Skip to main content

Voltage-Gated Ca2+ Channels of the Vertebrate Retina

From the Genetics of Blindness to Encoding the Visual World

  • Chapter
Voltage-Gated Calcium Channels

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 1403 Accesses

Abstract

Ca2+ channel-mediated synaptic transmission and calcium signaling in the retina reveals neurobiological solutions to a diversity of signal processing challenges. neurobiological solutions to a diversity of signal processing challenges. In rod and cone photoreceptors, graded and sustained transduction signals, generated over a narrow range of membrane potentials, are synaptically transmitted to second order horizontal and bipolar cells. In rods, novel Ca2+ channels (α1F; Cav1.4) have been implicated at this synapse through genetic studies of people with night blindness, while in cones, biophysically similar α1D(Cav1.3) channels appear to be utilized for this purpose. Although the synaptic output of horizontal cells appears to be Ca2+-independent, these cells express L-type Ca2+ channels. horizontal cells appears to be Ca2+-independent, these cells express L-type Ca2+ channels. Bipolar cells, which are also graded potential neurons, utilize both L- and T-type Ca2+ channels at their output synapse where the transience of the neural signals is enhanced. their output synapse where the transience of the neural signals is enhanced. At the ganglion cell level, network integration of excitatory and inhibitory signals generates the throughput of the optic nerve. optic nerve. T-type Ca2+ channels together with several sub-types of high-voltage-activated Ca2+ channel subtypes play roles in signal integration and are modulated by neurotransmitters and signaling molecules such as nitric oxide (NO). and signaling molecules such as nitric oxide (NO). Pervasive in developing retinal cells and in retinal precursor cells, T-type Ca2+ channels (α1G and α1H; Cav3.1 and 3.2) undergo down-regulation as the cells mature into differentiated neurons and glia. down-regulation as the cells mature into differentiated neurons and glia. Since all neuronal Ca2+ channel subtypes appear to be represented in the retina, this accessible and well-understood tissue offers many advantages to aid in our understanding of the physiological role of Ca2+ channels in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miller RJ. Rocking and rolling with Ca2+ channels. Trends Neurosci 2001; 24:445–449.

    Article  PubMed  CAS  Google Scholar 

  2. Dowling JE. The Retina: An approachable part of the brain. Cambridge: Belknapp Press, 1987.

    Google Scholar 

  3. Rieke F, Schwartz EA. A cGMP-gated current can control exocytosis at cone synapses. Neuron 1994;13:863–873.

    Article  PubMed  CAS  Google Scholar 

  4. Savchenko A, Barnes S, Kramer RH. Cyclic nucleotide-gated channels in synaptic terminals mediate feedback modulation by nitric oxide. Nature 1997;390:694–698.

    PubMed  CAS  Google Scholar 

  5. Schwarz EA. Calcium-independent release of GABA from isolated horizontal cells of the toad retina. J Physiol 1982;323:211–227.

    Google Scholar 

  6. Pfeiffer-Linn CL, Lasater EM. Whole cell and single-channel properties of a unique voltage-activated sustained calcium current identified in teleost retinal horizontal cells. J Neurophysiol 1996;75:609–619.

    PubMed  CAS  Google Scholar 

  7. Bader CR, Bertrand D, Schwartz EA. Voltage-activated and calcium-activated currents studied in solitary rod inner segments from the salamander retina. J Physiol 1982;331:253–284.

    PubMed  CAS  Google Scholar 

  8. Corey DP, Dubinsky JM, Schwartz EA The calcium current in inner segments of rods from the salamander(Ambystoma tigrinum) retina. J Physiol 1984;354:557–575.

    PubMed  CAS  Google Scholar 

  9. Barnes S, Hille B. Ionic channels of the inner segment of tiger salamander cone photoreceptors. J Gen Physiol 1989;94:719–743.

    Article  PubMed  CAS  Google Scholar 

  10. Lasater EM, Witkovsky P. The calcium current of turtle cone photoreceptor axon terminals. Neurosci Res Supp 1991;15:S165–S173.

    CAS  Google Scholar 

  11. Wilkinson MF, Barnes S. The dihydropyridine-sensitive Ca2+ channel subtype in cone photoreceptors. J Gen Physiol 1996;107:621–630.

    Article  PubMed  CAS  Google Scholar 

  12. Kourennyi DK, Barnes S. Depolarization-induced calcium channel facilitation in rod photoreceptors is independent of G-proteins and phosphorylation. J Neurophysiol 2000;84:133–138.

    PubMed  CAS  Google Scholar 

  13. Williams ME, Feldman, DH, McCue AF, et al. Structure and functional expression of alpha1, alpha2, and beta subunits of a novel human neuronal calcium channel. Neuron 1992;8:71–84.

    Article  PubMed  CAS  Google Scholar 

  14. Taylor WR, Morgans C. Localization and properties of voltage-gated calcium channels in cone photoreceptors of Tupaia belangeri. Vis Neurosci 1998;15:541–52.

    Article  PubMed  CAS  Google Scholar 

  15. Morgans CW. Calcium channel heterogeneity among cone photoreceptors in the tree shrew retina. Eur J Neurosci 2000;11:2989–2993.

    Article  Google Scholar 

  16. Nachman-Clewner M, St. Jules R, Townes-Anderson E. L-type calcium channels in the photoreceptor ribbon synapse: Localization and role in plasticity. J Comp Neurol 1999;415:1–16.

    Article  PubMed  CAS  Google Scholar 

  17. Kollmar R, Fak J, Montgomery LG et al. Hair cell-specific splicing of mRNA for the alpha1D subunit of voltage-gated Ca2+ channels in the chicken’s cochlea. Proc Natl Acad Sci USA 1997;23:14889–14893.

    Article  Google Scholar 

  18. Kollmar R, Montgomery LG, Fak J et al. Predominance of the alpha1D subunit in L-type voltage-gated Ca2+ channels of hair cells in the chicken’s cochlea. Proc Natl Acad Sci USA 1997;23:14883–14888.

    Article  Google Scholar 

  19. Platzer J, Engel J, Schrott-Fischer A et al. Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 2000;102:89–97.

    Article  PubMed  CAS  Google Scholar 

  20. Bech-Hansen NT, Naylor MJ, Maybaum TA, et al. Loss-of-function mutations in a calcium-channel alpha1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nature Genet 1998;19:264–267.

    Article  PubMed  CAS  Google Scholar 

  21. Strom TM, Nyakatura G, Apfelstedt-Sylla E, et al. An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness. Nature Genet 1998;19:260–263.

    Article  PubMed  CAS  Google Scholar 

  22. Miyake Y, Yakasaki K, Horiguchi M et al. Congential stationary night blindness with negative electroretinogram. Arch Ophthalmol 1986;104:1013–1020.

    PubMed  CAS  Google Scholar 

  23. Morgans CW. Localization of the alpha(1F) Calcium channel subunit in the rat retina. Invest Ophth Vis Sci 2001;42, 2414–2418.

    CAS  Google Scholar 

  24. Maguire G, Maple B, Lukasiewicz P et al. g-aminobutyrate type B modulation of L-type calcium channel current at bipolar cell terminals in the retina of the tiger salamander. Proc Natl Acad Sci USA 1989;86:10144–10147.

    Article  PubMed  CAS  Google Scholar 

  25. Kaneko A, Suzuki S, Pinto LH et al. Membrane currents and pharmacology of retinal bipolar cells: a comparative study on goldfish and mouse. Comp Biochem Physiol C 1991;98:115–127.

    Article  PubMed  CAS  Google Scholar 

  26. Pan Z-H. Differential expression of high-and two types of low-voltage-activated calcium currents in rod and cone bipolar cells of the rat retina. J Neurophysiol 2000;83:513–527.

    PubMed  CAS  Google Scholar 

  27. Pan Z-H. Voltage-gated Ca2+ channels and ionotropic GABA receptors localized at axon terminals in of mammalian retinal bipolar cells. Vis Neurosci 2001;18:279–288.

    Article  PubMed  CAS  Google Scholar 

  28. Werblin FS, Dowling JE. Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J. Neurophysiol 1969;32:339–355.

    CAS  Google Scholar 

  29. Pan Z-H, Hu H, Perring P et al. T-type Ca2+ channels mediate neurotransmitter release in retina bipolar cells. Neuron 2001;32:89–98.

    Article  PubMed  CAS  Google Scholar 

  30. de la Villa P, Vaquero CF, Kaneko A. Two types of calcium currents of the mouse bipolar cells recorded in the retinal slice preparation. Eur J Neurosci 1998;10:317–23.

    Article  PubMed  Google Scholar 

  31. Tachibana M, Okada T, Arimura T et al. Dihydropyridine-sensitive calcium current mediates neurotransmitter release from bipolar cells of the goldfish retina. J Neurosci 1993;13:2898–909.

    PubMed  CAS  Google Scholar 

  32. Euler T, Masland RH. Light-evoked responses of bipolar cells in a mammalian retina. J Neurophysiol 2000;79:1384–1395.

    Google Scholar 

  33. Awatramani GB, Slaughter MM. Origin of transient and sustained responses in ganglion cells of the retina. J Neurosci 2000;20:7087–7095.

    PubMed  CAS  Google Scholar 

  34. Bieda MC, Copenhagen DR. Inhibition is not required for the production of transient spiking responses from retinal ganglion cells. Vis Neurosci 2000;17:243–254.

    Article  PubMed  CAS  Google Scholar 

  35. Lukasiewicz P, Lawrence JE, Valentino TL. Desensitizing glutamate receptors shape excitatory synaptic inputs to tiger salamander retinal ganglion cells. J Neurosci 1995;15:6189–6199.

    PubMed  CAS  Google Scholar 

  36. Lukasiewicz PD, Wilson JA, Lawrence JE. AMPA-preferring receptors mediate excitatory synaptic inputs to retinal ganglion cells. J Neurophysiol 1997;77:57–64.

    PubMed  CAS  Google Scholar 

  37. Diamond JS, Copenhagen DR. The relationship between light-evoked synaptic activity and spiking behavior of salamander retinal ganglion cells. J Physiol 1995;487:711–725.

    PubMed  CAS  Google Scholar 

  38. Tabata T, Olivera BM, Ishida AT. Omega-conotoxin-MVIID blocks an omega-conotoxin-GVIA-sensitive, high-threshol Ca2+ current in fish retinal ganglion cells. Neuropharmacol 1996;35:633–636.

    Article  CAS  Google Scholar 

  39. Gleason E, Borges S, Wilson M. Control of transmitter release from retinal amarine cells by Ca2+ influx and efflux. Neuron 1994;13:1109–1117.

    Article  PubMed  CAS  Google Scholar 

  40. Gleason E, Borges S, Wilson M. Synaptic transmission between pairs of retinal amacrine cells in culture. J Neurosci 1993;13:2359–2370.

    PubMed  CAS  Google Scholar 

  41. Guenther E, Rothe T, Taschnberger H et al. Separation of calcium currents in retinal ganglion cells from postnatal rat. Brain Res 1994;633:223–235.

    Article  PubMed  CAS  Google Scholar 

  42. Shen W, Slaughter M. Metabotropic and ionotropic glutamate receptors regulate calcium channel currents in salamander retinal ganglion cells. J Physiol 1998; 510:815–828. 1998.

    Article  PubMed  CAS  Google Scholar 

  43. Hirooka K, Kourennyi DK, Barnes S. Calcium channel activation facilitated by nitric oxide in retinal ganglion cells. J Neurophys 2000;83:198–207.

    CAS  Google Scholar 

  44. Liu Y, Lasater E. Calcium currents in turtle retinal ganglion cells. I. The properties of T-and L-type currents. J Neurophysiol 1994;71:733–742.

    PubMed  CAS  Google Scholar 

  45. Karschin A, Lipton SA. Calcium currents in solitary retinal ganglion cells from postnatal rat. J Physiol 1989;418:379–396.

    PubMed  CAS  Google Scholar 

  46. Henderson D, Doerr TA, Gottesman J et al. Calcium channel immunoreactivity in the salamander retina. Neuroreport 2001;12:1493–1499.

    Article  PubMed  CAS  Google Scholar 

  47. Kamphuis W, Hendrikson, H. Expression patterns of voltage-dependent calcium channel alpha 1 subunits (alpha 1A-alpha 1E) mRNA in rat retina. Brain Res Mol Brain Res 1998;55:209–220

    Article  PubMed  CAS  Google Scholar 

  48. Puro DG, Hwang J-J, Kwon O-J et al. Characterization of an L-type calcium channel expressed by human retinal (Müller) glial cells. Mol Brain Res 1996;37:41–48.

    Article  PubMed  CAS  Google Scholar 

  49. Newman EA. Voltage-dependent calcium and potassium channels in retinal glial cells. Nature 1985;317:809–811.

    Article  PubMed  CAS  Google Scholar 

  50. Akopian A. and Witkovsky, P. Activation of metabotropic glutamate receptors decreases a high threshold calcium current in spiking neurons of the Xenopus retina. Vis Neurosci 1996;13:549–557.

    Article  PubMed  CAS  Google Scholar 

  51. Zhang J, Shen W, Slaughter MM. Two metabotropic gamma-aminobutyric acid receptors differentially modulate calcium currents in retinal ganglion cells. J Gen Physiol 110:45–58, 1997.

    Article  PubMed  CAS  Google Scholar 

  52. Zhang C, Schmidt JT. Adenosine A1 and class II metabotropic glutamate receptors mediate shared presynaptic inhibition of retinotectal transmission. J Neurophysiol 1999;82:2947–2955.

    PubMed  CAS  Google Scholar 

  53. Sun X, Barnes S, Baldridge WH. Adenosine inhibits calcium channel currents via A1 receptors on tiger salamander retinal ganglion cells in a mini-slice preparation. J Neurochem 2002;In press.

    Google Scholar 

  54. Dawson TM., Bredt DS, Fotuhi M et al. Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc Natl Acad Sci USA 1991;88:7797–7801.

    Article  PubMed  CAS  Google Scholar 

  55. Hope BT, Michael GJ, Knigge KM et al. Neuronal NADPH diaphorase is a nitric oxide synthase. Proc Natl Acad Sci USA 1991;88:2811–2814.

    Article  PubMed  CAS  Google Scholar 

  56. Kurennyi DE, Thurlow G, Turner RW et al. Nitric oxide synthase in tiger salamander retina. J Comp Neurol 1995;361:525–536.

    Article  Google Scholar 

  57. Liepe BA, Stone C, Koistanaho J et al. Nitric oxide synthase in Muller cells and neurons of salamander and fish retina. J Neurosci 1994;14:7641–7654.

    PubMed  CAS  Google Scholar 

  58. Blute TA, Mayer B, Eldred WD. Immunocytochemical and histochemical localization f nitric oxide synthase in the turtle retina. Vis Neurosci 1997;14:717–729.

    PubMed  CAS  Google Scholar 

  59. Sagar S. NADPH-diaphorase histochemistry in the rabbit retina. Brain Res. 373:153–158, 1986.

    Article  PubMed  CAS  Google Scholar 

  60. Sandell JH. NADPH-diaphorase cells in the mammalian inner retina. J Comp Neurol 1985;238:466–472.

    Article  PubMed  CAS  Google Scholar 

  61. Ahmad I, Barnstable CJ. Differential laminar expression of particulate and soluble guanylate cyclase genes in rat retina. Exp Eye Res 1993;56:41–62.

    Article  Google Scholar 

  62. Kelly MEM, Barnes S. Physiology and pathophysiology of nitric oxide in the retina. The Neuroscientist 1997;3:357–360.

    CAS  Google Scholar 

  63. Hartwick AT. Beyond intraocular pressure: Neuroprotective strategies for future glaucoma therapy. Optom Vis Sci 2001;78:85–94.

    Article  PubMed  CAS  Google Scholar 

  64. Melena J, Osborne NN. Voltage-dependent calcium channels in the rat retina: involvement in NMDA-stimulated influx of calcium. Exp Eye Res 2001;72:393–401.

    Article  PubMed  CAS  Google Scholar 

  65. Melena J, Stanton D, Osborne NN. Comaprative effects of antiglaucoma drugs on voltage-dependent calcium channels. Graefe’s Arch Clin Exp Ophthalmol 2001;239:522–530.

    CAS  Google Scholar 

  66. Sucher NJ, Lei SZ, Lipton SA. Calcium channel antagonists attenuate NMDA receptor-mediated neurotoxicity of ganglion cells in culture. Brain Res 1991;551:297–302.

    Article  PubMed  CAS  Google Scholar 

  67. Netland PA, Chaturvedi N, Dreyer EB. Calcium channel blockers in the management of low-tension and open-angle glaucoma. Am J Ophthalmol 1993;115:608–613.

    PubMed  CAS  Google Scholar 

  68. Berridge MJ. Calcium signaling and cell proliferation. Bioessays 1995;17:491–500.

    Article  PubMed  CAS  Google Scholar 

  69. Kono T, Jones KT, Bos-Mikich A, Carroll J. A cell cycle-associated change in Ca2+ releasing activity leads to the generation of Ca2+ transients in mouse embryos during the first mitotic division. J Cell Biol 1996;132:915–23.

    Article  PubMed  CAS  Google Scholar 

  70. Kuga T, Kobayashi S, Hirakawa Y et al. Cell cycle-dependent expression of L-and T-type Ca2+ currents in rat aortic smooth muscle cells in primary culture. Circ Res 1996;79:14–19.

    PubMed  CAS  Google Scholar 

  71. Day ML, Johnson MH, Cook DI. Cell cycle regulation of a T-type calcium current in early mouse embryos. Pflugers Arch 1998;436:834–842.

    Article  PubMed  CAS  Google Scholar 

  72. Winston N, McGuiness O, Johnson MH et al. The exit of mouse oocytes from meiotic M-phase requires an intact spindle during intracellular calcium release. J Cell Sci 1995;108:143–51.

    PubMed  CAS  Google Scholar 

  73. Ciapa B, Pesando D, Wilding M et al. Cell-cycle calcium transients driven by cyclic changes in inositol trisphosphate levels. Nature 1994;368:875–878.

    Article  PubMed  CAS  Google Scholar 

  74. Doherty P, Walsh FS. Signal transduction events underlying neurite outgrowth stimulated by cell adhesion molecules. Curr Opin Neurobiol 1994;4:49–55.

    Article  PubMed  CAS  Google Scholar 

  75. Gu X, Spitzer NS. Low threshold Ca2+ current and its role in spontaneous elevations of intracellular Ca2+ in developing Xenopus neurons. J Neurosci 1993;13:4936–4948.

    PubMed  CAS  Google Scholar 

  76. Rakic P, Cameron RS, Komura H. Recognition, adhesion, transmembrane signaling and cell motility in guided neuronal migration. Curr Opin Neurobiol 1994;4:63–69.

    Article  PubMed  CAS  Google Scholar 

  77. Waid DK, McLoon SC. Immediate differentiation of ganglion cells following mitosis in the developing retina. Neuron 1995;14:117–124.

    Article  PubMed  CAS  Google Scholar 

  78. Rothe T, Juttner R, Bahring R et al. Ion conductances related to development of repetitive firing in mouse retinal ganglion neurons in situ. J Neurobiol 1999;38:191–206.

    Article  PubMed  CAS  Google Scholar 

  79. Rorig B, Grantyn R. Ligand and voltage-gated ion channels are expressed by embryonic mouse retinal neurons. Neuroreport 1994;5:1197–1200.

    PubMed  CAS  Google Scholar 

  80. Schmid S, Geunther E. Developmental regulation of voltage-activated Na+ and Ca2+ currents in retinal ganglion cells in rat retinal ganglion cells. Neuroreport 1996;7:677–681.

    Article  PubMed  CAS  Google Scholar 

  81. Schmid S, Geunther E. Voltage-activated calcium currents in rat retinal ganglion cells in situ: Changes during prenatal and postnatal development. J Neurosci 1999;19:3486–3494.

    PubMed  CAS  Google Scholar 

  82. Bringmann A, Schopf S, Reichenbach A. Developmental regulation of calcium channel-mediated currents in retinal glial (Müller) cells. J Neurophysiol 2000;84:2975–2983.

    PubMed  CAS  Google Scholar 

  83. Hirooka K, Bertolesi GE, Kelly ME et al. S. T-type calcium channel α1G and α1H subunits in human retinoblastoma cells, and their loss after differentiation. J Neurophysiol 2002;88(1):196–205.

    PubMed  CAS  Google Scholar 

  84. Okagaki R, Izumi H, Okada T et al. The maternal trnascript for truncated voltage-dependent Ca2+ channels in the ascidian embryo: A potential suppressive role in Ca2+ channel expression. Dev Biol 2001;230:258–277.

    Article  PubMed  CAS  Google Scholar 

  85. Boycott KM, Maybaum TA, Naylor MJ et al. A summary of 20 CACNA1F mutations identified in 36 families with incomplete X-lnked congenital stationary night blindness and characterization of splice variants. Human Genetics 2001;108:91–97.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Kelly, M.E.M., Barnes, S. (2005). Voltage-Gated Ca2+ Channels of the Vertebrate Retina. In: Voltage-Gated Calcium Channels. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27526-6_22

Download citation

Publish with us

Policies and ethics