Skip to main content

Quantum Time Entanglement of Electrons

  • Chapter
  • 1184 Accesses

Part of the book series: Physics of Atoms and Molecules ((PAMO))

Abstract

Correlation is often significant in electron scattering from atoms, nuclei and bulk matter. Mathematically, as well as conceptually, correlation and entanglement are defined in the same way. Both correlation and entanglement connote mixing. Both are described as a deviation from a product (uncorrelated) form. In quantum optics the term entanglement is used to describe the spatial mixing of states of a system by external electromagnetic fields. In static systems correlation arises from interparticle fields that mix wavefunctions. Correlation dynamics, intrinsic in scattering from few and many body systems, adds the dimension of time to the basic conceptual framework. Time correlation, described here, mixes the time evolution of the particles. This time entanglement, which is non-local, requires both spatial correlation and quantum time ordering.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Knudsen and J. F. Reading, Phys. Reports 212, 107 (1992).

    Article  ADS  Google Scholar 

  2. N. Stolterfoht, Phys. Rev. A 48, 2980 (1993).

    Article  ADS  Google Scholar 

  3. J. H. McGuire, Electron Correlation Dynamics in Atomic Collisions, (Cambridge University Press, 1997).

    Google Scholar 

  4. J. H. McGuire at al., submitted to Phys. Rev. A. (2002).

    Google Scholar 

  5. A.L. Godunov et al., J. Phys. B. 34, 5055 (2001).

    Article  ADS  Google Scholar 

  6. A. L. Godunov and J. H. McGuire, J. Phys. B. 34, L223 (2001).

    Article  ADS  Google Scholar 

  7. J. H. McGuire et al., Phys. Rev. A63, 052706-1 (2001).

    ADS  Google Scholar 

  8. H. Merabet et al., Phys. Rev A65, 010703(R) (2002).

    ADS  Google Scholar 

  9. M. L. Goldberger and K. Watson, Collision Theory, (Wiley, NY, 1964), p. 48.

    MATH  Google Scholar 

  10. W. Magnus, Commun. Pure and Applied Math, 7, 971 (1954). In some applications of the Magnus expansion, the leading term can give an infinite total cross section. In our application, the total cross sections are sensibly finite.

    MathSciNet  Google Scholar 

  11. J.H. McGuire, Phys. Rev. A 36, 1114 (1987).

    Article  ADS  Google Scholar 

  12. R. Olson and A. Salop, Phys. Rev. A. 16, 531 (1977).

    Article  ADS  Google Scholar 

  13. G. B. Arfkin and G. B. Weber, Mathematical Methods for Physicists, (Academic Press, 1995), Problems 1.15.14.

    Google Scholar 

  14. J. R. Taylor, Scattering Theory, (John Wiley and Sons, NY, 1972).

    Google Scholar 

  15. J.H. McGuire et al., Phys. Rev. A26, 1109 (1982). Obtaining Γ from η is in general non-trivial.

    ADS  Google Scholar 

  16. R. Balescu, Equilibrium and Non-equilibrium Statistical Mechanics, John Wiley, NY, 1975) Chap. 21, Sec. 1.

    Google Scholar 

  17. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, (Cambridge University Press, 1995).

    Google Scholar 

  18. H. Z. Zhao et al., Phys. Rev. Lett. 79, 613 (1997).

    Article  ADS  Google Scholar 

  19. A.L. Godunov et al., J. Phys B. 30, 5451 (1997).

    Article  ADS  Google Scholar 

  20. A.L. Godunov et al., J. Phys B. 30, 3227 (1997).

    Article  ADS  Google Scholar 

  21. D. H. Madison et al., J. Phys. B 24, 3861 (1991).

    Article  ADS  Google Scholar 

  22. T. Kirchner et al., Phys. Rev A 62, 042704 (2000).

    Article  ADS  Google Scholar 

  23. P. J. Marchalant et al., J. Phys. B 33, L749 (2000).

    Article  ADS  Google Scholar 

  24. Y. Fang and K. Bartschat, J. Phys. B 34, L19–25 (2001).

    Article  ADS  Google Scholar 

  25. A.L. Goodman and T. Jin, Phys. Rev. C 54, 1165 (1996).

    Article  ADS  Google Scholar 

  26. D. H. Madison, private communication.

    Google Scholar 

  27. H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, Mass. (1959) Sec. 7-5.

    Google Scholar 

  28. A. Sommerfeld, Optics, (Academic Press, NY, 1955), p. 355.

    Google Scholar 

  29. A. Messiah, Quantum Mechanics, (Wiley, NY, 1961), p. 41 (action), p. 60 (time propagation).

    Google Scholar 

  30. Rubin H. Landau, Quantum Mechanics II, (Wiley Interscience, NY, 2nd Edition, 1996).

    MATH  Google Scholar 

  31. H. Huang and J. H. Eberly, J. Mod. Optics 5, 915 (1993).

    Article  ADS  Google Scholar 

  32. W. Kohn, Review of Modern Physics 71 1253, (1999).

    Article  ADS  Google Scholar 

  33. F. H. M. Faisal, Theory of Multiphoton Processes, (Plenum Press, NY) (1987).

    Google Scholar 

  34. L. Allen and J. H. Eberly, Optical Resonance and Two-level Atoms, (Dover, NY, 1987), Chap. 2.

    Google Scholar 

  35. R. D. Levine and R. B. Bernstein, Molecular Reaction Dynamics (Oxford University Press, NY, 1974).

    Google Scholar 

  36. C. H. Bennett et al, Quantum information science, Report of the NSF Workshop in Arlington, VA, Oct. 28–29, 1999.

    Google Scholar 

  37. M. Macucci et al. Nanotechnology 12, 136 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

McGuire, J., Godunov, A. (2005). Quantum Time Entanglement of Electrons. In: Whelan, C.T., Mason, N.J. (eds) Electron Scattering. Physics of Atoms and Molecules. Springer, Boston, MA. https://doi.org/10.1007/0-387-27567-3_17

Download citation

Publish with us

Policies and ethics