuranose residue is carried by a novel glycosylinositol phosphorylceramide antigen. Biochemistry 37: 8764–8775.

    PubMed  CAS  Google Scholar 

  • Lewis, K., Garigapati, V., Zhou, C., and Roberts, M.F., 1993, Substrate requirements of bacterial phosphatidylinositol-specific phospholipase C. Biochemistry 32: 8836–8841.

    PubMed  CAS  Google Scholar 

  • Lim, D., Golovan, S., Forsberg, C.W., and Jia, Z., 2000, Crystal structures of Escherichia coli phytase and its complex with phytate. Nat. Struct. Biol. 7: 108–113.

    PubMed  CAS  Google Scholar 

  • Loewus, M.W., 1977, Hydrogen isotope effects in the cyclization of D-glucose 6-phosphate by myo-inositol-1-phosphate synthase. J. Biol. Chem. 252: 7221–7223.

    PubMed  CAS  Google Scholar 

  • Loewus, M.W., Loewus, F.A., Brillinger, G.U., Otsuka, H., and Floss, H.G., 1980, Stereochemistry of the myo-inositol-1-phosphate synthase reaction. J. Biol. Chem. 255: 11710–11712.

    PubMed  CAS  Google Scholar 

  • Majumdar, A.L., Chatterjee, A., Dastidar, K.G., and Majee, M., 2003, Diversification and evolution of L-myo-inositol 1-phosphate synthase. FEBS Lett. 553: 3–10.

    Google Scholar 

  • Majumder, A.L., Johnson, M.D., and Henry, S.A., 1997, 1L-myo-inositol-1-phosphate synthase. Biochim. Biophys. Acta 1348: 245–256.

    PubMed  CAS  Google Scholar 

  • Martin, D.D., Ciulla, R.A., and Roberts, M.F., 1999, Osmoadaptation in archaea. Appl. Environ. Microbiol. 65: 1815–1825.

    PubMed  CAS  Google Scholar 

  • Martins, L.O., Carreto, L.S., Da Costa, M.S., and Santos, H., 1996, New compatible solutes related to di-myo-inositol-phosphate in members of the order Thermotogales. J. Bacteriol. 178: 5644–5651.

    PubMed  CAS  Google Scholar 

  • Martins, L.O., Huber, R., Huber, H., Stetter, K.O., da Costa, M.S., and Santos, H., 1997, Organic solutes in hyperthermophilic Archaea. Appl. Environ. Microbiol. 63: 896–902.

    PubMed  Google Scholar 

  • Matsuhisa, A., Suzuki, N., Noda, T., and Shiba, K., 1995, Inositol monophosphatase activity from the Escherichia coli suhB gene product. J. Bacteriol. 177: 200–205.

    PubMed  CAS  Google Scholar 

  • McCarthy, A.A., Peterson, N.A., Knijff, R., and Baker, E.N., 2004, Crystal structure of MshB from Mycobacterium tuberculosis, a deacetylase involved in mycothiol biosynthesis. J. Mol. Biol. 335: 1131–1141.

    PubMed  CAS  Google Scholar 

  • Mihai, C., Kravchuk, A.V., Tsai, M.D., and Bruzik, K.S., 2003, Application of Bronsted-type LFER in the study of the phospholipase C mechanism. J. Amer. Chem. Soc. 125: 3236–3242.

    CAS  Google Scholar 

  • Morii, H., Yagi, H., Akutsu, H., Nomura, N., Sako, Y., and Koga, Y., 1999, A novel phosphoglycolipid archaetidyl(glucosyl)inositol with two sesterterpanyl chains from the aerobic hyperthermophilic archaeon Aeropyrum pernix K1.

    Google Scholar 

  • Morii, H., and Koga, Y., 1994, Asymmetrical topology of diether-and tetraether-type polar lipids in membranes of Methanobacterium thermoautotrophicum cells. J. Biol. Chem. 269: 10492–10497.

    PubMed  CAS  Google Scholar 

  • Moser, J., Gerstel, B., Meyer, J.E., Chakraborty, T., Wehland, J., and Heinz, D.W., 1997, Crystal structure of the phosphatidylinositol-specific phospholipase C from the human pathogen Listeria monocytogenes. J. Mol. Biol. 273: 269–282.

    PubMed  CAS  Google Scholar 

  • Movahedzadeh, F., Smith, D.A., Norman, R.A., Dinadayala, P., Murray-Rust, J., Russell, D.G., Kendall, S.L., Rison, S.C., McAlister, M.S., Bancroft, G.J., McDonald, N.Q., Daffe, M., Av-Gay, Y., and Stoker, N.G., 2004, The Mycobacterium tuberculosis ino1 gene is essential for growth and virulence. Mol. Microbiol. 51: 1003–1014.

    PubMed  CAS  Google Scholar 

  • Nagiec, M.M., Nagiec, E.E., Baltisberger, J.A., Wells, G.B., Lester, R.L., and Dickson, R.C., 1997, Sphingolipid synthesis as a target for antifungal drugs. Complementation of the insoitol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene. J. Biol. Chem. 272: 9809–9817.

    PubMed  CAS  Google Scholar 

  • Nakamura, M., Mori, Y., Okuyama, K., Tanikawa, K., Yasuda, S., Hanada, K., and Kobayashi, S., 2003, Chemistry and biology of khafrefungin. Large-scale synthesis, design, and structureactivity relationship of khafrefungin, an antifungal agent. Org. Biomol. Chem. 1: 3362–3376.

    PubMed  CAS  Google Scholar 

  • Nesbo, C.L., L’Haridon, S., Stetter, K.O., and Doolittle, W.F., 2001, Phylogenetic analyses of two “archaeal” genes in Thermotoga maritima reveal multiple transfers between archaea and bacteria. Mol. Biol. Evol. 18: 362–375.

    PubMed  CAS  Google Scholar 

  • Neuwald, A.F., York, J.D., and Majerus, P.W., 1991, Diverse proteins homologous to inositol monophosphatase. FEBS Lett. 294: 16–18.

    PubMed  CAS  Google Scholar 

  • Newton, G.L., Bewley, C.A., Dwyer, T.J., Horn, R., Abaromowitz, Y., Cohen, G., Davies, J., Faulkner, D.J., and Fahey, R.C., 1995, The structure of U17 isolated from Streptomyces clavuligerus and its properties as an antioxidant thiol. Eur. J. Biochem. 230: 821–825.

    PubMed  CAS  Google Scholar 

  • Newton, G.L., and Fahey, R.C., 2002, Mycothiol biochemistry. Arch. Microbiol. 178: 388–394.

    PubMed  CAS  Google Scholar 

  • Nigou, J., Dover, L.G., and Besra, G.S., 2002, Purification and biochemical characterization of Mycobacterium tuberculosis SuhB, an inositol monophosphatase involved in inositol biosynthesis. Biochemistry 41: 4392–4398.

    PubMed  CAS  Google Scholar 

  • Nikawa, J., and Yamashita, S., 1997, Phosphatidylinositol synthase from yeast. Biochim. Biophys. Acta 1348: 173–178.

    PubMed  CAS  Google Scholar 

  • Nishihara, M., and Koga, Y., 1991, Hydroxyarchaetidylserine and hydroxyarchaetidyl-myo-inositol in Methanosarcina barkeri: Polar lipids with a new ether core portion. Biochim. Biophys. Acta 1082: 211–217.

    PubMed  CAS  Google Scholar 

  • Nishihara, M., Utagawa, M., Akutsu, H., and Koga, Y., 1992, Archaea contain a novel diether phosphoglycolipid with a polar head group identical to the conserved core of eucaryal glycosyl phosphatidylinositol. J. Biol. Chem. 267: 12432–12435.

    PubMed  CAS  Google Scholar 

  • Norman, R.A., McAlister, M.S., Murray-Rust, J., Movahedzadeh, F., Stoker, N.G., and McDonald, N.Q., 2002, Crystal structure of inositol 1-phosphate synthase from Mycobacterium tuberculosis, a key enzyme in phosphatidylinositol synthesis. Structure 10: 393–402.

    PubMed  CAS  Google Scholar 

  • Parish, T., Liu, J., Nikaido, H., and Stoker, N.G., 1997, A Mycobacterium smegmatis mutant with a defective inositol monophosphate phosphatase gene homolog has altered cell envelope permeability. J. Bacteriol. 179: 7827–7833.

    PubMed  CAS  Google Scholar 

  • Raboy, V., 2003, myo-Inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistry 64: 1033–1043.

    PubMed  CAS  Google Scholar 

  • Rashid, N., Imanaka, H., Kanai, T., Fukui, T., Atomi, H., and Imanaka, T., 2002, A novel candidate for the true fructose-1,6-bisphosphatase in archaea. J. Biol. Chem. 277: 30649–30655.

    PubMed  CAS  Google Scholar 

  • Raynaud, C., Guilhot, C., Rauzier, J., Bordat, Y., Pelicic, V., Manganelli, R., Smith, I., Gicquel, B., and Jackson, M., 2002, Phospholipases C are involved in the virulence of Mycobacterium tuberculosis. Mol. Microbiol. 45: 203–217.

    PubMed  CAS  Google Scholar 

  • Sakoh, H., Sugimoto, Y., Imamura, H., Sakuraba, S., Jona, H., Bamba-Nagano, R., Yamada, K., Hashizume, T., and Morishima, H., 2004, Novel galbonolide derivatives as IPC synthase inhibitors: Design, synthesis and in vitro antifungal activities. Bioorg. Med. Chem. Lett. 14: 143–145.

    PubMed  CAS  Google Scholar 

  • Salman, M., Lonsdale, J.T., Besra, G.S., and Brennan, P.J., 1999, Phosphatidylinositol synthesis in mycobacteria. Biochim. Biophys. Acta 1436: 437–450.

    PubMed  CAS  Google Scholar 

  • Scholz, S., Sonnenbichler, J., Schafer, W., and Hensel, R., 1992, Di-myo-inositol-1,1′-phosphate: A new inositol phosphate isolated from Pyrococcus woesei. FEBS Lett. 306: 239–242.

    PubMed  CAS  Google Scholar 

  • Scholz, S., Wolff, S., and Hensel, R., 1998, The biosynthesis pathway of di-myo-inositol-1,1′-phosphate in Pyrococcus woesei. FEMS Microbiol. Lett. 168: 37–42.

    CAS  Google Scholar 

  • Sharom, F.J., and Lehto, M.T., 2002, Glycosylphosphatidylinositol-anchored proteins: Structure, function, and cleavage by phosphatidylinositol-specific phospholipase C. Biochem. Cell. Biol. 80: 535–549.

    PubMed  CAS  Google Scholar 

  • Shin, S., Ha, N.C., Oh, B.C., Oh, T.K., and Oh, B.H., 2001, Enzyme mechanism and catalytic property of beta propeller phytase. Structure 9: 851–858.

    PubMed  CAS  Google Scholar 

  • Sibelius, U., Schulz, E.C., Rose, F., Hattar, K., Jacobs, T., Weiss, S., Chakraborty, T., Seeger, W., and Grimminger, F., 1999, Role of Listeria monocytogenes exotoxins listeriolysin and phosphatidylinositol-specific phospholipase C in activation of human neutrophils. Infect. Immun. 67: 1125–1130

    PubMed  CAS  Google Scholar 

  • Sidobre, S., Nigou, J., Puzo, G., and Riviere, M., 2000, Lipoglycans are putative ligands for the human pulmonary surfactant protein A attachment to mycobacteria. J. Biol. Chem. 275: 2415–2422.

    PubMed  CAS  Google Scholar 

  • Spies, H.S.C., and Steenkamp, D.J., 1994, Thiols of intracellular pathogens. Identification of ovothiol A in Leishmania donovani and structural analysis of a novel thiol from Mycobacterium bovis. Eur. J. Biochem. 224: 203–213.

    PubMed  CAS  Google Scholar 

  • Stec, B., Yang, H., Johnson, K.A., Chen, L., and Roberts, M.F., 2000, MJ0109 is an enzyme that is both an inositol monophosphatase and the ‘missing’ archaeal fructose-1,6-bisphosphatase. Nat. Struct. Biol. 7: 1046–1050.

    PubMed  CAS  Google Scholar 

  • Stein, A.J., and Geiger, J.H., 2002, The crystal structure and mechanism of 1-L-myo-inositol-1-phosphate synthase. J. Biol. Chem. 277: 9484–9491.

    PubMed  CAS  Google Scholar 

  • Stieglitz, K.A., Johnson, K.A., Yang, H., Roberts, M.F., Seaton, B.A., Head, J.F., and Stec, B., 2002, Crystal structure of a dual activity IMPase/FBPase (AF2372) from Archaeoglobus fulgidus. The story of a mobile loop. J. Biol. Chem. 277: 22863–22874.

    PubMed  CAS  Google Scholar 

  • Stieglitz, K.A., Yang, H., Roberts, M.F., and Stec, B., 2005, Reaching for mechanistic consensus across life kingdoms: Structure and insights into catalysis of the inositol-1-phosphate synthase (MIPS) from Archaeoglobus fulgidus. Biochemistry 44: 213–224.

    PubMed  CAS  Google Scholar 

  • Stieglitz, K.A., Seaton, B.A., Head, J.F., Stec, B., and Roberts, M.F., 2003, Unexpected similarity in regulation between an archaeal inositol monophosphatase/fructose bisphosphatase and chloroplast fructose bisphosphatase. Protein Sci. 12: 760–767.

    PubMed  CAS  Google Scholar 

  • Tabaud, H., Tisnovska, H., and Vilkas, E., 1971, Phospholipids and glycolipids of a Micromonospora strain. Biochimie 53: 55–61.

    PubMed  CAS  Google Scholar 

  • Tian, F., Migaud, M.E., and Frost, J.W., 1999, Stereochemistry of the myo-inositol-1-phosphate synthase reaction. J. Biol. Chem. 255: 11710–11712.

    Google Scholar 

  • Toledo, M.S., Levery, S.B., Glushka, J., Straus, A.H., and Takahashi, H.K., 2001, Structure elucidation of sphingolipids from the mycopathogen Sporothrix schenckii: Identification of novel glycosylinositol phosphorylceramides with core Manα→6Ins linkage. Biochem. Biophys. Res. Commun. 280: 19–24.

    PubMed  CAS  Google Scholar 

  • Vohra, A., and Satyanarayana, T., 2003, Phytases: Microbial sources, production, purification, and potential biotechnological applications. Crit. Rev. Biotechnol. 23: 29–60.

    PubMed  CAS  Google Scholar 

  • Volwerk, J.J., Shashidhar, M.S., Kuppe, A., and Griffith, O.H., 1990, Phosphatidylinositol-specific phospholipase C from Bacillus cereus combines intrinsic phosphotransferase and cyclic phosphodiesterase activities: A 31P NMR study. Biochemistry 29: 8056–8062.

    PubMed  CAS  Google Scholar 

  • Wadsworth, S.J., and Goldfine, H., 2002, Mobilization of protein kinase C in macrophages induced by Listeria monocytogenes affects its internalization and escape from the phagosome. Infect. Immun. 70: 4650–4660.

    PubMed  CAS  Google Scholar 

  • Walker, J.B., 1995, Enzymatic synthesis of aminocyclitol moieties of aminoglycoside antibiotics from inositol by Streptomyces spp.: Detection of glutamine-aminocyclitol aminotransferase and diaminocyclitol aminotransferase activities in a spectinomycin producer. J. Bacteriol. 177: 818–822.

    PubMed  CAS  Google Scholar 

  • Wu, Y., Perisic, O., Williams, R.L., Katan, M., and Roberts, M.F., 1997, Phosphoinositide-specific phospholipase C δ 1 activity toward micellar substrates, inositol 1,2-cyclic phosphate, and other water-soluble substrates: A sequential mechanism and allosteric activation. Biochemistry 36: 11223–11233.

    PubMed  CAS  Google Scholar 

  • Yague, G., Segovia, M., and Valero-Guillen, P.L., 2003, Phospholipid composition of several clinically relevant Corynebacterium species as determined by mass spectrometry: An unusual fatty acyl moiety is present in inositol-containing phospholipids of Corynebacterium urealyticum. Microbiology 149: 1675–1685.

    PubMed  Google Scholar 

  • Yano, I., Furukawa, Y., and Kusunose, M., 1969, Phospholipids of Nocardia coeliaca. J. Bacteriol. 98: 124–130.

    PubMed  CAS  Google Scholar 

  • Yano, R., Nagai, H., Shiba, K., and Yura, T., 1990, A mutation that enhances synthesis of σ32 and suppresses temperature-sensitive growth of the rpoH15 mutant of Escherichia coli. J. Bacteriol. 172: 2124–2130.

    PubMed  CAS  Google Scholar 

  • York, J.D., Ponder, J.W., and Majerus, P.W., 1995, Definition of a metal-dependent/Li+-inhibited phosphomonoesterase protein family based upon a conserved three-dimensional core structure. Proc. Natl. Acad. Sci. USA 92: 5149–5153.

    PubMed  CAS  Google Scholar 

  • Zhang, X., Wehbi, H., and Roberts, M.F., 2004, Crosslinking phosphatidylinositol-specific phospholipase C traps two activating phosphatidylcholine molecules on the enzyme. J. Biol. Chem. 279: 20490–20500.

    PubMed  CAS  Google Scholar 

  • Zhou, C., and Roberts, M.F., 1998, Nonessential activation and competitive inhibition of bacterial phosphatidylinositol-specific phospholipase C by short-chain phospholipids and analogues. Biochemistry 37: 16430–16439.

    PubMed  CAS  Google Scholar 

  • Zhou, C., Wu, Y., and Roberts, M.F., 1997, Activation of phosphatidylinositol-specific phospholipase C toward inositol 1,2-(cyclic)-phosphate. Biochemistry 36: 347–355.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Roberts, M.F. (2006). Inositol in Bacteria and Archaea. In: Majumder, A.L., Biswas, B.B. (eds) Biology of Inositols and Phosphoinositides. Subcellular Biochemistry, vol 39. Springer, Boston, MA . https://doi.org/10.1007/0-387-27600-9_5

Download citation

Publish with us

Policies and ethics