Skip to main content

Calcium Channels in the Heart

  • Chapter
Book cover Voltage-Gated Calcium Channels

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rougier O, Gamier D. Analysis of the potassium current of cardiac auricular fibers in frogs. J Physiol (Paris) 1969; 61(Suppl 2):391.

    Google Scholar 

  2. Vassort G, Rougier O, Gamier D et al. Effects of adrenaline on membrane inward currents during the cardiac action potential. Pflugers Arch 1969; 309(1):70–81.

    Article  PubMed  CAS  Google Scholar 

  3. Bustamante JO, Watanabe T, Murphy DA et al. Isolation of single atrial and ventricular cells from the human heart. Can Med Assoc J 1982; 126(7):91–3.

    Google Scholar 

  4. Beeler Jr GW, Reuter H. The relation between membrane potential, membrane currents and activation of contraction in ventricular myocardial fibres J Physiol 1970; 207(1):211–29.

    PubMed  CAS  Google Scholar 

  5. Neher E, Sakmann B. Noise analysis of drug induced voltage clamp currents in denervated frog muscle fibres. J Physiol 1976; 258(3):705–29.

    PubMed  CAS  Google Scholar 

  6. Hume JR, Giles W. Active and passive electrical properties of single bullfrog atrial cells. J Gen Physiol 1981; 78(1):19–42.

    Article  PubMed  CAS  Google Scholar 

  7. Neher E, Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 1976; 260(5554):799–802.

    Article  PubMed  CAS  Google Scholar 

  8. Cachelin AB, de Peyer JE, Kokubun S et al. Ca2+ channel modulation by 8-bromocyclic AMP in cultured heart cells. Nature 1983; 304(5925):462–4.

    Article  PubMed  CAS  Google Scholar 

  9. Cachelin AB, De Peyer JE, Kokubun S et al. Sodium channels in cultured cardiac cells. J Physiol 1983; 340:389–401.

    PubMed  CAS  Google Scholar 

  10. Cavalie A, Ochi R, Pelzer D et al. Elementary currents through Ca2+ channels in guinea pig myocytes. Pflugers Arch 1983; 398(4):284–97.

    Article  PubMed  CAS  Google Scholar 

  11. Tsien RW, Bean BP, Hess P et al. Mechanisms of Ca2+ channel modulation by beta-adrenergic agents and dihydropyridine Ca2+ agonists. J Mol Cell Cardiol 1986; 18(7):691–710.

    Article  PubMed  CAS  Google Scholar 

  12. Yatani A, Codina J, Imoto Y et al. A G protein directly regulates mammalian cardiac Ca2+ channels. Science 1987; 238(4831):1288–92.

    Article  PubMed  CAS  Google Scholar 

  13. Horn R, Marty A. Muscarinic activation of ionic currents measured by a new whole-cell recording method. J Gen Physiol 1988; 92(2):145–59.

    Article  PubMed  CAS  Google Scholar 

  14. Rae J, Cooper K, Gates P et al. Low access resistance perforated patch recordings using amphotericin B. J Neurosci Methods 1991; 37(1):15–26.

    Article  PubMed  CAS  Google Scholar 

  15. Fleckenstein A. History of Ca2+ antagonists. Circ Res 1983; 52(2 Pt 2):3–16.

    CAS  Google Scholar 

  16. Striessnig J. Pharmacology, structure and function of cardiac L-type Ca2+ channels. Cell Physiol Biochem 1999; 9(4–5):242–69.

    Article  PubMed  CAS  Google Scholar 

  17. Bean BP. Two kinds of Ca2+ channels in canine atrial cells. Differences in kinetics, selectivity, and pharmacology J Gen Physiol 1985; 86(1):1–30.

    Article  PubMed  CAS  Google Scholar 

  18. Hirano Y, Fozzard HA, January CT. Characteristics of L-and T-type Ca2+ currents in canine cardiac Purkinje cells. Am J Physiol 1989; 256(5 Pt 2):1478–92.

    Google Scholar 

  19. Curtis BM, Catterall WA. Purification of the Ca2+ antagonist receptor of the voltage-sensitive Ca2+ channel from skeletal muscle transverse tubules. Biochemistry 1984; 23(10):2113–8.

    Article  PubMed  CAS  Google Scholar 

  20. Mikami A, Imoto K, Tanabe T et al. Primary structure and functional expression of the cardiac dihydropyridine-sensitive Ca2+ channel. Nature 1989; 340(6230):230–3.

    Article  PubMed  CAS  Google Scholar 

  21. Catterall WA. Structure and function of voltage-gated sodium and Ca2+ channels. Curr Opin Neurobiol 1991; 1(1):5–13.

    Article  PubMed  CAS  Google Scholar 

  22. Takimoto K, Li D, Nerbonne JM et al. Distribution, splicing and glucocorticoid-induced expression of cardiac alpha 1C and alpha 1D voltage-gated Ca2+ channel mRNAs. J Mol Cell Cardiol 1997; 29(11):3035–42.

    Article  PubMed  CAS  Google Scholar 

  23. Wyatt CN, Campbell V, Brodbeck J et al. Voltage-dependent binding and Ca2+ channel current inhibition by an anti-alpha 1D subunit antibody in rat dorsal root ganglion neurones and guinea-pig myocytes. J Physiol 1997; 502 (Pt 2):307–19.

    Article  PubMed  CAS  Google Scholar 

  24. Yaney GC, Wheeler MB, Wei X et al. Cloning of a novel alpha 1-subunit of the voltage-dependent Ca2+ channel from the beta-cell. Mol Endocrinol 1992; 6(12):2143–52.

    Article  PubMed  CAS  Google Scholar 

  25. Ertel EA, Campbell KP, Harpold MM et al. Nomenclature of voltage-gated Ca2+ channels. Neuron 2000; 25(3):533–5.

    Article  PubMed  CAS  Google Scholar 

  26. Welling A, Ludwig A, Zimmer S et al. Alternatively spliced IS6 segments of the alpha 1C gene determine the tissue-specific dihydropyridine sensitivity of cardiac and vascular smooth muscle L-type Ca2+ channels. Circ Res 1997; 81(4):526–32.

    PubMed  CAS  Google Scholar 

  27. Ruth P, Rohrkasten A, Biel M et al. Primary structure of the beta subunit of the DHP-sensitive Ca2+ channel from skeletal muscle. Science 1989; 245(4922):1115–8.

    Article  PubMed  CAS  Google Scholar 

  28. Perez-Reyes E, Castellano A, Kim HS et al. Cloning and expression of a cardiac/brain beta subunit of the L-type Ca2+ channel. J Biol Chem 1992; 267(3):1792–7.

    PubMed  CAS  Google Scholar 

  29. Hullin R, Singer-Lahat D, Freichel M et al. Ca2+ channel beta subunit heterogeneity: functional expression of cloned cDNA from heart, aorta and brain. Embo J 1992; 11(3):885–90.

    PubMed  CAS  Google Scholar 

  30. Castellano A, Wei X, Birnbaumer L et al. Cloning and expression of a neuronal Ca2+ channel beta subunit. J Biol Chem 1993; 268(17):12359–66.

    PubMed  CAS  Google Scholar 

  31. Collin T, Wang JJ, Nargeot J et al. Molecular cloning of three isoforms of the L-type voltage-dependent Ca2+ channel beta subunit from normal human heart. Circ Res 1993; 72(6):1337–44.

    PubMed  CAS  Google Scholar 

  32. Perez-Reyes E, Schneider T. Molecular biology of Ca2+ channels. Kidney Int 1995; 48(4):1111–24.

    PubMed  CAS  Google Scholar 

  33. Pragnell M, De Waard M, Mori Y et al. Ca2+ channel beta-subunit binds to a conserved motif in the I–II cytoplasmic linker of the alpha 1-subunit. Nature 1994; 368(6466):67–70.

    Article  PubMed  CAS  Google Scholar 

  34. De Jongh KS, Warner C, Catterall WA. Subunits of purified Ca2+ channels. Alpha2 and delta are encoded by the same gene. J Biol Chem 1990; 265(25):14738–41.

    PubMed  Google Scholar 

  35. Tanabe T, Beam KG, Adams BA et al. Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature 1990; 346(6284):567–9.

    Article  PubMed  CAS  Google Scholar 

  36. Yang J, Ellinor PT, Sather WA et al. Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature 1993; 366(6451):158–61.

    Article  PubMed  CAS  Google Scholar 

  37. Yatani A, Bahinski A, Wakamori M et al. Alteration of channel characteristics by exchange of poreforming regions between two structurally related Ca2+ channels. Mol Cell Biochem 1994; 140(2):93–102.

    Article  PubMed  CAS  Google Scholar 

  38. Ellinor PT, Yang J, Sather WA et al. Ca2+ channel selectivity at a single locus for high-affinity Ca2+ interactions. Neuron 1995; 15(5):1121–32.

    Article  PubMed  CAS  Google Scholar 

  39. Babitch J. Channel hands. Nature 1990; 346(6282):321–2.

    Article  PubMed  CAS  Google Scholar 

  40. Adams B, Tanabe T. Structural regions of the cardiac Ca channel alpha subunit involved in Ca-dependent inactivation. J Gen Physiol 1997; 110(4):379–89.

    Article  PubMed  CAS  Google Scholar 

  41. Zuhlke RD, Reuter H. Ca2+-sensitive inactivation of L-type Ca2+ channels depends on multiple cytoplasmic amino acid sequences of the alpha1C subunit. Proc Natl Acad Sci USA 1998; 95(6):3287–94.

    Article  PubMed  CAS  Google Scholar 

  42. Lory P, Varadi G, Slish DF et al. Characterization of beta subunit modulation of a rabbit cardiac L-type Ca2+ channel alpha 1 subunit as expressed in mouse L cells. FEBS Lett 1993; 315(2):167–72.

    Article  PubMed  CAS  Google Scholar 

  43. Costantin J, Noceti F, Qin N et al. Facilitation by the beta2a subunit of pore openings in cardiac Ca2+ channels. J Physiol 1998; 507 (Pt 1):93–103.

    Article  PubMed  CAS  Google Scholar 

  44. Gerster U, Neuhuber B, Groschner K et al. Current modulation and membrane targeting of the Ca2+ channel alpha1C subunit are independent functions of the beta subunit. J Physiol 1999; 517 (Pt 2):353–68.

    Article  PubMed  CAS  Google Scholar 

  45. Gao T, Chien AJ, Hosey MM. Complexes of the alpha1C and beta subunits generate the necessary signal for membrane targeting of class C L-type Ca2+ channels. J Biol Chem 1999; 274(4):2137–44.

    Article  PubMed  CAS  Google Scholar 

  46. Singer D, Biel M, Lotan I et al. The roles of the subunits in the function of the Ca2+ channel. Science 1991; 253(5027):1553–7.

    Article  PubMed  CAS  Google Scholar 

  47. Shistik E, Ivanina T, Puri T et al. Ca2+ current enhancement by alpha 2/delta and beta subunits in Xenopus oocytes: contribution of changes in channel gating and alpha 1 protein level. J Physiol 1995; 489 ( Pt 1):55–62.

    PubMed  CAS  Google Scholar 

  48. Mori Y, Friedrich T, Kim MS et al. Primary structure and functional expression from complementary DNA of a brain Ca2+ channel. Nature 1991; 350(6317):398–402.

    Article  PubMed  CAS  Google Scholar 

  49. Platano D, Qin N, Noceti F et al. Expression of the alpha(2)delta subunit interferes with prepulse facilitation in cardiac L-type Ca2+ channels. Biophys J 2000; 78(6):2959–72.

    PubMed  CAS  Google Scholar 

  50. Striessnig J, Murphy BJ, Catterall WA. Dihydropyridine receptor of L-type Ca2+ channels: identification of binding domains for [3H](+)-PN200-110 and [3H]azidopine within the alpha 1 subunit. Proc Natl Acad Sci USA 1991; 88(23):10769–73.

    Article  PubMed  CAS  Google Scholar 

  51. Catterall WA, Striessnig J. Receptor sites for Ca2+ channel antagonists. Trends Pharmacol Sci 1992; 13(6):256–62.

    Article  PubMed  CAS  Google Scholar 

  52. Tang S, Yatani A, Bahinski A et al. Molecular localization of regions in the L-type Ca2+ channel critical for dihydropyridine action. Neuron 1993; 11(6):1013–21.

    Article  PubMed  CAS  Google Scholar 

  53. Striessnig J, Glossmann H, Catterall WA. Identification of a phenylalkylamine binding region within the alpha 1 subunit of skeletal muscle Ca2+ channels. Proc Natl Acad Sci USA 1990; 87(23):9108–12.

    Article  PubMed  CAS  Google Scholar 

  54. Wei X, Pan S, Lang W et al. Molecular determinants of cardiac Ca2+ channel pharmacology. Subunit requirement for the high affinity and allosteric regulation of dihydropyridine binding J Biol Chem 1995; 270(45):27106–11.

    Article  PubMed  CAS  Google Scholar 

  55. Beuckelmann DJ, Wier WG. Mechanism of release of Ca2+ from sarcoplasmic reticulum of guinea-pig cardiac cells. J Physiol 1988; 405:233–55.

    PubMed  CAS  Google Scholar 

  56. Nabauer M, Callewaert G, Cleemann L et al. Regulation of Ca2+ release is gated by Ca2+ current, not gating charge, in cardiac myocytes. Science 1989; 244(4906):800–3.

    Article  PubMed  CAS  Google Scholar 

  57. Valdeolmillos M, O’Neill SC, Smith GL et al. Ca2+-induced Ca2+ release activates contraction in intact cardiac cells. Pflugers Arch 1989; 413(6):676–8.

    Article  PubMed  CAS  Google Scholar 

  58. Fabiato A, Fabiato F. Activation of skinned cardiac cells. Subcellular effects of cardioactive drugs Eur J Cardiol 1973; 1(2):143–55.

    PubMed  CAS  Google Scholar 

  59. Fabiato A. Simulated Ca2+ current can both cause Ca2+ loading in and trigger Ca2+ release from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol 1985; 85(2):291–320.

    Article  PubMed  CAS  Google Scholar 

  60. Fabiato A, Fabiato F. Contractions induced by a Ca2+-triggered release of Ca2+ from the sarcoplasmic reticulum of single skinned cardiac cells. J Physiol 1975; 249(3):469–95.

    PubMed  CAS  Google Scholar 

  61. Fabiato A, Fabiato F. Effects of magnesium on contractile activation of skinned cardiac cells. J Physiol 1975; 249(3):497–517.

    PubMed  CAS  Google Scholar 

  62. Fabiato A, Fabiato F. Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiace and skeletal muscles. J Physiol 1978; 276:233–55.

    PubMed  CAS  Google Scholar 

  63. Fabiato A, Fabiato F. Ca2+-induced release of Ca2+ from the sarcoplasmic reticulum of skinned cells from adult human, dog, cat, rabbit, rat, and frog hearts and from fetal and new-born rat ventricles. Ann N Y Acad Sci 1978; 307:491–522.

    Article  PubMed  CAS  Google Scholar 

  64. Fabiato A, Fabiato F. Use of chlorotetracycline fluorescence to demonstrate Ca2+-induced release of Ca2+ from the sarcoplasmic reticulum of skinned cardiac cells. Nature 1979; 281(5727):146–8.

    Article  PubMed  CAS  Google Scholar 

  65. Fabiato A. Myoplasmic free Ca2+ concentration reached during the twitch of an intact isolated cardiac cell and during Ca2+-induced release of Ca2+ from the sarcoplasmic reticulum of a skinned cardiac cell from the adult rat or rabbit ventricle. J Gen Physiol 1981; 78(5):457–97.

    Article  PubMed  CAS  Google Scholar 

  66. Fabiato A. Ca2+-induced release of Ca2+ from the cardiac sarcoplasmic reticulum. Am J Physiol 1983; 245(1):C1–14.

    PubMed  CAS  Google Scholar 

  67. Fabiato A. Rapid ionic modifications during the aequorin-detected Ca2+ transient in a skinned canine cardiac Purkinje cell. J Gen Physiol 1985; 85(2):189–246.

    Article  PubMed  CAS  Google Scholar 

  68. Fabiato A. Time and Ca2+ dependence of activation and inactivation of Ca2+-induced release of Ca2+ from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol 1985; 85(2):247–89.

    Article  PubMed  CAS  Google Scholar 

  69. Niggli E, Lederer WJ. Voltage-independent Ca2+ release in heart muscle. Science 1990; 250(4980):565–8.

    Article  PubMed  CAS  Google Scholar 

  70. Sham JS, Song LS, Chen Y et al. Termination of Ca2+ release by a local inactivation of ryanodine receptors in cardiac myocytes. Proc Natl Acad Sci USA 1998; 95(25):15096–101.

    Article  PubMed  CAS  Google Scholar 

  71. Sipido KR, Callewaert G, Carmeliet E. Inhibition and rapid recovery of Ca2+ current during Ca2+ release from sarcoplasmic reticulum in guinea pig ventricular myocytes. Circ Res 1995; 76(1):102–9.

    PubMed  CAS  Google Scholar 

  72. Sham JS, Cleemann L, Morad M. Functional coupling of Ca2+ channels and ryanodine receptors in cardiac myocytes. Proc Natl Acad Sci USA 1995; 92(1):121–5.

    Article  PubMed  CAS  Google Scholar 

  73. Lederer WJ, Niggli E, Hadley RW. Sodium-Ca2+ exchange in excitable cells: fuzzy space. Science 1990; 248(4953):283.

    Article  PubMed  CAS  Google Scholar 

  74. Stern MD. Theory of excitation-contraction coupling in cardiac muscle. Biophys J 1992; 63(2):497–517.

    PubMed  CAS  Google Scholar 

  75. Protasi F, Sun XH, Franzini-Armstrong C. Formation and maturation of the Ca2+ release apparatus in developing and adult avian myocardium. Dev Biol 1996; 173(1):265–78.

    Article  PubMed  CAS  Google Scholar 

  76. Bers DM, Stiffel VM. Ratio of ryanodine to dihydropyridine receptors in cardiac and skeletal muscle and implications for E-C coupling. Am J Physiol 1993; 264(6 Pt 1):C1587–93.

    PubMed  CAS  Google Scholar 

  77. Cannell MB, Cheng H, Lederer WJ. Spatial nonuniformities in [Ca2+]i during excitation-contraction coupling in cardiac myocytes. Biophys J 1994; 67(5):1942–56.

    PubMed  CAS  Google Scholar 

  78. Cheng H, Lederer WJ, Cannell MB. Ca2+ sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 1993; 262(5134):740–4.

    Article  PubMed  CAS  Google Scholar 

  79. Lopez-Lopez JR, Shacklock PS, Balke CW et al. Local Ca2+ transients triggered by single L-type Ca2+ channel currents in cardiac cells. Science 1995; 268(5213):1042–5.

    Article  PubMed  CAS  Google Scholar 

  80. Song LS, Stern MD, Lakatta EG et al. Partial depletion of sarcoplasmic reticulum Ca2+ does not prevent Ca2+ sparks in rat ventricular myocytes. J Physiol 1997; 505 ( Pt 3):665–75.

    Article  PubMed  CAS  Google Scholar 

  81. Parker I, Zang WJ, Wier WG. Ca2+ sparks involving multiple Ca2+ release sites along Z-lines in rat heart cells. J Physiol 1996; 497 ( Pt 1):31–8.

    PubMed  CAS  Google Scholar 

  82. Cannell MB, Berlin JR, Lederer WJ. Effect of membrane potential changes on the Ca2+ transient in single rat cardiac muscle cells. Science 1987; 238(4832):1419–23.

    Article  PubMed  CAS  Google Scholar 

  83. Callewaert G, Cleemann L, Morad M. Epinephrine enhances Ca2+ current-regulated Ca2+ release and Ca2+ reuptake in rat ventricular myocytes. Proc Natl Acad Sci USA 1988; 85(6):2009–13.

    Article  PubMed  CAS  Google Scholar 

  84. London B, Krueger JW. Contraction in voltage-clamped, internally perfused single heart cells. J Gen Physiol 1986; 88(4):475–505.

    Article  PubMed  CAS  Google Scholar 

  85. Tsien RW, Giles W, Greengard P. Cyclic AMP mediates the effects of adrenaline on cardiac purkinje fibres. Nat New Biol 1972; 240(101):181–3.

    PubMed  CAS  Google Scholar 

  86. Reuter H, Scholz H. The regulation of the Ca2+ conductance of cardiac muscle by adrenaline. J Physiol 1977; 264(1):49–62.

    PubMed  CAS  Google Scholar 

  87. Stiles GL, Taylor S, Lefkowitz RJ. Human cardiac beta-adrenergic receptors: subtype heterogeneity delineated by direct radioligand binding. Life Sci 1983; 33(5):467–73.

    Article  PubMed  CAS  Google Scholar 

  88. Stiles GL, Strasser RH, Lavin TN et al. The cardiac beta-adrenergic receptor. Structural similarities of beta 1 and beta 2 receptor subtypes demonstrated by photoaffinity labeling. J Biol Chem 1983; 258(13):8443–9.

    PubMed  CAS  Google Scholar 

  89. Bristow MR, Ginsburg R. Beta 2 receptors on myocardial cells in human ventricular myocardium. Am J Cardiol 1986; 57(12):3F–6F.

    Article  PubMed  CAS  Google Scholar 

  90. Krief S, Lonnqvist F, Raimbault S et al. Tissue distribution of beta 3-adrenergic receptor mRNA in man. J Clin Invest 1993; 91(1):344–9.

    PubMed  CAS  Google Scholar 

  91. Gauthier C, Tavernier G, Charpentier F et al. Functional beta3-adrenoceptor in the human heart. J Clin Invest 1996; 98(2):556–62.

    PubMed  CAS  Google Scholar 

  92. Xiao RP, Lakatta EG. Beta 1-adrenoceptor stimulation and beta 2-adrenoceptor stimulation differ in their effects on contraction, cytosolic Ca2+, and Ca2+ current in single rat ventricular cells. Circ Res 1993; 73(2):286–300.

    PubMed  CAS  Google Scholar 

  93. Chen-Izu Y, Xiao RP, Izu LT et al. G(i)-dependent localization of beta(2)-adrenergic receptor signaling to L-type Ca(2+) channels. Biophys J 2000; 79(5):2547–56.

    Article  PubMed  CAS  Google Scholar 

  94. Xiao RP, Avdonin P, Zhou YY et al. Coupling of beta2-adrenoceptor to Gi proteins and its physiological relevance in murine cardiac myocytes. Circ Res 1999; 84(1):43–52.

    PubMed  CAS  Google Scholar 

  95. Yue DT, Herzig S, Marban E. Beta-adrenergic stimulation of Ca2+ channels occurs by potentiation of high-activity gating modes. Proc Natl Acad Sci USA 1990; 87(2):753–7.

    Article  PubMed  CAS  Google Scholar 

  96. Trautwein W, Cavalie A, Allen TJ et al. Direct and indirect regulation of cardiac L-type Ca2+ channels by beta-adrenoreceptor agonists. Adv Second Messenger Phosphoprotein Res 1990; 24:45–50.

    PubMed  CAS  Google Scholar 

  97. Sculptoreanu A, Rotman E, Takahashi M et al. Voltage-dependent potentiation of the activity of cardiac L-type Ca2+ channel alpha 1 subunits due to phosphorylation by cAMP-dependent protein kinase. Proc Natl Acad Sci USA 1993; 90(21):10135–9.

    Article  PubMed  CAS  Google Scholar 

  98. Yoshida A, Takahashi M, Nishimura S et al. Cyclic AMP-dependent phosphoryiation and regula-tion of the cardiac dihydropyridine-sensitive Ca channel. FEBS Lett 1992; 309(3):343–9.

    Article  PubMed  CAS  Google Scholar 

  99. De Jongh KS, Murphy BJ, Colvin AA et al. Specific phosphoryiation of a site in the full-length form of the alpha 1 subunit of the cardiac L-type Ca2+ channel by adenosine 3′,5′-cyclic monophosphate-dependent protein kinase. Biochemistry 1996; 35(32):10392–402.

    Article  PubMed  Google Scholar 

  100. Haase H, Karczewski P, Beckert R et al. Phosphorylation of the L-type Ca2+ channel beta subunit is involved in beta-adrenergic signal transduction in canine myocardium. FEBS Lett 1993; 335(2):217–22.

    Article  PubMed  CAS  Google Scholar 

  101. Gao T, Yatani A, Dell’Acqua ML et al. cAMP-dependent regulation of cardiac L-type Ca2+ channels requires membrane targeting of PKA and phosphorylation of channel subunits. Neuron 1997; 19(1):185–96.

    Article  PubMed  CAS  Google Scholar 

  102. Charnet P, Lory P, Bourinet E et al. cAMP-dependent phosphorylation of the cardiac L-type Ca channel: a missing link? Biochimie 1995;77(12):957–62.

    Article  PubMed  CAS  Google Scholar 

  103. Dai S, Klugbauer N, Zong X et al. The role of subunit composition on prepulse facilitation of the cardiac L-type Ca2+ channel. FEBS Lett 1999; 442(1):70–4.

    Article  PubMed  CAS  Google Scholar 

  104. Bkaily G, Sperelakis N. Injection of guanosine 5′-cyclic monophosphate into heart cells blocks Ca2+ slow channels. Am J Physiol 1985; 248(5Pt 2):H745–9.

    PubMed  CAS  Google Scholar 

  105. Haddad GE, Sperelakis N, Bkaily G. Regulation of the Ca2+ slow channel by cyclic GMP dependent protein kinase in chick heart cells. Mol Cell Biochem 1995; 148(1):89–94.

    Article  PubMed  CAS  Google Scholar 

  106. Hartzell HC, Fischmeister R. Opposite effects of cyclic GMP and cyclic AMP on Ca2+ current in single heart cells. Nature 1986; 323(6085):273–5.

    Article  PubMed  CAS  Google Scholar 

  107. Levi RC, Alloatti G, Penna C et al. Guanylate-cydase-mediated inhibition of cardiac ICa by carbachol and sodium nitroprusside. Pflugers Arch 1994; 426(5):419–26.

    Article  PubMed  CAS  Google Scholar 

  108. Mery PF, Lohmann SM, Walter U et al. Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci USA 1991; 88(4):1197–201.

    Article  PubMed  CAS  Google Scholar 

  109. Hescheler J, Kameyama M, Trautwein W. On the mechanism of muscarinic inhibition of the cardiac Ca current. Pflugers Arch 1986; 407(2):182–9.

    Article  PubMed  CAS  Google Scholar 

  110. Fischmeister R, Hartzell HC. Mechanism of action of acetylcholine on Ca2+ current in single cells from frog ventricle. J Physiol 1986; 376:183–202.

    PubMed  CAS  Google Scholar 

  111. Chen F, Spicher K, Jiang M et al. Lack of muscarinic regulation of Ca2+ channels in G(i2)alpha gene knockout mouse hearts. Am J Physiol Heart Circ Physiol 2001; 280(5):H1989–95.

    PubMed  CAS  Google Scholar 

  112. Ono K, Trautwein W. Potentiation by cyclic GMP of beta-adrenergic effect on Ca2+ current in guinea-pig ventricular cells. J Physiol 1991; 443:387–404.

    PubMed  CAS  Google Scholar 

  113. Kirstein M, Rivet-Bastide M, Hatem S et al. Nitric oxide regulates the Ca2+ current in isolated human atrial myocytes. J Clin Invest 1995; 95(2):794–802.

    Article  PubMed  CAS  Google Scholar 

  114. Jiang LH, Gawler DJ, Hodson N et al. Regulation of cloned cardiac L-type Ca2+ channels by cGMP-dependent protein kinase. J Biol Chem 2000; 275(9):6135–43.

    Article  PubMed  CAS  Google Scholar 

  115. White RE, Lee AB, Shcherbatko AD et al. Potassium channel stimulation by natriuretic peptides through cGMP-dependent dephosphorylation. Nature 1993; 361(6409):263–6.

    Article  PubMed  CAS  Google Scholar 

  116. Hescheler J, Kameyama M, Trautwein W et al. Regulation of the cardiac Ca2+ channel by protein phosphatases. Eur J Biochem 1987; 165(2):261–6.

    Article  PubMed  CAS  Google Scholar 

  117. Fischmeister R, Hartzell HC. Cyclic guanosine 3′,5′-monophosphate regulates the Ca2+ current in single cells from frog ventricle. J Physiol 1987; 387:453–72.

    PubMed  CAS  Google Scholar 

  118. Mery PF, Pavoine C, Pecker F et al. Erythro-9-(2-hydroxy-3-nonyl)adenine inhibits cyclic GMP-stimulated phosphodiesterase in isolated cardiac myocytes. Mol Pharmacol 1995; 48(1):121–30.

    PubMed  CAS  Google Scholar 

  119. Le Grand B, Deroubaix E, Couetil JP et al. Effects of atrionatriuretic factor on Ca2+ current and Cai-independent transient outward K+ current in human atrial cells. Pflugers Arch 1992; 421(5):486–91.

    Article  PubMed  Google Scholar 

  120. Dosemeci A, Dhallan RS, Cohen NM et al. Phorbol ester increases Ca2+ current and simulates the effects of angiotensin II on cultured neonatal rat heart myocytes. Circ Res 1988; 62(2):347–57.

    PubMed  CAS  Google Scholar 

  121. He JQ, Pi Y, Walker JW et al. Endothelin-1 and photoreleased diacylglycerol increase L-type Ca2+ current by activation of protein kinase C in rat ventricular myocytes. J Physiol 2000; 524 Pt 3:807–20.

    Article  PubMed  CAS  Google Scholar 

  122. Liu QY, Karpinski E, Pang PK. Comparison of the action of two protein kinase C activators on dihydropyridine-sensitive Ca2+ channels in neonatal rat ventricular myocytes. Biochem Biophys Res Commun 1993; 191(3):796–801.

    Article  PubMed  CAS  Google Scholar 

  123. Zhang ZH, Johnson JA, Chen L et al. C2 region-derived peptides of beta-protein kinase C regulate cardiac Ca2+ channels. Circ Res 1997; 80(5):720–9.

    PubMed  CAS  Google Scholar 

  124. Bourinet E, Fournier F, Lory P et al. Protein kinase C regulation of cardiac Ca2+ channels ex-pressed in Xenopus oocytes. Pflugers Arch 1992; 421(2–3):247–55.

    Article  PubMed  CAS  Google Scholar 

  125. Shistik E, Ivanina T, Blumenstein Y et al. Crucial role of N terminus in function of cardiac L-type Ca2+ channel and its modulation by protein kinase C. J Biol Chem 1998; 273(28):17901–9.

    Article  PubMed  CAS  Google Scholar 

  126. Puri TS, Gerhardstein BL, Zhao XL et al. Differential effects of subunit interactions on protein kinase A-and C-mediated phosphorylation of L-type Ca2+ channels. Biochemistry 1997; 36(31):9605–15.

    Article  PubMed  CAS  Google Scholar 

  127. McHugh D, Sharp EM, Scheuer T et al. Inhibition of cardiac L-type Ca2+ channels by protein kinase C phosphorylation of two sites in the N-terminal domain. Proc Natl Acad Sci USA 2000; 97(22):12334–8.

    Article  PubMed  CAS  Google Scholar 

  128. Bean BP. Nitrendipine block of cardiac Ca2+ channels: high-affinity binding to the inactivated state. Proc Natl Acad Sci USA 1984; 81(20):6388–92.

    Article  PubMed  CAS  Google Scholar 

  129. Sanguinetti MC, Kass RS. Voltage-dependent block of Ca2+ channel current in the calf cardiac Purkinje fiber by dihydropyridine Ca2+ channel antagonists. Circ Res 1984; 55(3):336–48.

    PubMed  CAS  Google Scholar 

  130. Brown AM, Kunze DL, Yatani A. The agonist effect of dihydropyridines on Ca channels. Nature 1984; 311(5986):570–2.

    Article  PubMed  CAS  Google Scholar 

  131. Hess P, Lansman JB, Tsien RW. Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists. Nature 1984; 311(5986):538–44.

    Article  PubMed  CAS  Google Scholar 

  132. Kokubun S, Reuter H. Dihydropyridine derivatives prolong the open state of Ca channels in cultured cardiac cells. Proc Natl Acad Sci USA 1984; 81(15):4824–7.

    Article  PubMed  CAS  Google Scholar 

  133. Lacerda AE, Brown AM. Nonmodal gating of cardiac Ca2+ channels as revealed by dihydropyridines. J Gen Physiol 1989; 93(6):1243–73.

    Article  PubMed  CAS  Google Scholar 

  134. McDonald TF, Pelzer S, Trautwein W et al. Regulation and modulation of Ca2+ channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev 1994; 74(2):365–507.

    PubMed  CAS  Google Scholar 

  135. Noble S, Shimoni Y. The Ca2+ and frequency dependence of the slow inward current’ staircase’ in frog atrium. J Physiol 1981; 310:57–75.

    PubMed  CAS  Google Scholar 

  136. Fedida D, Noble D, Spindler AJ. Use-dependent reduction and facilitation of Ca2+ current in guinea-pig myocytes. J Physiol 1988; 405:439–60.

    PubMed  CAS  Google Scholar 

  137. Lee KS. Potentiation of the Ca2+-channel currents of internally perfused mammalian heart cells by repetitive depolarization. Proc Natl Acad Sci USA 1987; 84(11):3941–5.

    Article  PubMed  CAS  Google Scholar 

  138. Richard S, Tiaho F, Charnet P et al. Two pathways for Ca2+ channel gating differentially modulated by physiological stimuli. Am J Physiol 1990; 258(6 Pt 2):1872–81.

    Google Scholar 

  139. Schouten VJ, Morad M. Regulation of Ca2+ current in frog ventricular myocytes by the holding potential, c-AMP and frequency. Pflugers Arch 1989; 415(1):1–11.

    Article  PubMed  CAS  Google Scholar 

  140. Richard S, Charnet P, Nerbonne JM. Interconversion between distinct gating pathways of the high threshold Ca2+ channel in rat ventricular myocytes. J Physiol 1993; 462:197–228.

    PubMed  CAS  Google Scholar 

  141. Tiaho F, Piot C, Nargeot J et al. Regulation of the frequency-dependent facilitation of L-type Ca2+ currents in rat ventricular myocytes. J Physiol 1994; 477 (Pt 2):237–51.

    PubMed  Google Scholar 

  142. Yuan W, Bers DM. Ca-dependent facilitation of cardiac Ca current is due to Ca-calmodulin-dependent protein kinase. Am J Physiol 1994; 267(3 Pt 2):H982–93.

    PubMed  CAS  Google Scholar 

  143. Anderson ME, Braun AP, Schulman H et al. Multifunctional Ca2+/calmodulin-dependent protein kinase mediates Ca2+-induced enhancement of the L-type Ca2+ current in rabbit ventricular myocytes. Circ Res 1994; 75(5):854–61.

    PubMed  CAS  Google Scholar 

  144. Xiao RP, Cheng H, Lederer WJ et al. Dual regulation of Ca2+/calmodulin-dependent kinase II activity by membrane voltage and by Ca2+ influx. Proc Natl Acad Sci USA 1994; 91(20):9659–63.

    Article  PubMed  CAS  Google Scholar 

  145. Piot C, Lemaire S, Albat B et al. High frequency-induced upregulation of human cardiac Ca2+ currents. Circulation 1996; 93(1):120–8.

    PubMed  CAS  Google Scholar 

  146. Hryshko LV, Bers DM. Ca current facilitation during postrest recovery depends on Ca entry. Am J Physiol 1990; 259(3 Pt 2):951–61.

    Google Scholar 

  147. Peineau N, Gamier D, Argibay JA. Rate dependence of action potential duration and Ca2+ current in isolated guinea-pig cardiocytes. Exp Physiol 1992; 77(4):615–25.

    PubMed  CAS  Google Scholar 

  148. Pietrobon D, Hess P. Novel mechanism of voltage-dependent gating in L-type Ca2+ channels. Nature 1990; 346(6285):651–5.

    Article  PubMed  CAS  Google Scholar 

  149. Tiaho F, Nargeot J, Richard S. Voltage-dependent regulation of L-type cardiac Ca channels by isoproterenol. Pflugers Arch 1991; 419(6):596–602.

    Article  PubMed  CAS  Google Scholar 

  150. Barrere-Lemaire S, Piot C, Leclercq F et al. Facilitation of L-type Ca2+ currents by diastolic depolarization in cardiac cells: impairment in heart failure. Cardiovasc Res 2000; 47(2):336–49.

    Article  PubMed  CAS  Google Scholar 

  151. Perez-Reyes E, Cribbs LL, Daud A et al. Molecular characterization of a neuronal low-voltage-activated T-type Ca2+ channel. Nature 1998; 391(6670):896–900.

    Article  PubMed  CAS  Google Scholar 

  152. Klugbauer N, Marais E, Lacinova L et al. A T-type Ca2+ channel from mouse brain. Pflugers Arch 1999; 437(5):710–5.

    Article  PubMed  CAS  Google Scholar 

  153. Monteil A, Chemin J, Bourinet E et al. Molecular and functional properties of the human alpha(1G) subunit that forms T-type Ca2+ channels. J Biol Chem 2000; 275(9):6090–100.

    Article  PubMed  CAS  Google Scholar 

  154. Cribbs LL, Gomora JC, Daud AN et al. Molecular cloning and functional expression of Ca(v)3.1c, a T-type Ca2+ channel from human brain [published erratum appears in FEBS Lett 2000 Mar 31;470(3):378]. FEBS Lett 2000; 466(1):54–8.

    Article  PubMed  CAS  Google Scholar 

  155. Lee JH, Daud AN, Cribbs LL et al. Cloning and expression of a novel member of the low voltage-activated T-type Ca2+ channel family. J Neurosci 1999; 19(6):1912–21.

    PubMed  CAS  Google Scholar 

  156. Monteil A, Chemin J, Leuranguer V et al. Specific properties of T-type Ca2+ channels generated by the human alpha 1I subunit. J Biol Chem 2000; 275(22):16530–5.

    Article  PubMed  CAS  Google Scholar 

  157. Satin J, Cribbs Ll. Identification of a T-type Ca2+ Channel Isoform in murine atrial myocytes (AT-1 cells). Circ Res 2000; 86(6):636–42.

    PubMed  CAS  Google Scholar 

  158. Leuranguer V, Monteil A, Bourinet E et al. T-type Ca2+ currents in rat cardiomyocytes during postnatal development: Contribution in hormone secretion. Am J Physiol 2000; 279:H2540–2548.

    CAS  Google Scholar 

  159. Cribbs LL, Martin BL, Schroder EA et al. Identification of the t-type Ca2+ channel (Ca(v)3.1. d) in developing mouse heart Circ Res 2001; 88(4):403–7.

    PubMed  CAS  Google Scholar 

  160. Ferron L, Capuano V, Deroubaix E et al. Functional and molecular characterization of a T-type Ca(2+) channel during fetal and postnatal rat heart development. J Mol Cell Cardiol 2002; 34(5):533–46.

    Article  PubMed  CAS  Google Scholar 

  161. Hagiwara N, Irisawa H, Kameyama M. Contribution of two types of Ca2+ currents to the pacemaker potentials of rabbit sino-atrial node cells. J Physiol (Lond) 1988; 395:233–53.

    PubMed  CAS  Google Scholar 

  162. Zhou Z, Lipsius SL. T-type Ca2+ current in latent pacemaker cells isolated from cat right atrium. J Mol Cell Cardiol 1994; 26(9):1211–9.

    Article  PubMed  CAS  Google Scholar 

  163. Piedras-Renteria ES, Chen CC, Best PM. Antisense oligonucleotides against rat brain alpha1E DNA and its atrial homologue decrease T-type Ca2+ current in atrial myocytes. Proc Natl Acad Sci USA 1997; 94(26):14936–41.

    Article  PubMed  CAS  Google Scholar 

  164. Mitchell JW, Larsen JK, Best PM. Identification of the Ca2+ channel alpha 1E (Ca(v)2.3.) isoform expressed in atrial myocytes Biochim Biophys Acta 2002; 1577(1):17–26.

    PubMed  CAS  Google Scholar 

  165. Richard S, Leclercq F, Lemaire S et al. Ca2+ currents in compensated hypertrophy and heart failure. Cardiovasc Res 1998; 37(2):300–11.

    Article  PubMed  CAS  Google Scholar 

  166. Lemaire S, Piot C, Seguin J et al. Tetrodotoxin-sensitive Ca2+ and Ba2+ currents in human atrial cells. Receptors Channels 1995; 3(2):71–81.

    PubMed  CAS  Google Scholar 

  167. Aggarwal R, Shorofsky SR, Goldman L et al. Tetrodotoxin-blockable Ca2+ currents in rat ventricular myocytes; a third type of cardiac cell sodium current. J Physiol (Lond) 1997; 505(Pt 2):353–69.

    Article  PubMed  CAS  Google Scholar 

  168. Cole WC, Chartier D, Martin M et al. Ca2+ permeation through Na+ channels in guinea pig ventricular myocytes. Am J Physiol 1997; 273(1 Pt 2):H128–37.

    PubMed  CAS  Google Scholar 

  169. Heubach JF, Kohler A, Wettwer E et al. T-Type and tetrodotoxin-sensitive Ca2+ currents coexist in guinea pig ventricular myocytes and are both blocked by mibefradil. Circ Res 2000; 86(6):628–35.

    PubMed  CAS  Google Scholar 

  170. Chemin J, Monteil A, Briquaire C et al. Overexpression of T-type Ca2+ channels in HEK-293 cells increases intracellular Ca2+ without affecting cellular proliferation. FEBS Lett 2000; 478(1–2): 166–72.

    Article  PubMed  CAS  Google Scholar 

  171. Sipido KR, Carmeliet E, Van de Werf F. T-type Ca2+ current as a trigger for Ca2+ release from the sarcoplasmic reticulum in guinea-pig ventricular myocytes [see comments]. J Physiol (Lond) 1998; 508(Pt 2):439–51.

    Article  PubMed  CAS  Google Scholar 

  172. Enyeart JJ, Mlinar B, Enyeart JA T-type Ca2+ channels are required for adrenocorticotropin-stimulated cortisol production by bovine adrenal zona fasciculata cells. Mol Endocrinol 1993; 7(8): 1031–40.

    Article  PubMed  CAS  Google Scholar 

  173. Kuga T, Kobayashi S, Hirakawa Y et al. Cell cycle—dependent expression of L-and T-type Ca2+ currents in rat aortic smooth muscle cells in primary culture. Circ Res 1996; 79(1): 14–9.

    PubMed  CAS  Google Scholar 

  174. Xu XP, Best PM. Increase in T-type Ca2+ current in atrial myocytes from adult rats with growth hormone-secreting tumors. Proc Natl Acad Sci USA 1990; 87(12):4655–9.

    Article  PubMed  CAS  Google Scholar 

  175. Richard S, Neveu D, Carnac G et al. Differential expression of voltage-gated Ca(2+)-currents in cultivated aortic myocytes. Biochim Biophys Acta 1992; 1160(1):95–104.

    PubMed  CAS  Google Scholar 

  176. Nuss HB, Houser SR. T-type Ca2+ current is expressed in hypertrophied adult feline left ventricular myocytes. Circ Res 1993; 73(4):777–82.

    PubMed  CAS  Google Scholar 

  177. Martinez ML, Heredia MP, Delgado C. Expression of T-type Ca(2+) channels in ventricular cells from hypertrophied rat hearts. J Mol Cell Cardiol 1999; 31(9):1617–25.

    Article  PubMed  CAS  Google Scholar 

  178. Romanin C, Seydl K, Glossmann H et al. The dihydropyridine niguldipine inhibits T-type Ca2+ currents in atrial myocytes. Pflugers Arch 1992; 420(3–4):410–2.

    Article  PubMed  CAS  Google Scholar 

  179. Mishra SK, Hermsmeyer K. Selective inhibition of T-type Ca2+ channels by Ro 40-5967. Circ Res 1994; 75(1): 144–8.

    PubMed  CAS  Google Scholar 

  180. Veniant M, Clozel JP, Hess P et al. Ro 40-5967, in contrast to diltiazem, does not reduce left ventricular contractility in rats with chronic myocardial infarction. J Cardiovasc Pharmacol 1991; 17(2):277–84.

    Article  PubMed  CAS  Google Scholar 

  181. Leuranguer V, Mangoni ME, Nargeot J et al. Inhibition of T-type and L-type Ca2+ channels by mibefradil: physiologic and pharmacologic bases of cardiovascular effects. J Cardiovasc Pharmacol 2001; 37(6):649–61.

    Article  PubMed  CAS  Google Scholar 

  182. Bouman LN, Jongsma HJ. Structure and function of the sino-atrial node: a review. European Heart Journal 1986; 7(2):94–104.

    PubMed  CAS  Google Scholar 

  183. Weidmann S. Historical perspective. In: Zipes DP, Bayley SC, Elharrar V, eds. The Slow Imward Current and Cardiac Arrhythmias. The Hague: Nijoff, 1980. 101.

    Google Scholar 

  184. Boyett MR, Honjo H, Kodama I. The sinoatrial node, a heterogeneous pacemaker structure. Cardiovasc Res 2000; 47(4):658–87.

    Article  PubMed  CAS  Google Scholar 

  185. DiFrancesco D, Ducouret P, Robinson RB. Muscarinic modulation of cardiac rate at low acetylcholine concentrations. Science 1989; 243(4891):669–71.

    Article  PubMed  CAS  Google Scholar 

  186. Belardinelli L, Giles WR, West A. Ionic mechanisms of adenosine actions in pacemaker cells from rabbit heart. J Physiol (Lond) 1988; 405:615–33.

    PubMed  CAS  Google Scholar 

  187. DiFrancesco D, Tortora P. Direct activation of cardiac pacemaker channels by intracellular cyclic AMP. Nature 1991; 351(6322):145–7.

    Article  PubMed  CAS  Google Scholar 

  188. DiFrancesco D, Mangoni M. Modulation of single hyperpolarization-activated channels (i(f)) by cAMP in the rabbit sino-atrial node. J Physiol (Lond) 1994; 474(3):473–82.

    PubMed  CAS  Google Scholar 

  189. Noma A. Ionic mechanisms of the cardiac pacemaker potential. Jpn Heart J 1996; 37(5):673–82.

    PubMed  CAS  Google Scholar 

  190. Noma A, Morad M, Irisawa H. Does the “pacemaker current” generate the diastolic depolarization in the rabbit SA node cells? Pflugers Arch 1983; 397(3):190–194.

    Article  PubMed  CAS  Google Scholar 

  191. Brown HF, DiFrancesco D, Noble SJ. How does adrenaline accelerate the heart? Nature 1979;280(5719):235–236.

    Article  PubMed  CAS  Google Scholar 

  192. Doerr T, Denger R, Trautwein W. Ca2+ currents in single SA nodal cells of the rabbit heart studied with action potential clamp. Pflugers Arch 1989; 413(6):599–603.

    Article  PubMed  CAS  Google Scholar 

  193. Kodama I, Nikmaram MR, Boyett MR et al. Regional differences in the role of the Ca2+ and Na+ currents in pacemaker activity in the sinoatrial node. Am J Physiol 1997; 272(6Pt 2):2793–806.

    Google Scholar 

  194. Lande G, Demolombe S, Bammert A et al. Transgenic mice overexpressing human KvLQT1 dominant negative isoform. Part II: Pharmacological profile Cardiovasc Res 2001; 50(2):328–34.

    Article  PubMed  CAS  Google Scholar 

  195. Verheijck EE, van Ginneken AC, Wilders R et al. Contribution of L-type Ca2+ current to electrical activity in sinoatrial nodal myocytes of rabbits. American Journal of Physiology 1999; 276(3Pt 2):1064–77.

    Google Scholar 

  196. Petit-Jacques J, Bois P, Bescond J et al. Mechanism of muscarinic control of the high-threshold Ca2+ current in rabbit sino-atrial node myocytes. Pflugers Archiv 1993; 423(1–2):21–27.

    Article  PubMed  CAS  Google Scholar 

  197. Zaza A, Robinson RB, DiFrancesco D. Basal responses of the L-type Ca2+ and hyperpolarization-activated currents to autonomic agonists in the rabbit sino-atrial node. Journal of Physiology 1996; 491(Pt 2):347–55.

    PubMed  CAS  Google Scholar 

  198. Han X, Shimoni Y, Giles WR. An obligatory role for nitric oxide in autonomic control of mammalian heart rate. J Physiol (Lond) 1994; 476(2):309–14.

    PubMed  CAS  Google Scholar 

  199. Han X, Kobzik L, Severson D et al. Characteristics of nitric oxide-mediated cholinergic modulation of Ca2+ current in rabbit sino-atrial node. J Physiol (Lond) 1998; 509(Pt 3):741–54.

    Article  PubMed  CAS  Google Scholar 

  200. Wickman K, Nemec J, Gendler SJ et al. Abnormal heart rate regulation in GIRK4 knockout mice. Neuron 1998; 20(1):103–14.

    Article  PubMed  CAS  Google Scholar 

  201. Mangoni ME, Nargeot, J. Properties of the hyperpolarization-activated current (If) in isolated mouse sino-atrial cells. Cardiovasc Res 2001; 52:51–64.

    Article  PubMed  CAS  Google Scholar 

  202. Huser J, Blatter LA, Lipsius SL. Intracellular Ca2+ release contributes to automaticity in cat atrial pacemaker cells. J Physiol (Lond) 2000; 524 Pt 2:415–22.

    Article  PubMed  CAS  Google Scholar 

  203. Roden DM, Balser JR, George AL et al. Anderson ME. Cardiac ion channels Annu Rev Physiol 2002; 64:431–75.

    CAS  Google Scholar 

  204. Platzer J, Engel J, Schrott-Fischer A et al. Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 2000; 102(1):89–97.

    Article  PubMed  CAS  Google Scholar 

  205. Bohn G, Moosmang S, Conrad H et al. Expression of T-and L-type Ca2+ channel mRNA in murine sinoatrial node. FEBS Lett 2000; 481(1):73–6.

    Article  PubMed  CAS  Google Scholar 

  206. Zhang Z, Xu Y, Song H et al. Functional Roles of Ca(v)1.3. (alpha(1D)) Ca2+ channel in sinoatrial nodes: insight gained using gene-targeted null mutant mice. Circ Res 2002; 90(9):981–7.

    Article  PubMed  CAS  Google Scholar 

  207. Xu W, Lipscombe D. Neuronal Ca(V)1.3. alpha(1) L-type channels activate at relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridines. J Neurosci 2001; 21(16):5944–51.

    PubMed  CAS  Google Scholar 

  208. Koschak A, Reimer D, Huber I et al. alpha 1D (cav1.3.) subunits can form l-type ca2+ channels activating at negative voltages. J Biol Chem 2001; 276(25):22100–6.

    Article  PubMed  CAS  Google Scholar 

  209. Striessnig J. Targeting voltage-gated Ca2+ channels. Lancet 2001; 357(9264):1294.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Barrère-Lemaire, S., Mangoni, M.E., Nargeot, J. (2005). Calcium Channels in the Heart. In: Voltage-Gated Calcium Channels. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27526-6_20

Download citation

Publish with us

Policies and ethics