Skip to main content

Molecular Properties of Voltage-Gated Calcium Channels

  • Chapter
Book cover Voltage-Gated Calcium Channels

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nowycky MC, Fow AP, Tsien RW. Three types of neuronal calcium channels with different calcium agonist sensitivity. Nature 1985; 340:233–236.

    Google Scholar 

  2. Bean BP. Classes of calcium channels in vertebrate ceslls. Annu Rev. Physiol 1989; 51:367–384.

    Article  PubMed  CAS  Google Scholar 

  3. Scott RH, Pearson HA, Dolphin AC. Aspects on vertebrate neuronal voltage-activated calcium currents and their regulation. Progress in Neurobiology 1991; 36:485–520.

    Article  PubMed  CAS  Google Scholar 

  4. Tsien RW, Ellinor PT, Horne WA. Molecular diversity of voltage-dependent Ca2+ channels. TIPS 1991; 12:349–354.

    PubMed  CAS  Google Scholar 

  5. Tanabe T, Takeshima H, Flockerzi V et al. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 1987; 328:313–318.

    Article  PubMed  CAS  Google Scholar 

  6. Hell JW, Westenbroek RE, Warner C et al. Identification and differential subcellular localization of the neuronal class C and class D L-type calcium channel α1 subunits. J Cell Biol 1993; 123(4):949–962.

    Article  PubMed  CAS  Google Scholar 

  7. Tanabe TK, Beam G, Powell JA et al. Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature 1988; 336:134–139.

    Article  PubMed  CAS  Google Scholar 

  8. Miller RJ. Voltage-sensitive Ca2+ channels. J Biol Chem 1992; 267(3):1403–1406.

    PubMed  CAS  Google Scholar 

  9. Perney TM, Hirning LD, Leeman SE et al. Multiple calcium channels mediate neurotransmitter release from peripheral neurons. Proc Natl Acacd Sci USA 1986; 83(17):6656–6659.

    Article  CAS  Google Scholar 

  10. Cazalis M, Dayanithi G, Nordmann JJ. Hormone release from isolated nerve endings of the rat neurohypophysis. J Physiol (London) 1987; 390:55–70.

    PubMed  CAS  Google Scholar 

  11. Rane SG, Holz 4th GG, Dunlap K. Dihydropyridine inhibition of neuronal calcium current and substance P release. Pflugers Arch 1987; 409(4–5):361–366.

    Article  PubMed  CAS  Google Scholar 

  12. Lemos JR, Nowycky MC. Two types of calcium channels co-exist in peptide releasing vertebrate nerve terminals. Neuron 1989; 2(5):1419–1426.

    Article  PubMed  CAS  Google Scholar 

  13. Wang X, Wang G, Lemos R et al. Ethanol directly modulates gating of a dihydropyridine-sensitive Ca2+ channel in neurohypophysial terminals. J Neurosci 1994; 14(9):5453–5460.

    PubMed  CAS  Google Scholar 

  14. Murphy TH, Worley PF, Baraban JM. L-type voltage-sensitive calcium channels mediate synaptic activation of immediate early genes. Neuron 1991; 7:625–635.

    Article  PubMed  CAS  Google Scholar 

  15. Sutton KG, McRory JE, Guthrie H et al. P/Q-type channels mediate the activity-dependent feedback of syntaxin-1A. Nature 1999; 401:800–804.

    Article  PubMed  CAS  Google Scholar 

  16. Dolmetsch RE, Pajvani U, Fife K et al. Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science 2001; 294:333–339.

    Article  PubMed  CAS  Google Scholar 

  17. Mintz IM, Venema VJ, Adams ME et al. Inhibition of N-and L-type Ca2+ channels by the spider venom toxin ω-Aga-IIIA. Proc Natl Acad Sci USA 1991; 88:6628–6631.

    Article  PubMed  CAS  Google Scholar 

  18. Cohen CJ, Ertel EA, Smith MM et al. High affinity block of myocardial L-type calcium channels by the spider toxin ω-Aga-toxin IIIA: Advantages over 1,4-dihydropyridines. Mol Pharmacol 1992; 42:947–951.

    PubMed  CAS  Google Scholar 

  19. Tsien RW, Lipscombe D, Madison DV et al. Multiple types of neuronal calcium channels and their selective modulation. TINS 1988; 11(10):431–438.

    PubMed  CAS  Google Scholar 

  20. Imready JP, Yue DT. Mechanism of Ca2+-sensitive inactivation of L-type channels. Neuron 1994; 12:1301–1318.

    Article  Google Scholar 

  21. Charnet P, Bourinet E, Dubel SJ et al. Calcium currents recorded from a neuronal α1C L-type channel in Xenopus oocytes. FEBS Letts 1994; 344:87–90.

    Article  CAS  Google Scholar 

  22. Neely A, Olcese R, Wei S et al. Ca2+-dependent inactivation of a cloned cardiac Ca2+ channel α1 subunit (α1C) expressed in Xenopus oocytes. Biophys J 1994; 66:1895–1903.

    PubMed  CAS  Google Scholar 

  23. Erickson MG, Alseikhan BA, Peterson BZ et al. Preassociation of calmodulin with voltage-gated Ca(2+) channels revealed by FRET in single living cells. Neuron 2001; 31(6):973–985.

    Article  PubMed  CAS  Google Scholar 

  24. Fox AP, Nowycky MC, Tsien RW. Kinetics and pharmacological properties distinguishing three types of calcium currents in chick sensory neurons. J Physiol (Lond) 1987; 394:149–172.

    PubMed  CAS  Google Scholar 

  25. Fox AP, Nowycky MC, Tsien RW. Single-channel recordings of three types of calcium channels in chic sensory neurons. J Physiol (Lond) 1987; 394:173–200.

    PubMed  CAS  Google Scholar 

  26. Gross RA, Macdonald RL. Dynorphin A selectively reduces a large transient (N-type) calcium current of mouse dorsal root ganglion neurons in cell culture. Proc Natl Acad Sci USA 1987; 84(15):5469–5473.

    Article  PubMed  CAS  Google Scholar 

  27. Green KA, Cottrell GA. Actions of baclofen on components of the Ca-current in rat and mouse DRG neurons in culture. Br. J Pharmacol 1988; 94(1):235–245.

    PubMed  CAS  Google Scholar 

  28. Petersen M, Wagner G, Pierau FK. Modulation of calcium currents by capsaicin in a subpopulation of sensory neurones of guinea pig. Nauyn Schmiedebergs Arch Pharmacol 1989; 339(1–2):184–191.

    CAS  Google Scholar 

  29. McCarthy RT, TanPiengco PE. Multiple types of high-threshold calcium channels in rabbit sensory neurons: high-affinity block of neuronal L-type by nimodipine. J Neurosci 1992; 12(6):2225–2234.

    PubMed  CAS  Google Scholar 

  30. Wanke E, Ferroni A, Malgaroli A. Activation of a muscarinic receptor selectively inhibits a rap idly inactivated Ca2+ current in rat sympathetic neurons. Proc Natl Acad Sci USA 1987; 84(12):4313–4317.

    Article  PubMed  CAS  Google Scholar 

  31. Plummer MR, Logothetis DE, Hess P. Elementary properties and pharmacological sensitivities of calcium channels in mammalian peripheral neurons. Neuron 1989; 2(5):1453–1463.

    Article  PubMed  CAS  Google Scholar 

  32. Jones SW, Marks TN. Calcium currents in bullfrog sympathetic neurons. I. activation kinetics and pharmacology. J Gen Physiol 1989; 94(1):151–167.

    Article  PubMed  CAS  Google Scholar 

  33. Carrier GO, Ikeda SR. TTX-sensitive Na+ channels and Ca2+ channels of the L-and N-type underlie the inward current in acutely dispersed coeliac-mesenteric ganglia neurons of adult rats. Pflugers Arch. 1992; 42(1):7–16.

    Article  Google Scholar 

  34. Doerner D, Pitler TA, Alger BE. Protein kinase C activators block specific calcium and potassium current components in isolated hippocampal neurons. J Neurosci 1988; 8(11):4069–4078.

    PubMed  CAS  Google Scholar 

  35. Williams PJ, MacVivar BA, Pittman QJ. Electrophysiological properties of neuroendocrine cells of the intact rat pars intermedia: multiple calcium currents. J Neurosci 1990; 10(3):748–756.

    PubMed  CAS  Google Scholar 

  36. Mogul DJ, Fox AP. Evidence for multiple types of Ca2+ channels in acutely isolated hippocampal CA1 neurones of the guinea-pig. J Physiol (Lond) 1991; 433:259–281.

    PubMed  CAS  Google Scholar 

  37. Regan LJ, Sah DWY, Bean BP. Ca2+ channels in rat central and peripheral neurons: high-threshold current resistant to dihydropyridine blockers and ω-conotoxin. Neuron 1991; 6:269–280.

    Article  PubMed  CAS  Google Scholar 

  38. Baux G, Fossier P, Trudeau LE et al. Presynaptic receptors for FMRFamide, histamine and buccalin regulate acetylcholine release at a neuro-neuronal synapse of Aplysia by modulating N-type Ca2+ channels. J Physiol Paris 1992; 86(1–3):3–13.

    Article  PubMed  CAS  Google Scholar 

  39. Umemiya M, Berger AJ. Single channel properties of four calcium channel types in rat motoneurons. J Neurosci 1995; 15(3):2218–2224.

    PubMed  CAS  Google Scholar 

  40. Plummer MR, Hess P. Reversible uncoupling of inactivation in N-type calcium channels. Nature 1991; 351:657–659.

    Article  PubMed  CAS  Google Scholar 

  41. Biagi BA, Enyeart JJ. Multiple calcium currents in a thyroid C-cell line: biophysical properties and pharmacology. Am J Physiol 1991; 260:C1253–1263.

    PubMed  CAS  Google Scholar 

  42. Jones SW, Elmslie KS. Separation and modulation of calcium currents in bullfrog sympathetic neurons. Can J Physiol Pharmacol 1992; 70(Suppl):S56–S63.

    PubMed  CAS  Google Scholar 

  43. Wang X, Treistman SN, Lemos JR. Single channel recordings of Nt-and L-type Ca2+ currents in rat neurohypophsial terminals. J Neurophysiol 1993; 70(4):1617–1628.

    PubMed  CAS  Google Scholar 

  44. Olivera BM, Gray WR, Zeikus R et al. Peptide neurotoxins from fish-hunting cone snails. Science 1985; 230:1338–1343.

    Article  PubMed  CAS  Google Scholar 

  45. Olivera BM, Miljanich GP, Ramachandran J et al. Calcium channel diversity and neurotransmitter release: The ω-conotoxins and ω-agatoxins. Annu Rev Biochem 1994; 63:823–867.

    Article  PubMed  CAS  Google Scholar 

  46. Olivera BM, Mclntosh L JM, Cruz J et al. Purification and sequence of a presynaptic peptide toxin from Conus geographus venom. Biochemistry 1984; 23(22):5087–5090.

    Article  PubMed  CAS  Google Scholar 

  47. Kasai H, Aosaki T, Fukuda J. Presynaptic Ca-antagonist omega-conotoxin irreversibly blocks N-type Ca-channels in chick sensory neurons. Neurosci Res 1987; 4(3):228–235.

    Article  PubMed  CAS  Google Scholar 

  48. McCleskey EW, Fox AP, Feldman DH et al. Omega-conotoxin; direct and persistent blockade of specific types of calcium channels in neurons but not muscle. Proc Natl Acad Sci USA 1987; 84(12):4327–4331.

    Article  PubMed  CAS  Google Scholar 

  49. Aosaki T, Kasai H. Characterization of two kinds of high-voltage-activated Ca-channel currents in chick sensory neurons. Differential sensitivity to dihydropyridines and omega-conotoxin GVTA. Pflugers Arch 1989; 414(2):150–156.

    Article  PubMed  CAS  Google Scholar 

  50. Wang X, Treistman SN, Lemos JR. Two types of high threshold calcium currents inhibited by omega-conotoxin in nerve terminals of rat neurohypophysis. J Physiol (Lond) 1992; 445:181–199.

    PubMed  CAS  Google Scholar 

  51. Williams ME, Feldman DH, McCue AF et al. Structure and functional expression of a novel human neuronal calcium channel subtype. Neuron 1992; 8(1):71–84.

    Article  PubMed  CAS  Google Scholar 

  52. Dunlap K, Luebke JI, Turner TJ. Exocytotic Ca2+ channels in mammalian central neurons. TINS 1995; 18(2):89–98.

    PubMed  CAS  Google Scholar 

  53. Wagner JA, Snowman AM, Biswas A et al. Omega-conotoxin GVIA binding to a high-affinity receptor in brain: characterization, calcium sensitivity, and solubilization. J Neurosci 1988; 8(9):3354–3359.

    PubMed  CAS  Google Scholar 

  54. Jones, OT, Kunze DL, Angelides KJ. Localization and mobility of ω-conotoxin-sensitive Ca2+ channels in hippocampal CA1 neurons. Science 1989; 244:1189–1193.

    Article  PubMed  CAS  Google Scholar 

  55. Takemura M, Kiyama H, Fukui H et al. Distribution of the omega-conotoxin receptor in rat brain. An autoradiographic mapping. Neuroscience 1989; 32(2):405–416.

    Article  PubMed  CAS  Google Scholar 

  56. Fortier LP, Trembley JP, Rafrafi J et al. A monoclonal antibody to conotoxin reveals the distribution of a subset of calcium channels in the rat cerebellar cortex. Brain Res Mol Brain Res. 1991; 9(3):209–215.

    Article  PubMed  CAS  Google Scholar 

  57. Catterall WA, De Jongh, K, Rotman E et al. Molecular properties of calcium channels in skeletal muscle and neurons. Annals NY Acad Sci 1993; 681:342–355.

    Article  CAS  Google Scholar 

  58. Wheeler DB, Randall A, Tsien RW. Roles of N-typc and Q-type calcium channels in supporting hippocampal synaptic transmission. Science 1994; 264:107–111.

    Article  PubMed  CAS  Google Scholar 

  59. Kerr LM, Yoshikami D. A venom peptide with a novel presynaptic blocking action. Nature 1984; 308:282–284.

    Article  PubMed  CAS  Google Scholar 

  60. Dooley DJ, Lupp A, Hertting G et al. Omega-conotoxin GVIA and pharmacological modulation of hippocampal noradrenaline release. Eur J Pharmacol 1988; 148(2):261–267.

    Article  PubMed  CAS  Google Scholar 

  61. Lundy PM, Frew R. Evidence of omega conotoxin GVIA-sensitive Ca2+ channels in mammalian peripheral nerve terminals. Eur J Pharmacol 1988; 156(3):325–330.

    Article  PubMed  CAS  Google Scholar 

  62. Dutar P, Rascol O, Lamour Y. Omega-conotoxin GVIA blocks synaptic transmission on the CA1 field of the hippocampus. Eur J Pharmacol 1989; 174(2–3):261–266.

    Article  PubMed  CAS  Google Scholar 

  63. Herdon H, Nahorski SR. Investigations of the roles of dihydropyridine and omega-conotoxin-sensitive calcium channels in mediating depolarization-evoked endogenous dopamine release from striatal slices. Naunyn Schmiedebergs Arch Pharmacol 1989; 340(1):36–40.

    Article  PubMed  CAS  Google Scholar 

  64. Takemura M, Kishino J, Yamatodani A et al. Inhibition of histamine release from rat hypothalamic slices by omega-conotoxin GVIA, but not by nilvadipine, a dihydropyridine derivative. Brain Res 1989; 496(1–2):351–356.

    Article  PubMed  CAS  Google Scholar 

  65. Wessler I, Dooley DJ, Werhand J et al. Differential effects of calcium channel antagonists (omega-conotoxin GVIA, nifedipine, verapamil) on the electrically-evoked release of [3H] acetylcholine from the myenteric plexus, phrenic nerve and neocortex. Naunyn Schmiedebergs Arch Pharmacol 1990; 341(4):288–294.

    Article  PubMed  CAS  Google Scholar 

  66. Home AL, Kemp JA. The effect of omega-conotoxin GVTA on synaptic transmission within the nucleus accumbens and hippocampus of the rat in vitro. Br J Pharmacol 1991; 103(3):1733–1739.

    Google Scholar 

  67. Potier B, Dutar P, Lamour Y. Different effects of omega-conotoxin GVIA at excitatory and inhibitory synapses in rat CA1 hippocampal neurons. Brain Res 1993; 616(1–2):236–241.

    Article  PubMed  CAS  Google Scholar 

  68. Leveque C, Hoshino T, David P et al. The synaptic vesicle protein synaptotagmin associates with calcium channels and is a putative Lambert-Eaton myasthenic syndrome antigen. Proc Natl Acad Sci USA 1992; 89(8):3625–3629.

    Article  PubMed  CAS  Google Scholar 

  69. Leveque C, el Far O, Martin-Moutot N et al. Purification of the N-type calcium channel associated with syntaxin and synaptotagmin. J Biol Chem 1994; 269(9):6306–6312.

    PubMed  CAS  Google Scholar 

  70. Sheng Z-H, Rettig J, Takahashi M et al. Identification of a syntaxin-binding site on N-type calcium channels. Neuron 1994; 13:1303–1313.

    Article  PubMed  CAS  Google Scholar 

  71. Sano K, Enomoto K, Maeno T. Effects of synthetic omega-conotoxin, a new type of Ca2+ antagonist, on frog and mouse neuromuscular transmission. Eur J Pharmacol 1987; 141(2):235–241.

    Article  PubMed  CAS  Google Scholar 

  72. Protti DA, Szczupak L, Scornik FS et al. Effects of omega-conotoxin GVIA on neurotransmitter release at the mouse neuromuscular junction. Brain Res 1991; 557(1–2):336–339.

    Article  PubMed  CAS  Google Scholar 

  73. Adams ME, Olivera BM. Neurotoxins: Overview of an emerging research technology. TINS 1994; 17(4):151–155.

    PubMed  CAS  Google Scholar 

  74. Wu LG, Saggau P. Pharmacological identification of two types of presynaptic voltage-dependent calcium channels at CA3-CA1 synapse of the hippocampus. J Neurosci 1994; 14(9):5613–5622.

    PubMed  CAS  Google Scholar 

  75. Turner TJ, Lampe RA, Dunlap K. Characterization of presynaptic calcium channels with omega-conotoxin MVIIC and omega-grammotoxin SLA: Role for a resistant calcium channel type in neurosecretion. Mol. Pharmacol 1995; 47(2):348–353.

    CAS  Google Scholar 

  76. Burke SP, Adams ME, Taylor CP. Inhibition of endogenous glutamate release from hippocampal tissue by Ca2+ channel toxins. Eur J Pharmacol 1993; 238(2–3):383–386.

    Article  PubMed  CAS  Google Scholar 

  77. Luebke JI, Dunlap K, Turner TJ. Multiple calcium channel types control glutaminergic synaptic transmission in the hippocampus. Neuron 1993; 11(5):895–902.

    Article  PubMed  CAS  Google Scholar 

  78. Komuro H, Rakic P. Selective role of N-type calcium channels in neuronal migration. Science 1992; 257:809–806.

    Article  Google Scholar 

  79. Bean BP. Pharmacology of calcium channels in cardiac muscle, vascular muscle, and neurons. Am. J Hypertens 1991; 4:406S–411S.

    PubMed  CAS  Google Scholar 

  80. Randall RD, Raabe W. A non-T-, N-, or L-type calcium channel mediates release of transmitter from cerebellar granule cells in tissue culture. Abstract presented at the 22nd meeting of the Society for Neuroscience 1992; 18:429.

    Google Scholar 

  81. Regan LJ. Voltage-dependent calcium currents in Purkinjc cells from rat cerebellar vermis. J Neurosci 1991; 11(7):2259–2269.

    PubMed  CAS  Google Scholar 

  82. Llinas R, Sugimori M, Lin JW et al. Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FTX) from funnel-web spider poison. Proc Natl Acad Sci USA 1989; 86(5):1689–1693.

    Article  PubMed  CAS  Google Scholar 

  83. Lin J-W, Rudy B, Llinas R. Funnel-web spider venom and a toxin fraction block calcium current expressed from rat brain mRNA in Xenopus oocytes. Proc Natl Acad Sci USA 1990; 87:4538–4542.

    Article  PubMed  CAS  Google Scholar 

  84. Mintz IM, Venema VJ, Swiderek KM et al. P-type calcium channels blocked by the spider toxin ω-Aga-VIA. Nature 1992; 355:827–829.

    Article  PubMed  CAS  Google Scholar 

  85. Bindokas VP, Brorson JR, Miller RJ. Characteristics of voltage sensitive calcium channels in dendrites of cultured rat cerebellar neurons. Neuropharmacology 1993; 32(11):1213–1220.

    Article  PubMed  CAS  Google Scholar 

  86. Mintz IM, Adams ME, Bean BP. P-type calcium channels in rat central and peripheral neurons. Neuron 1992; 9:85–95.

    Article  PubMed  CAS  Google Scholar 

  87. Usowicz MM, Sugimori M, Cherskey B et al. P-type calcium channels in the somata and dendrites of adult cerebellar Purkinje cells. Neuron 1992; 9(6):1185–1199.

    Article  PubMed  CAS  Google Scholar 

  88. Hillyard DR, Monje VD, Mintz IM et al. A new Conus peptide ligand for mammalian presynaptic Ca2+ channels. Neuron 1992; 9:69–77.

    Article  PubMed  CAS  Google Scholar 

  89. Zhang JF, Randall AD, Ellinor PT et al. Distinctive pharmacology and kinetics of cloned neuronal calcium channels and their possible counterparts in mammalian CNS neurons. Neuropharmacology 1993; 32(11):1075–1088.

    Article  PubMed  CAS  Google Scholar 

  90. Randall A, Tsien RW. Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons. J. Neurosci 1995; 15(4):2995–3012.

    PubMed  CAS  Google Scholar 

  91. Adams ME, Myers RA, Imperial JS et al. Toxityping rat brain calcium channels with ω-toxins from spider and cone snail venoms. Biochem 1993; 32:12566–12570.

    Article  CAS  Google Scholar 

  92. Luebke JI, Dunlap K, Turner TJ. Multiple calcium channel types control glutamatergic synaptic transmission in the hippocampus. Neuron 1993: 11(5):895–902.

    Article  PubMed  CAS  Google Scholar 

  93. Turner TJ, Adams ME, Dunlap K. Calcium channels coupled to glutamate release identified by omega-Aga-IVA. Science 1992; 258:310–313.

    Article  PubMed  CAS  Google Scholar 

  94. Turner TJ, Adams ME, Dunlap K. Multiple Ca2+ channel types coexist to regulate synaptosomal neurotransmitter release. Proc Natl Acad Sci USA 1993; 90(20):9518–9522.

    Article  PubMed  CAS  Google Scholar 

  95. Lundy PM, Frew R. Effect f omega-agatoxin-IVA on autonomic neurotransmission. Eur J Pharmacol 1994; 261(1–2):79–84.

    Article  PubMed  CAS  Google Scholar 

  96. Uchitel OD, Protti DA, Sanchez V et al. P-type voltage-dependent calcium channel mediates presynaptic calcium influx and transmitter release in mammalian synapses. Proc Natl Acad Sci USA 1992; 89:3330–3333.

    Article  PubMed  CAS  Google Scholar 

  97. Bowersox S, Ko C-P, Sugiura Y et al. Omega-conopeptide SNX-230 (MVIIC) blocks calcium channels in mouse neuromuscular junction nerve terminals. Abstract presented at the 23rd annual meeting of the Society for Neuroscience 1993; Vol. 19, p. 1478.

    Google Scholar 

  98. Takahashi T, Momiyama A. Different types of calcium channels mediate central synaptic transmission. Nature 1993; 366:156–158.

    Article  PubMed  CAS  Google Scholar 

  99. Curtis BM, Catterall WA. Solubilization of the calcium antagonist receptor from rat brain. J. Biol. Chem. 1983; 256(12):7280–7283.

    Google Scholar 

  100. Flockerzi V, Oeken H-J, Hofmann F et al. Purified dihydropyridine-binding site from skeletal muscle t-tubules is a functional calcium channel. Nature 1986; 323:66–68.

    Article  PubMed  CAS  Google Scholar 

  101. Takahashi M, Seagar MJ, Jones JF et al. Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc Natl Acad Sci USA 1987; 84:5478–5482.

    Article  PubMed  CAS  Google Scholar 

  102. De Waard M, Gurnett CA, Campbell KP. Structural and functional diversity of voltage-gated calcium channels. In: T Narahashi, ed. Ion Channels. Vol. 4. New York: Plenum Press, 1996.

    Google Scholar 

  103. De Jongh KS, Merrick DK, Catterall WA. Subunits of purified calcium channels: a 212-kDa form of alpha 1 and partial amino acid sequence of a phosphorylation site of an independent beta sub-unit. Proc. Natl. Acad. Sci USA 1989; 86(21):8585–8589.

    Article  PubMed  Google Scholar 

  104. Norman RI, Leech RN. Subunit structure and phosphorylation of the cardiac L-type channel. Biochemical Society Transactions 1994; 22:492–496.

    PubMed  CAS  Google Scholar 

  105. Witcher DR, De Waard M, Sakamoto J et al. Subunit identification and reconstitution of the N-type Ca2+ channel complex purified from brain. Science 1993; 261:486–489.

    Article  PubMed  CAS  Google Scholar 

  106. Ahlijanian MK, Striessnig J, Catterall WA. Phosphorylation of an alpha 1-like subunit of an omega-conotoxin-sensitive brain calcium channel by cAMP-dependent protein kinase and protein kinase. J Biol Chem 1991; 266(30):20192–20197.

    PubMed  CAS  Google Scholar 

  107. Sakamoto J, Campbell KP. A monoclonal antibody to the beta subunit of the skeletal muscle dihydropyridine receptor immunoprecipitates the brain omega-conotoxin GIVA receptor. J Biol Chem 1991; 266(28):18914–18919.

    PubMed  CAS  Google Scholar 

  108. Ellis SB, Williams ME, Ways NR et al. Sequence and expression of mRNAs encoding the α1 and α2 subunits of a DHP-sensitive calcium channel. Science 1988; 241:1661–1664.

    Article  PubMed  CAS  Google Scholar 

  109. Adams BA, Tanabe T, Mikami A et al. Intragenic charge movement restored in dysgenic skeletal muscle by injection of dihydropyridine receptor cDNAs. Science 1990; 346:569–572.

    CAS  Google Scholar 

  110. Mikami A, Imoto K, Tanabe T et al. Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature 1989; 340:230–233.

    Article  PubMed  CAS  Google Scholar 

  111. Biel M, Ruth P, Bosse E et al. Primary structure and functional expression of a high voltage activated calcium channel from rabbit lung. FEBS 1990; 269(2):409–412.

    Article  CAS  Google Scholar 

  112. Koch WJ, Ellinor PT, Schwartz A.. cDNA cloning of a dihydropyridine-sensitive calcium channel from rat aorta. J Biol Chem 1990; 265(29):17786–17791.

    PubMed  CAS  Google Scholar 

  113. Tanabe T, Mikami A, Beam KG et al. Cardiac-type excitation-contraction coupling in dysgenic skeletal muscle injected with cardiac dihydropyridine receptor cDNA. Nature 1990; 344:451–453.

    Article  PubMed  CAS  Google Scholar 

  114. Bosse E, Bottlender R, Kleppisch T et al. Stable and functional expression of the calcium channel α1 subunit from smooth muscle in somatic cell lines. The EMBO J 1992; 11(6):2033–2038.

    CAS  Google Scholar 

  115. Itagaki K, Koch WJ, Bodi L et al. Native-type DHP-sensitive calcium channel currents are produced by clone rat aortic smooth muscle and cardiac α1 subunits expressed in Xenopus laevis oocytes and are regulated by α2-and β-subunits. FEBS 1992; 297(3):221–225.

    Article  CAS  Google Scholar 

  116. Singer-Lahat D, Lotan I, Itagaki K et al. Evidence for the existence of RNA of Ca2+-channel α2δ subunit in Xenopus oocytes. Biochemica et Biophysica Acta 1992; 1137:39–44.

    Article  CAS  Google Scholar 

  117. Tareilus E, Roux M, Qin N et al. A Xenopus oocyte β subunit: Evidence for a role in the assembly/expression of voltage-gated calcium channels that is separate from its role as a regulatory subunit. Proc Natl Acad Sci USA 1997; 94:1703–1708.

    Article  PubMed  CAS  Google Scholar 

  118. Perez-Reyes E, Kim HS, Lacerda AE et al. Induction of calcium currents by the expression of the α1 subunit of the dihydropyridine receptor from skeletal muscle. Nature 1989; 340:233–236.

    Article  PubMed  CAS  Google Scholar 

  119. Kim HS, Wei X, Ruth P et al. Studies on the structural requirements for the activity of the skeletal muscle dihydropyridine receptor/ slow calcium channel. J Biol Chem 1990; 265(20):11858–11863.

    PubMed  CAS  Google Scholar 

  120. Snutch TP, Leonard JP, Gilbert M et al. Rat brain expresses a heterogeneous family of calcium channels. Proc Natl Acad Sci USA 1990; 87:3391–3395.

    Article  PubMed  CAS  Google Scholar 

  121. Soong TW, Stea A, Hodson CD et al. Structure and functional expression of a member of the low voltage-activated calcium channel family. Science 1993; 260:1133–1136.

    Article  PubMed  CAS  Google Scholar 

  122. Bech-Hansen NT, Naylor MJ, Maybaum TA et al. Loss-of-function mutations in a calcium-channel α1-subunit gene in Xp 11.23 cause incomplete X-linked congenital stationary night blindness. Nature Genetics 1998; 19:264–267.

    Article  PubMed  CAS  Google Scholar 

  123. Strom TM, Nyakatura G, Apfelstedt-Sylla E et al. An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness. Nature Genetics 1998; 19:260–263.

    Article  PubMed  CAS  Google Scholar 

  124. Perez-Reyes E, Cribbs LL, Daud A et al. Molecular characterization of a neuronal low-voltage activated T-type calcium channel. Nature 1998; 391:896–899.

    Article  PubMed  CAS  Google Scholar 

  125. Cribbs L, Lee J-H, Yang J et al. Cloning and characterization of α1H from human heart, a member of the T-type Ca2+ channel gene family. Circ Res 1998; 83:103–109.

    PubMed  CAS  Google Scholar 

  126. Lee J-H, Daud AN, Cribbs L et al. Cloning and expression of a novel member of the low voltage-activated T-type calcium channel family. J Neurosci 1999; 19(6):1912–1921.

    PubMed  CAS  Google Scholar 

  127. Snutch TP, Reiner PB. Calcium channels: diversity of form and function. Current Opinion Neurobiol 1992; 2:247–253.

    Article  CAS  Google Scholar 

  128. Mori Y, Friedrich T, Kim M-S et al. Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 1991; 350:398–402.

    Article  PubMed  CAS  Google Scholar 

  129. Starr TVB, Prystay W, Snutch TP. Primary structure of a calcium channel that is highly expressed in the rat cerebellum. Proc Natl Acad Sci USA 1991; 88:5621–5625.

    Article  PubMed  CAS  Google Scholar 

  130. Smith LA, Wang X, Piexoto AA et al. A Drosophila calcium channel alpha1 A subunit gene maps to a genetic locus associated with behavioral and visual defects. J Neurosci 1996; 16(24):7868–7879.

    PubMed  CAS  Google Scholar 

  131. Sather WA, Tanabe T, Zhang J-F et al. Distinctive biophysical and pharmacological properties of class A (BI) calcium channel α1 subunits. Neuron 1993; 11:291–303.

    Article  PubMed  CAS  Google Scholar 

  132. Stea A, Tomlinson J, Soong TW et al. Localization and functional properties of a rat brain α1A calcium channel reflects similarities to neuronal Q-and P-type channels. Proc Natl Acad Sci USA 1994; 91:10576–10580.

    Article  PubMed  CAS  Google Scholar 

  133. Randall AD, Wendland B, Schweizer F et al. Five pharmacologically distinct high voltage-activated Ca2+ channels in cerebellar granule cells. Abstract presented at the 23rd meeting of the Society for Neuroscience. 1993; Vol. 19, p. 1478.

    Google Scholar 

  134. Zhuchenko O, Bailey J, Bonnen P et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α1A-voltage-dependent calcium channel. Nature Genetics 1997; 15:62–69.

    Article  PubMed  CAS  Google Scholar 

  135. Bourinet E, Soong TW, Sutton K et al. Splicing of α1A subunit gene generates phenotypic variants of P-and Q-type calcium channels. Nature Neurosciencc 1999; 2(5):407–415.

    Article  CAS  Google Scholar 

  136. Soong TW, DeMaria CD, Alvania RS et al. Systematic identification of splice variants in human P/Q-type channel alpha 1(2.1) subunits: implications for current density and Ca2+-dependent inactivation. J Neurosci 2002: 1; 22(23):10142–52.

    PubMed  CAS  Google Scholar 

  137. Dubel SJ, Starr TVB, Hell J et al. Molecular cloning of the α-l subunit of an ω-conotoxin-sensitive calcium channel. Proc. Natl. Acad. Sci. USA 1992; 89:5058–5062.

    Article  PubMed  CAS  Google Scholar 

  138. Stea A, Dubel SJ, Snutch TP. Alpha 1B N-type calcium channel isoforms with distinct biophysical properties. Ann NY Acad Sci 1999; 868:118–130.

    Article  PubMed  CAS  Google Scholar 

  139. Williams ME, Brust PF, Feldman DH et al. Structure and functional expression of an (ω-conotoxin-sensitive human N-type calcium channel. Science 1992a; 257:389–395.

    Article  PubMed  CAS  Google Scholar 

  140. Fujita Y, Mynlieff M, Dirksen RT et al. Primary structure and functional expression of the ω-conotoxin-sensitive N-type calcium channel from rabbit brain. Neuron 1993; 10:585–598.

    Article  PubMed  CAS  Google Scholar 

  141. Horne WA, Ellinor PT, Inman I et al. Molecular diversity of Ca2+ channel α1 subunits from the marine ray Discopyge ommata. Proc. Natl Acad Sci USA 1993; 90:3787–3791.

    Article  PubMed  CAS  Google Scholar 

  142. Stea A, Soong TW, Snutch TP. Voltage-gated calcium channels. In: RA North, ed. Handbook of Receptors and Channels: Ligand-and Voltage-gated Ion Channels. Boca Raton: CRC Press 1995:113–150.

    Google Scholar 

  143. Westenbroek RE, Hell JW, Warner C et al. Biochemical properties and subcellular distribution of an N-type calcium channel α1 subunit. Neuron 1992; (9):1099–1115.

    Article  PubMed  CAS  Google Scholar 

  144. Pan JQ, Lipscombe D. Alternative splicing in the cytoplasmic II–III loop of the N-type Ca channel alpha 1B subunit: functional differences are beta subunit-specific. J Neurosci 2000; 1:20(13):4769–75.

    PubMed  CAS  Google Scholar 

  145. Kaneko S, Cooper CB, Nishioka N et al. Identification and characterization of novel human Ca(v)2.2 (alpha 1B) calcium channel variants lacking the synaptic protein interaction site. J Neurosci 2002; 1; 22(1):82–92.

    PubMed  CAS  Google Scholar 

  146. Bell TJ, Thaler C, Castiglioni AJ et al. Cell-specific alternative splicing increases calcium channel current density in the pain pathway. Neuron 2004; 8; 41(1):127–38.

    Article  PubMed  CAS  Google Scholar 

  147. Williams BD, Schrank B, Huynh C et al. A genetic mapping system in Caenorhabditis elegans based on polymorphic sequence-tagged sites. Genetics 1992; 131(3):609–624.

    PubMed  CAS  Google Scholar 

  148. Stea A, Dubel SJ, Pragnell M et al. A β-subunit normalizes the electrophysiological properties of a cloned N-type Ca2+ channel α1 subunit. Neuropharmacol 1993; 32(11):1103–1116.

    Article  CAS  Google Scholar 

  149. Bell TJ, Thaler C, Castiglioni AJ et al. Cell-specific alternative splicing increases calcium channel current density in the pain pathway. Neuron 2004; 8:41(1):127–38.

    Article  PubMed  CAS  Google Scholar 

  150. Snutch TP, Tomlinson WJ, Leonard JP et al. Distinct calcium channels are generated by alternative splicing and are differentially expressed in the mammalian CNS. Neuron 1991; 7:45–57.

    Article  PubMed  CAS  Google Scholar 

  151. Ma W-J, Holz RW, Uhler MD. Expression of a cDNA for a neuronal calcium channel α1 subunit enhances secretion from adrenal chromaffin cells. J Biol Chem 1992; 267(32):22728–22732.

    PubMed  CAS  Google Scholar 

  152. Perez-Reyes E, Wei X, Castellano A et al. Molecular diversity of L-type calcium channels. J Biol Chem 1990; 265(33):20430–20436.

    PubMed  CAS  Google Scholar 

  153. Diebold RJ, Koch WJ, Ellinor PT et al. Mutually exclusive exon splicing of the cardiac calcium channel α1 subunit gene generates developmentally regulated isoforms in the rat heart. Proc. Natl. Acad. Sci USA 1992; 89:1497–1501.

    Article  PubMed  CAS  Google Scholar 

  154. Tomlinson J, Stea A, Bourinet E et al. Functional properties of a neuronal class C L-type calcium channel. Neuropharmacology 1993; 32(11):1117–1126.

    Article  PubMed  CAS  Google Scholar 

  155. Bourinet E, Charnet P, Tomlinson WJ et al. Voltage-dependent facilitation of a neuronal alpha 1C L-type calcium channel. EMBO J 1994; 13(21):5032–5039.

    PubMed  CAS  Google Scholar 

  156. Babitch J. Channel hands. Nature 1990; 346:321–322.

    Article  PubMed  CAS  Google Scholar 

  157. Bernatchez G, Talwar D, Parent L. Mutations in the EF-hand motif impair the inactivation of barium currents of the cardiac alpha 1C channel. Biophys J 1998; 75(4):1727–1739.

    PubMed  CAS  Google Scholar 

  158. Pitt GS, Zuhlke RD, Hudmon A et al. Molecular basis of calmodulin ethering and Ca2+ dependent inactivation of L-type Ca2+ channels. J Biol Chem 2001; 276:30794–30802.

    Article  PubMed  CAS  Google Scholar 

  159. Zühlke RD, Pitt GS, Deisseroth K et al. Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 1999; 399:159–162.

    Article  PubMed  Google Scholar 

  160. Mouton J, Ronjat M, Jona I et al. Skeletal and cardiac ryanodine receptors bind to the Ca(2+)-sensor region of dihydropyridine receptor alpha(1C) subunit. FEBS Lett 2001: 505(3):441–444.

    Article  PubMed  CAS  Google Scholar 

  161. Kim J, Ghosh S, Nunziato DA et al. Identification of the components controlling inactivation of voltage-gated Ca2+ channels. Neuron 2004; 41(5):745–754.

    Article  PubMed  CAS  Google Scholar 

  162. Hui A, Ellinor PT, Kiizanova O et al. Molecular cloning of multiple subtypes of a novel rat brain isoform of the α1 subunit of the voltage-dependent calcium channel. Neuron 1991; 7:35–44.

    Article  PubMed  CAS  Google Scholar 

  163. Ihara Y, Yamada Y, Fujii Y et al. Molecular diversity and functional characterization of voltage-dependent calcium channels (CACN4) expressed in pancreatic β-cells. Mol. Endocrinol. 1995; 9(1):121–130.

    Article  PubMed  CAS  Google Scholar 

  164. Seino S, Chen L, Seino M et al. Proc Natl Acad Sci USA 1992; 89:584–588.

    Article  PubMed  CAS  Google Scholar 

  165. Yaney GC, Wheeler MB, Wei X et al. Cloning of a novel alpha 1-subunit of the voltage-dependent calcium channel from the beta-cell. Mol Endocrinol 1992; 6(12):2143–2152.

    Article  PubMed  CAS  Google Scholar 

  166. Kollmar R, Montgomery LG, Fak J et al. Predominance of the α1D subunit in L-type voltage-gated Ca2+ channels of hair cells in the chicken’s cochlea. Proc Natl Acad Sci USA 1997; 94:14883–14888.

    Article  PubMed  CAS  Google Scholar 

  167. Zheng WG, Feng D, Ren D et al. Cloning and characterization of a calcium channel α1 subunit from Drosophila melanogaster with similarity to the rat brain type D isoform. J. Neurosci. 1995; 15(2):1132–1143.

    PubMed  CAS  Google Scholar 

  168. Koschak A, Reimer D, Huber I et al. alpha 1D (Cavl.3) subunits can form l-type Ca2+ channels activating at negative voltages. J Biol Chem 2001; 276(25):22100–22106.

    Article  PubMed  CAS  Google Scholar 

  169. Xu W, Lipscombe D. Neuronal Ca(V)1.3alpha(1) L-type channels activate at relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridines. J Neurosci 2001; 21(16):5944–5951.

    PubMed  CAS  Google Scholar 

  170. Platzer J, Engel J, Schrott-Fischer A et al. Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 2000; 102(1):89–97.

    Article  PubMed  CAS  Google Scholar 

  171. Brandt A, Striessnig J, Moser T. Cav1.3 channels are essential for development and presynaptic activity of cochlear inner hair cells. J Neurosci 2003; 23(34):10832–10840.

    PubMed  CAS  Google Scholar 

  172. Niidome T, Kim M-S, Friedrich T et al. Molecular cloning and characterization of a novel calcium channel from rabbit brain. FEBS 1992; 308(1):7–13

    Article  CAS  Google Scholar 

  173. Yokoyama CT, Westenbroek RE, Hell JW et al. Biochemical properties and subcellular distribution of the neuronal class E calcium channel α1 subunit. J Neurosci 1995; 15(10):6419–6432.

    PubMed  CAS  Google Scholar 

  174. Ellinor PT, Zhang J-F, Randall AD et al. Functional expression of a rapidly inactivating neuronal calcium channel. Nature 1993; 363:455–458.

    Article  PubMed  CAS  Google Scholar 

  175. Wakamori M, Niidome T, Furutama D et al. Distinctive functional properties of the neuronal BII (class E) calcium channel. Recept. Channels 1994; 2:303–314.

    CAS  Google Scholar 

  176. Williams ME, Marubio LM, Deal R et al. Structure and functional characterization of neuronal α1E calcium channel subtypes. J Biol Chem 1994; 269(35):22347–22357.

    PubMed  CAS  Google Scholar 

  177. Bourinet E, Zamponi GW, Stea A et al. The α1E calcium channel exhibits permeation properties similar to low-voltage-activated calcium channels. J Neurosci 1996; 16(6):4983–4993.

    PubMed  CAS  Google Scholar 

  178. Smith SM, Piedras-Renteria ES, Namkung Y et al. Neuronal voltage-activated calcium channels: On the roles of the α1E and β3 subunits. Annals NY Acad Sci 1999; 868:175–198.

    Article  CAS  Google Scholar 

  179. Tottene A, Volsen S, Pietrobon D. alpha(1E) subunits form the pore of three cerebellar R-type calcium channels with different pharmacological and permeation properties. J Neurosci 2000; 20(1):171–178.

    PubMed  CAS  Google Scholar 

  180. Wilson SM, Toth PT, Oh SB et al. The status of voltage-dependent calcium channels in alpha 1E knock-out mice. J Neurosci 2000; 20(23):8566–8571.

    PubMed  CAS  Google Scholar 

  181. McRory JE, Hamid J, Doering CJ et al. The CACNA1F gene encodes an L-type calcium channel with unique biophysical properties and tissue distribution. J Neurosci 2004; 24(7):1707–1718.

    Article  PubMed  CAS  Google Scholar 

  182. Tachibana M, Okada T, Arimura T et al. Dihydropyridine-sensitive calcium current mediates neurotransmitter release from bipolar cells of the goldfish retina. J Neurosci 1993; 13:2898–2090.

    PubMed  CAS  Google Scholar 

  183. Koschak A, Reimer D, Walter D et al. Cav1.4alphal subunits can form slowly inactivating dihydropyridine-sensitive L-type Ca2+ channels lacking Ca2+-dependent inactivation. J Neurosci 2003: 23(14):6041–6049.

    PubMed  CAS  Google Scholar 

  184. Carbone E, Lux HD. A low voltage-activated calcium conductance in embryonic chick sensory neurons. Biophys J 1984; 46(3):413–418.

    PubMed  CAS  Google Scholar 

  185. Miller RJ. Multiple calcium channels and neuronal function. Science 1987; 235:46–52.

    Article  PubMed  CAS  Google Scholar 

  186. Bean BP, McDonough SI. Two for T Neuron 1998; 20:825–828.

    Article  CAS  Google Scholar 

  187. Beam KG, Knudson CM. Calcium currents in embryonic and neonatal mammalian skeletal muscle. J Gen Physiol 1998; 91(6):781–798.

    Article  Google Scholar 

  188. Beam KG, Knudson CM. Effect of postnatal development on calcium currents and slow charge movement in mammalian skeletal muscle. J Gen Physiol 1988; 91(6):799–815.

    Article  PubMed  CAS  Google Scholar 

  189. Kostyuk PG. Diversity of calcium ion channels in cellular membranes. Neuroscience 1989; 28(2):253–261.

    Article  PubMed  CAS  Google Scholar 

  190. Huguenard JR. Low-threshold calcium currents in central nervous system neurons. Annu Rev Physiol 1996; 58:329–348.

    Article  PubMed  CAS  Google Scholar 

  191. Zamponi GW, Bourinet E, Snutch TP. Nickel block of a family of neuronal calcium channels: Subtype-and subunit-dependent action at multiple sites. J Membrane Biol 1996; 151:77–90.

    Article  CAS  Google Scholar 

  192. Jimenez C, Bourinet E, Leuranguer V et al. Determinants of voltage-dependent inactivation affect Mibefradil block of calcium channels. Neuropharmacology 2000; 39(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  193. Klugbauer N, Marais E, Lacinová L et al. A T-type channel from mouse brain. Eur. J. Physiol. 1999; 437:710–715.

    Article  CAS  Google Scholar 

  194. Mittman SJ, Guo M, Emerick C et al. Structure and alternative splicing of the gene encoding α11, a human brain T calcium channel α1 subunit. Neurosci Letts 1999; 269:121–124.

    Article  CAS  Google Scholar 

  195. Monteil A, Chemin J, Leuranguer V et al. Specific properties of T-type calcium channels generated by the human alpha 11 subunit. J Biol Chem 2000; 275(22):16530–16535.

    Article  PubMed  CAS  Google Scholar 

  196. Beedle AM, Hamid J, Zamponi GW. Inhibition of transiendy expressed low-and high-voltage-activated calcium channels by trivalent metal cations. J Membr Biol 2002; 187(3):225–38.

    Article  PubMed  CAS  Google Scholar 

  197. Heinemann SH, Terlau H, Stühmer W et al. Calcium channel characteristics conferred of the sodium channel by single mutations. Nature 1992; 356:441–443.

    Article  PubMed  CAS  Google Scholar 

  198. Yang J, Ellinor PT, Sather WA et al. Molecular determinants of calcium selectivity and ion permeation in L-type calcium channels. Nature 1993; 366:158–161.

    Article  PubMed  CAS  Google Scholar 

  199. Lambert RC, McKenna F, Maulet Y et al. Low-voltage-activated Ca2+ currents are generated by members of CavT subunit family (α1G/H) in primary sensory neurons. J Neurosci 1998; 18(21):8605–8613.

    PubMed  CAS  Google Scholar 

  200. McRory JE, Santi CM, Hamming KSC et al. Molecular and functional characterization of family of rat brain T-type calcium channels 2001; J Biol Chem 276(6):3999–4011.

    Article  PubMed  CAS  Google Scholar 

  201. Talley EM, Cribbs LL, Lee J-H et al. Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci 1999; 19(6):1895–1911.

    PubMed  CAS  Google Scholar 

  202. Monteil A, Chemin J, Bourinet E et al. Molecular and functional properties of the human alpha(1G) subunit that forms T-type calcium channels. J Biol Chem 2000; 275(9):6090–6100.

    Article  PubMed  CAS  Google Scholar 

  203. Chemin J, Monteil A, Bourinet E et al. Alternatively spliced alpha (1G) (Ca(V)3.1) intracellular loops promote specific T-type Ca(2+) channel gating properties. Biophys J 2001; 80(3):1238–1250.

    PubMed  CAS  Google Scholar 

  204. Ruth P, Röhrkasten A, Biel M et al. Primary structure of the β subunit of the DHP-sensitive calcium channel from skeletal muscle. Science 1989; 245:1115–1118.

    Article  PubMed  CAS  Google Scholar 

  205. Pragnell M, Sakamoto J, Jay SD et al. Cloning and tissue-specific expression of the brain calcium channel β-subunit. FEBS 1991; 291(2):253–258.

    Article  CAS  Google Scholar 

  206. Hullin R, Singer-Lahat D, Freichel M et al. Calcium channel β subunit heterogeneity: functional expression of cloned cDNA from heart, aorta, and brain. EMBO J 1992; 11(3):885–890.

    PubMed  CAS  Google Scholar 

  207. Perez-Reyes E, Castellano A, Kim HS et al. Cloning and expression of a cardiac/brain β subunit of the L-type calcium channel. J Biol Chem 1992; 267(3):1792–1797.

    PubMed  CAS  Google Scholar 

  208. Powers PA, Liu S, Hogan K et al. Skeletal muscle and brain isoforms of a β-subunit of human voltage-dependent calcium channels are encoded by a single gene. J Biol Chem 1992; 267(32):22967–22972.

    PubMed  CAS  Google Scholar 

  209. Castellano A, Wei X, Birnbaumer L et al. Cloning and expression of a third calcium channel β subunit. J Biol Chem 1993; 268(5):3450–3455.

    PubMed  CAS  Google Scholar 

  210. Castellano A, Wei X, Birnbaumer L et al. Cloning and expression of a neuronal calcium channel β subunit. J Biol Chem 1993; 268(17):12359–12366.

    PubMed  CAS  Google Scholar 

  211. Isom LL, De Jongh KS, Catterall WA. Auxiliary subunits of voltage-gated ion channels. Neuron 1994; 12:1183–1194.

    Article  PubMed  CAS  Google Scholar 

  212. Nishimura S, Takeshima H, Hofmann F et al. Requirement of the calcium channel β subunit for functional conformation. FEBS 1993; 324(3):283–286.

    Article  CAS  Google Scholar 

  213. Lory P, Varadi G, Slish DF et al. Characterization of beta subunit modulation of a rabbit cardiac L-type Ca2+ channel alpha 1 subunit as expressed in mouse L cells. FEBS lett 1993; 315(2):167–172.

    Article  PubMed  CAS  Google Scholar 

  214. Chien AJ, Zhao X, Shirokov RE et al. Roles of membrane-localized β subunit in the formation and targeting of functional L-type Ca2+ channels. J Biol Chem 1995; 270(50):30036–30044.

    Article  PubMed  CAS  Google Scholar 

  215. Neely A, Wei X, Olcese R et al. Potentiation by the beta subunit of the ratio of the ionic current to the charge movement in the cardiac calcium channel. Science 1993; 262(5133):575–578.

    Article  PubMed  CAS  Google Scholar 

  216. Lacerda AE, Kim HS, Ruth P et al. Normalization of current kinetics by interaction between the α1 and β subunits of the skeletal muscle dihydropyridine-sensitive Ca2+ channel. Nature 1991; 352:527–530.

    Article  PubMed  CAS  Google Scholar 

  217. Singer D, Biel M, Lotan I et al. The roles of the subunits in the function of the calcium channels. Science 1991; 253:1553–1557.

    Article  PubMed  CAS  Google Scholar 

  218. Varadi G, Lory P, Schultz D et al. Acceleration of activation and inactivation by the β subunit of the skeletal muscle calcium channel. Nature 1991; 352:159–162.

    Article  PubMed  CAS  Google Scholar 

  219. Wei, X, Perez-Reyes E, Lacerda AE et al. Heterologous regulation of the cardiac Ca2+ channel α1 subunit by skeletal muscle β and γ subunits. J Biol Chem 1991; 266(32):21943–21947.

    PubMed  CAS  Google Scholar 

  220. De Waard M, Pragnell M, Campbell KP. Ca2+ channel regulation by a conserved β subunit domain. Neuron 1994; 13:495–503.

    Article  PubMed  Google Scholar 

  221. Pragnell M, De Waard M, Mori Y et al. Calcium channel β-subunit binds to a conserved motif in the I–II cytoplasmic linker of the α1 subunit. Nature 1994; 368:67–70.

    Article  PubMed  CAS  Google Scholar 

  222. Kim HL, Kim H, Lee P et al. Rat brain expresses an alternatively spliced form of the dihydropyridine-sensitive L-type calcium channel alpha 2 subunit. Proc Natl Acad Sci USA 1992; 89(8):3251–3255.

    Article  PubMed  CAS  Google Scholar 

  223. De Jongh K, Warner SC, Catterall WA. Subunits of purified calcium channels. J Biol Chem 1990; 265(25):14738–14741.

    PubMed  Google Scholar 

  224. Gurnett CA, Campbell KP. Transmembrane auxiliary subunits of voltage-dependent ion channels. J Biol Chem 1996; 271(45):27975–27978.

    Article  PubMed  CAS  Google Scholar 

  225. Gurnett CA, De Waard M, Campbell KP. Dual function of the voltage-dependent Ca2+ channel α2δ subunit in current stimulation and subunit interaction. Neuron 1996; 16:431–440.

    Article  PubMed  CAS  Google Scholar 

  226. Angelotti T, Hofmann F. Tissue-specific expression of splice variants of the mouse voltage-gated calcium channel alpha2/delta subunit. FEBS Lett 1996; 397(2–3):331–337.

    Article  PubMed  CAS  Google Scholar 

  227. Klugbauer N, Marais E, Hofmann F. Calcium channel alpha2delta subunits: differential expression, function and drug binding. J Bioenerg Biomemr 2003; 35(6):639–647.

    Article  CAS  Google Scholar 

  228. Hobom M, Dai S, Marais E et al. Neuronal distribution and functional characterization of the calcium channel alpha2delta-2 subunit. Eur J Neurosci 2000; 12(4):1217–1226.

    Article  PubMed  CAS  Google Scholar 

  229. Qin N, Yagel S, Momplaisir ML et al. Molecular cloning and characterization of the human voltage-gated calcium channel alpha(2)delta-4 subunit. Mol Pharmacol 2002; 62(3):485–496.

    Article  PubMed  CAS  Google Scholar 

  230. Catterall WA. Functional subunit structure of voltage-gated ion channels. Science 1991; 253:1499–1500.

    Article  PubMed  CAS  Google Scholar 

  231. Yasuda T, Lewis RJ, Adams DJ. Overexpressed Cavta3 Inhibits N-type (Cav2.2) Calcium Channel Currents through a Hyperpolarizing Shift of “Ultra-slow” and “Closed-state” Inactivation. J Gen Physiol 2004; 123(4):401–416.

    Article  PubMed  CAS  Google Scholar 

  232. Glossmann H, Striessnig J, Hymel L et al. Purified L-type calcium channels: only one single polypeptide (alpha 1-subunit) carries the drug receptor domains and is regulated by protein kinases. Biomed Biochim Acta 1987; 46(8–9):S351–356.

    PubMed  CAS  Google Scholar 

  233. Jay SD, Ellis SB, McCue AF et al. Primary structure of the γ subunit of the DHP-sensitive calcium channel from skeletal muscle. Science 1990; 248:490–492.

    Article  PubMed  CAS  Google Scholar 

  234. Powers PA, Liu S, Hogan K et al. Molecular characterization of the gene encoding the gamma subunit of the human skeletal muscle 1,4-dihydropyridine-sensitive Ca2+ channel (CACNLG), cDNA sequence, gene structure, and chromosomal location. J Biol Chem. 1993; 268(13):9275–9279.

    PubMed  CAS  Google Scholar 

  235. Chu PH, Bardwell WM, Gu Y et al. FHL2 (SLIM3) is not essential for cardiac development and function. Mol Cell Biol 2000; 20(20):7460–7462.

    Article  PubMed  CAS  Google Scholar 

  236. Freise D, Held B, Wissenbach U et al. Absence of the gamma subunit of the skeletal muscle dihydropyridine receptor increases L-type Ca2+ currents and alters channel inactivation properties. J Biol Chem. 2000; 275(19):14476–14481.

    Article  PubMed  CAS  Google Scholar 

  237. Ahem CA, Powers PA, Biddlecome GH et al. Modulation of L-type Ca2+ current but not activation of Ca2+ release by the gamma1 subunit of the dihydropyridine receptor of skeletal muscle. BMC Physiol 2001; 1(1):8.

    Article  Google Scholar 

  238. Letts VA, Felix R, Biddlecome GH et al. The mouse stargazer gene encodes a neuronal Ca2+-channel gamma subunit. Nat Genet 1998; 19(4):340–347.

    Article  PubMed  CAS  Google Scholar 

  239. Letts VA, Valenzuela A, Kirley JP et al. Genetic and physical maps of the stargazer locus on mouse chromosome 15. Genomics 1997; 43(1):62–68.

    Article  PubMed  CAS  Google Scholar 

  240. Chen L, Bao S, Qiao X et al. Impaired cerebellar synapse maturation in waggler, a mutant mouse with a disrupted neuronal calcium channel gamma subunit. Proc Natl Acad Sci USA 1999; 96(21):12132–7.

    Article  PubMed  CAS  Google Scholar 

  241. Klugbauer N, Dai S, Specht V et al. A family of gamma-like calcium channel subunits. FEBS Lett 2000; 24;470(2):189–97.

    Article  PubMed  CAS  Google Scholar 

  242. Moss FJ, Viard P, Davies A et al. The novel product of a five-exon stargazing-related gene abolishes Ca(V)2.2 calcium channel expression. EMBO J 2002; 21(7):1514–1523.

    Article  PubMed  CAS  Google Scholar 

  243. Kornau HC, Seeburg PH, Kennedy MB. Interaction of ion channels and receptors with PDZ domain proteins. Curr Opin Neurobiol 1997; 7(3):368–373.

    Article  PubMed  CAS  Google Scholar 

  244. Tomita S, Nicoll RA, Bredt DS. PDZ protein interactions regulating glutamate receptor function and plasticity. J Cell Biol 2001; 153(5):F19–24.

    Article  PubMed  CAS  Google Scholar 

  245. Klugbauer N, Welling A, Specht V et al. L-type Ca(2+) channels of the embryonic mouse heart. Eur J Pharmacol 2002; 447(2–3):279–284.

    Article  PubMed  CAS  Google Scholar 

  246. Rousset M, Cens T, Restituito S et al. Functional roles of gamma2, gamma3 and gamma4, three new Ca2+ channel subunits, in P/Q-type Ca2+ channel expressed in Xenopus oocytes. J Physiol 2001; 532 (Pt 3):583–593.

    Article  PubMed  CAS  Google Scholar 

  247. Green PJ, Warre R, Hayes PD et al. Kinetic modification of the alpha(11) subunit-mediated T-type Ca(2+) channel by a human neuronal Ca(2+) channel gamma subunit. J Physiol 2001; 533 (Pt 2):467–478.

    Article  PubMed  CAS  Google Scholar 

  248. Kang MG, Chen CC, Felix R et al. Biochemical and biophysical evidence for gamma 2 subunit association with neuronal voltage-activated Ca2+ channels. J Biol Chem 2001; 276(35):32917–32924.

    Article  PubMed  CAS  Google Scholar 

  249. Moss FJ, Viard P, Davies A et al. The novel product of a five-exon stargazing-related gene abolishes Ca(V)2.2 calcium channel expression. EMBO J 2002; 21(7):1514–1523.

    Article  PubMed  CAS  Google Scholar 

  250. Ophoff RA, Terwindt GM, Vergouwe MN et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 1996; 87(3):543–52.

    Article  PubMed  CAS  Google Scholar 

  251. Matsuyama Z, Wakamori M, Mori Y et al. Direct alteration of the P/Q-type Ca2+ channel property by polyglutamine expansion in spinocerebellar ataxia 6. J Neurosci 1999; 19(12):RC14.

    PubMed  CAS  Google Scholar 

  252. Fletcher CF, Lutz CM, O’Sullivan TN et al. Fletcher CF, et al; Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell 1996; 87(4):607–617.

    Article  PubMed  CAS  Google Scholar 

  253. Mori Y, Wakamori M, Oda S et al. Reduced voltage sensitivity of activation of P/Q-type Ca2+ channels is associated with the ataxic mouse mutation rolling Nagoya (tg(rol)). J Neurosci 2000; 20(15):5654–5662.

    PubMed  CAS  Google Scholar 

  254. Lorenzon NM, Lutz CM, Frankel WN et al. Altered calcium channel currents in Purkinje cells of the neurological mutant mouse leaner. J Neurosci 1998; 18(12):4482–4489.

    PubMed  CAS  Google Scholar 

  255. Kraus RL, Sinnegger MJ, Koschak A et al. Three new familial hemiplegic migraine mutants affect P/Q-type Ca(2+) channel kinetics. J Biol Chem 2000; 275(13):9239–9243.

    Article  PubMed  CAS  Google Scholar 

  256. Kraus RL, Sinnegger MJ, Glossmann H et al. Familial hemiplegic migraine mutations change alpha1A Ca2+ channel kinetics. J Biol Chem 1998; 273(10):5586–5590.

    Article  PubMed  CAS  Google Scholar 

  257. Wappl E, Koschak A, Poteser M et al. Functional consequences of P/Q-type Ca2+ channel Cav 2.1 missense mutations associated with episodic ataxia type 2 and progressive ataxia. J Biol Chem 2002; 277(9):6960–6966.

    Article  PubMed  CAS  Google Scholar 

  258. Ptacek LJ, Tawil R, Griggs RC et al. Dihydropyridine receptor mutations cause hypokalemic periodic paralysis. Cell 1994; 77(6):863–868.

    Article  PubMed  CAS  Google Scholar 

  259. Morrill JA, Brown RH Jr, Cannon SC. Gating of the L-type Ca channel in human skeletal myotubes: an activation defect caused by the hypokalemic periodic paralysis mutation R528H. J Neurosci 1998; 18(24):10320–10334.

    PubMed  CAS  Google Scholar 

  260. Knudson CM, Chaudhari N, Sharp AH et al. Specific absence of the alpha 1 subunit of the dihydropyridine receptor in mice with muscular dysgenesis. J Biol Chem 1989; 264(3):1345–1348.

    PubMed  CAS  Google Scholar 

  261. Chen Y, Lu J, Pan H et al. Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol 2003; 54(2):239–243.

    Article  PubMed  CAS  Google Scholar 

  262. Khosravani H, Altier C, Simms B et al. Gating effects of mutations in the Cav 3.2 T-type calcium channel associated with childhood absence epilepsy. J Biol Chem 2004; 279(11):9681–9684.

    Article  PubMed  CAS  Google Scholar 

  263. Brill J, Klocke R, Paul D et al. entla, a novel epileptic and ataxic Cacna2d2 mutant of the mouse. J Biol Chem 2004; 279(8):7322–7330.

    Article  PubMed  CAS  Google Scholar 

  264. Barclay J, Balaguero N, Mione M et al. Ducky mouse phenotype of epilepsy and ataxia is associated with mutations in the Cacna2d2 gene and decreased calcium channel current in cerebellar Purkinje cells. J Neurosci 2001; 21(16):6095–104.

    PubMed  CAS  Google Scholar 

  265. Brodbeck J, Davies A, Courtney JM et al. The ducky mutation in Cacna2d2 results in altered Purkinje cell morphology and is associated with the expression of a truncated alpha 2 delta-2 protein with abnormal function. J Biol Chem 2002; 277(10):7684–7693.

    Article  PubMed  CAS  Google Scholar 

  266. Burgess DL, Jones JM, Meisler MH et al. Mutation of the Ca2+ channel beta subunit gene Cchb4 is associated with ataxia and seizures in the lethargic (1h) mouse. Cell 1997; 88(3):385–392.

    Article  PubMed  CAS  Google Scholar 

  267. Letts VA, Felix R, Biddlecome GH et al. The mouse stargazer gene encodes a neuronal Ca2+-channel gamma subunit. Nat Genet 1998; 19(4):340–347.

    Article  PubMed  CAS  Google Scholar 

  268. Jun K, Piedras-Renteria ES, Smith SM et al. Ablation of P/Q-type Ca(2+) channel currents, altered synaptic transmission, and progressive ataxia in mice lacking the alpha(1A)-subunit. Proc Natl Acad Sci USA 1999; 96(26):15245–15250.

    Article  PubMed  CAS  Google Scholar 

  269. Kim C, Jun K, Lee T et al. Altered nociceptive response in mice deficient in the alpha(1B) subunit of the voltage-dependent calcium channel. Mol Cell Neurosci 2001; (2):235–245.

    Article  CAS  Google Scholar 

  270. Hatakeyama S, Wakamori M, Ino M et al. Differential nociceptive responses in mice lacking the alpha(1B) subunit of N-type Ca(2+) channels. Neuroreport 2001; 12(11):2423–2427.

    Article  PubMed  CAS  Google Scholar 

  271. Ino M, Yoshinaga T, Wakamori M et al. Functional disorders of the sympathetic nervous system in mice lacking the alpha 1B subunit (Cav 2.2) of N-type calcium channels. Proc Natl Acad Sci USA 2001; 98(9):5323–5328.

    Article  PubMed  CAS  Google Scholar 

  272. Saegusa H, Kurihara T, Zong S et al. Suppression of inflammatory and neuropathic pain symptoms in mice lacking the N-type Ca2+ channel. EMBO J 2001; 20(10):2349–2356.

    Article  PubMed  CAS  Google Scholar 

  273. Saegusa H, Kurihara T, Zong S et al. Altered pain responses in mice lacking alpha 1E subunit of the voltage-dependent Ca2+ channel. Proc Natl Acad Sci USA 2000; 97(11):6132–6137.

    Article  PubMed  CAS  Google Scholar 

  274. Vessey JP, Lalonde MR, Mansergh F et al. Mutation of the Ca channel gene Cacna1F disrupts calcium signaling and synaptic transmission in mouse retina. 33rd Annual Meeting Society for neuroscience meeting; Prog# 817.4.

    Google Scholar 

  275. Kim D, Park D, Choi S et al. Thalamic control of visceral nociception mediated by T-type Ca2+ channels. Science 2003; 302:117–119.

    Article  PubMed  CAS  Google Scholar 

  276. Kim D, Song I, Keum S, Lee T, Jeong MJ, Kim SS, McEnery MW, Shin HS. Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking alpha(1G) T-type Ca(2+) channels. Neuron 2001; 31(1):35–45.

    Article  PubMed  CAS  Google Scholar 

  277. Chen CC, Lamping KG, Nuno DW et al. Abnormal coronary function in mice deficient in alpha 1H T-type Ca2+ channels. Science 2003; 302(5649):1416–1418.

    Article  PubMed  CAS  Google Scholar 

  278. Seisenberger C, Specht V, Welling A et al. Functional embryonic cardiomyocytes after disruption of the L-type alpha 1C (Cav 1.2) calcium channel gene in the mouse. J Biol Chem 2000; 275(50):39193–39199.

    Article  PubMed  CAS  Google Scholar 

  279. Strube C, Beurg M, Powers PA et al. Reduced Ca2+ current, charge movement, and absence of Ca2+ transients in skeletal muscle deficient in dihydropyridine receptor beta 1 subunit. Biophys J 1996; 71(5):2531–2543.

    Article  PubMed  CAS  Google Scholar 

  280. Gregg RG, Messing A, Strube C et al. Absence of the beta subunit (cchb1) of the skeletal muscle dihydropyridine receptor alters expression of the alpha 1 subunit and eliminates excitation-contraction coupling. Proc Natl Acad Sci USA 1996; 93(24):13961–13966.

    Article  PubMed  CAS  Google Scholar 

  281. Strube C, Beurg M, Powers PA et al. Reduced Ca2+ current, charge movement, and absence of Ca2+ transients in skeletal muscle deficient in dihydropyridine receptor beta 1 subunit. Biophys J 1996; 71(5):2531–2543.

    PubMed  CAS  Google Scholar 

  282. Ball SL, Powers PA, Shin HS et al. Role of the beta(2) subunit of voltage-dependent calcium channels in the retinal outer plexiform layer. Invest Ophthalmol Vis Sci 2002; 43(5):1595–1603.

    PubMed  Google Scholar 

  283. Namkung Y, Smith SM, Lee SB et al. Targeted disruption of the Ca2+ channel beta3 subunit reduces N-and L-type Ca2+ channel activity and alters the voltage-dependent activation of P/Q-type Ca2+ channels in neurons. Proc Natl Acad Sci USA 1998; 20:12010–12015.

    Article  Google Scholar 

  284. Cullinane AB, Coca-Prados M, Harvey BJ. Chloride dependent intracellular pH effects of external ATP in cultured human non-pigmented ciliary body epithelium. Curr Eye Res 2001; 23(6):443–447.

    Article  PubMed  CAS  Google Scholar 

  285. Mathews EA, Garcia E, Santi CM et al. Critical residues of the Caenorhabditis elegans unc-2 voltage-gated calcium channel that affect behavioral and physiological properties. J Neurosci 2003; 23(16):6537–6545.

    PubMed  CAS  Google Scholar 

  286. Lee RY, Lobel L, Hengartner M et al. Mutations in the alpha 1 subunit of an L-type voltage-activated Ca2+ channel cause myotonia in Caenorhabditis elegans. EMBO J 1997; 16(20):6066–6076.

    Article  PubMed  CAS  Google Scholar 

  287. Schafer WR, Sanchez BM, Kcnyon CJ. Genes affecting sensitivity to serotonin in Caenorhabditis elegans. Genetics 1996; 143(3):1219–1230.

    PubMed  CAS  Google Scholar 

  288. Heron Se, Phillips HA, Mulley JC et al. Genetic variation of CACNA1H in idiopathic generalized epilepsy. Annals Neurol 2004; 55(4):595–596.

    Article  CAS  Google Scholar 

  289. McGee AW, Nunziato DA, Maltez JM et al. Calcium channel function regulated by the SH3-GK module in beta subunits. Neuron 2004; 42(1):89–99.

    Article  PubMed  CAS  Google Scholar 

  290. Tomita S, Chen L, Kawasaki Y et al. Functional studies and distribution define a family of transmembrane APMA receptor regulatory proteins. J Cell Biol 2003; 161(4):805–816.

    Article  PubMed  CAS  Google Scholar 

  291. Tomita S, Fukata M, Nicoll et al. Dynamic interaction of stargazing-like TARPs with cycling APMA receptors at synapses. Science 2004; 303:1508–1511.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Snutch, T.P., Peloquin, J., Mathews, E., McRory, J.E. (2005). Molecular Properties of Voltage-Gated Calcium Channels. In: Voltage-Gated Calcium Channels. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27526-6_5

Download citation

Publish with us

Policies and ethics