Skip to main content

Photocatalytic Degradation of Air Borne Pollutants

  • Chapter

Abstract

Heterogeneous photocatalytic oxidation of organic air contaminants is a promising technology that offers distinct advantages. These advantages include potential lower operating costs, the elimination of treatment reagents or electron acceptors, the possible recovery, regeneration and reuse of the photocatalyst and finally its widespread applicability for the complete mineralization of organic compounds (Miller and Fox, 1993; Suri et al., 1993). Cabrera et al., (1994) indicated that almost any organic pollutant, and many inorganic ones, could be completely mineralized or separated by means of heterogeneous photocatalysis. Additionally, photocatalytic technology can be used in conjunction with solar radiation (Suri et al., 1993) at close to ambient temperature (Cassano et al., 1995; Falconer and Magrini-Bair, 1998; Miller and Fox, 1993). Photocatalysis also shows important prospects for certain air treatment applications, given that the observed apparent quantum efficiencies can be in excess of 100% (Ibrahim and de Lasa, 2003).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bockelmann, D., Goslich, R., Weichgrebe, D., and Bahnemann, D., 1993, Solar detoxification of polluted water: comparing the efficiencies of a parabolic reactor and a novel film fixed bed reactor, in: Photocatalytic Purification and Treatment of Water and Air: Proc.lst International Conference on TiO2, D. Ollis and H. Al-Ekabi, ed., Elsevier, pp. 771–776.

    Google Scholar 

  • Brucato, A., Iatridis D., Rizzuti L., and Yue, P., 1992, Modeling of light transmittance and reflectance in a flat fluidized bed, Canadian J. of Chem. Eng. 70: 1063–1070.

    Article  CAS  Google Scholar 

  • Cabrera, M., Alfano, O., and Cassano, A., 1994, Novel reactor for photocatalytic kinetic studies, Ind. Eng. Chem. Res. 33: 3031–3042.

    Article  CAS  Google Scholar 

  • Cabrera, M., Alfano, O., and Cassano, A., 1996, Absorption and scattering coefficients of titanium dioxide particulate suspensions in water, J. of Phys. Chem. 100: 20043–20050.

    Article  CAS  Google Scholar 

  • Cassano, A., Martin, C., Brandi R., and Alfano, 0., 1995, Photoreactor analysis and design: fundamentals and applications, Ind. Eng. Chem. Res. 34: 2155–2201.

    Article  CAS  Google Scholar 

  • Cunningham, J., and Hodnett, B., 1981, Kinetic studies of secondary alcohol photooxidation on ZnO and TiO2 at 348K studied by gas chromatograph analysis, J. Chem. Soc. Faraday Transactions 1. 77: 2777–2801.

    Google Scholar 

  • Lasa, H., and Ibrahim, H., 1998, Photocatalytic reactor and method for the destruction of organic air pollutants, Filed U.S. Patent Office.

    Google Scholar 

  • Dibble, L., and Raupp, G., 1992, Fluidized bed photocatalytic oxidation of trichloroethylene in contaminated air streams, Env. Sci. Tech. 26 (3): 492–495.

    Article  CAS  Google Scholar 

  • Falconer, J., and Magrini-Bair, K., 1998, Photocatalytic and thermal oxidation of acetaldehydeon Pt/TiO2, J. of Catalysis. 179: 171–178.

    Article  CAS  Google Scholar 

  • Formenti, M., Juillet, F., Meriaudeau, P., and Teichner, S., 1971, Heterogeneous photocatalysis for partial oxidation of paraffin, Chem. Tech. 1: 680–681.

    Google Scholar 

  • Fox, M., 1988, Photocatalytic oxidation of organic substances, in: Photocatalysis and Environment: Trends and Applications, M. Schiavello, ed., Kluwer Academic Publishers, New York, pp. 445–467.

    Google Scholar 

  • Fox, M., and Dulay, M., 1993, Heterogeneous photocatalysis, Chem. Rev. 93: 341–357.

    Article  CAS  Google Scholar 

  • Hoffmann, M., Martin, S., Choi, W., and Bahnemann, D., 1995, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1): 69–96.

    Article  CAS  Google Scholar 

  • Ibrahim, H., 2001, Photocatalytic Reactor for the Degradation of Airborne Pollutants. Photoconversion Efficiency and Kinetic Modeling, PhD Dissertation, The University of Western Ontario, London Ontario, Canada.

    Google Scholar 

  • Ibrahim, H., and de Lasa, H., 2002, Photocatalytic conversion of air borne pollutants. Effect of catalyst type and loading in novel Photo-CREC-Air Unit, Appl. Cat. 38: 201–213.

    Article  CAS  Google Scholar 

  • Ibrahim, H., and de Lasa, H., 2003, Photocatalytic degradation of air borne pollutants. Apparent quantum efficiencies in a novel Photo-CREC-Air reactor, Chem. Eng. Sci. 58: 943–949.

    Article  CAS  Google Scholar 

  • Ibrahim, H., and de Lasa, H., 2004, Kinetic Modeling of the Photocatalytic Degradation of Air Borne Pollutants. AIChE.J. 50: 1017–1027.

    Article  CAS  Google Scholar 

  • Jacoby, W., Blake, D., Noble, R., and Koval, C., 1995, Kinetics of oxidation of TCE in air via heterogeneous photocatalysis, J. of Catalysis. 157: 87–96.

    Article  CAS  Google Scholar 

  • Jacoby, W., Black, D., Fennel, D., Boutlet, J., Vargo, L., George, M., and Dolberg, S., 1996, Heterogeneous photocatalysis for control of volatile organic compounds in indoor air, J. Air and Waste Man. Ass. 46: 691–898.

    Google Scholar 

  • Luo, Y., and Ollis, D., 1996, Heterogeneous photocatalytic oxidation of trichloroethylene and toluene mixtures in air: kinetic promotion and inhibition, time-dependent catalyst activity, J of Catalysis. 163: 1–11.

    Article  CAS  Google Scholar 

  • Miller, R., and Fox, R., 1993, Treatment of organic contaminants in air by photocatalytic oxidation: a commercialization perspective, in: Photocatalytic Purification and Treatment of Water and Air: Proceedings of the ]S International Conference on TiO2., D. Ollis, H. Al-Ekabi, ed., Elsevier, 573–578.

    Google Scholar 

  • Nimlos, M., Wolfrum, E., Brewer, M., Fennell, J., and Bintner, G., 1996, Gas phase heterogeneous photocatalytic oxidation of ethanol: pathways and kinetic modeling, Env. Sci. Tech. 30 (10): 3102–3110.

    Article  CAS  Google Scholar 

  • Notarfonzo, R., and McPhee, W., 1994, How to evaluate a UV/Oxidation system, Poll. Eng. 26 (10): 74–76.

    CAS  Google Scholar 

  • Ohko, Y., and Fujishima, A., 1998, Kinetics analysis of the photocatalytic degradation of gas-phase 2-propanol under mass transport-limited conditions with a TiO2 film photocatalyst, J. Phys. Chem. B 102: 1724–1729.

    Article  CAS  Google Scholar 

  • Ohko, Y., Tryk, D., Hashimoto, K., and Fujishima, A., 1998, Autoxidation of acetaldehyde by TiO2 photo-catalysis under weak UV illumination, J. Phys. Chem. B, 102 (15): 2699–2704.

    Article  CAS  Google Scholar 

  • Ollis, D., and Al-Ekabi, H., 1993, Photocatalytic Purification and Treatment of Water and Air: Proceedings of the 1st International Conference on 7102, Elsevier.

    Google Scholar 

  • Peill, N., and Hoffmann, M., 1995, Development and optimization of a TiO2 coated fiber optic cable reactor: photocatalytic degradation of 4-chlorophenol, Env. Sci. Tech. 29: 2974–2981.

    Article  CAS  Google Scholar 

  • Pelizzetti, E., Minero, C., and Pramauro, E., 1993, Photocatalytic processes for destruction of organic water contaminants, in: Chemical Reactor Technology for Environmentally Safe Reactors and Products, H. de Lasa, G. Dogu, and A. Ravella, ed., Kluwer Academic Publishers, 577–608.

    Google Scholar 

  • Peral, J., and Ollis, D., 1992, Heterogeneous photocatalytic oxidation of gas-phase organics for air purification: acetone, 1-butanol, butyraldehyde, formaldehyde, and m-xylene oxidation“. J. of Catalysis 136: 554–565.

    Article  Google Scholar 

  • Raupp, G., and Junio, C., 1993, Photocatalytic oxidation of oxygenated air toxics, Appl. Sur. Sci. 72: 321–327.

    Article  CAS  Google Scholar 

  • Raupp, G., Nico, J., Annangi, S., Changrani, R., and Annapragada, R., 1997, Two flux radiation-field model for an annular packed-bed photocatalytic oxidation reactor, AIChE J 43 (3): 792–801.

    Article  CAS  Google Scholar 

  • Sauer, M., and Ollis, D., 1994, Acetone oxidation in a photocatalytic monolith reactor, J of Catalysis. 149: 81–91.

    Article  CAS  Google Scholar 

  • Serrano, B., and de Lasa, H., 1997, Photocatalytic degradation of water organic pollutants. Kinetic modeling and energy efficiency, Ind. Eng. Chem. Res. 36: 4705–4711.

    Article  CAS  Google Scholar 

  • Shifu, C., Xueli, C., Yaowu, T., and Mengyue, Z., 1998, Photocatalytic degradation of trace gaseous acetone and acetaldehyde using TiO2 supported on fiberglass cloth“, J. Chem. Tech. and Biotech. 73: 264–268.

    Article  CAS  Google Scholar 

  • Suri R., Liu, J., Hand, D., Crittenden, J., Perram, D., and Mullims, M., 1993, Heterogeneous photocatalytic oxidation of hazardous organic contaminants in water, Water Env. Res. 65 (5): 665–673.

    Article  CAS  Google Scholar 

  • Suzuki, K., 1993, Photocatalytic air purification on TiO2 coated honeycomb support, in: Photocatalytic Purification and Treatment of Water and Air: Proceedings of the 1st International Conference on TiO2, D. Ollis, H. Al-Ekabi, ed., Elsevier, 412–434.

    Google Scholar 

  • Suzuki, K., Satoh, S., and Yoshida, T., 1991, Photocatalytic deodorization on TiO2 coated honeycomb ceramics, Denki Kagaku 59 (6): 521–523.

    CAS  Google Scholar 

  • Valladares, J., and Bolton, J., 1993, A method for the determination of quantum yields in heterogeneous systems: the titanium dioxide photocatalyzed bleaching of methylene blue, Trace Metals in the Env. 3: 111–120.

    CAS  Google Scholar 

  • Yue, P., 1993, Modeling, scale up and design of multiphasic photoreactors, in: Photocatalytic Purification and Treatment of Water and Air: Proceedings of the 1st International Conference on 7/02, D. ()his, H. Al-Ekabi, ed., Elsevier, 495–510.

    Google Scholar 

  • Yue, P., Khan, F., and Rizzuti, L., 1983, Photocatalytic ammonia synthesis in a fluidized bed reactor, Chem. Eng. Sei. 38: 1893–1900.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media New York

About this chapter

Cite this chapter

de Lasa, H., Serrano, B., Salaices, M. (2005). Photocatalytic Degradation of Air Borne Pollutants. In: Photocatalytic Reaction Engineering. Springer, Boston, MA. https://doi.org/10.1007/0-387-27591-6_8

Download citation

Publish with us

Policies and ethics