Skip to main content

Block of Voltage-Gated Calcium Channels by Peptide Toxins

  • Chapter

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Conclusions and Future Prospects

Peptide toxins that selectively block voltage sensitive calcium channels have contributed enormously to our understanding of the role of specific calcium channels in normal and pathological conditions. Several members of the ω-conotoxin class of calcium channel blockers are currently in clinical trials for chronic pain. While they are particularly efficacious when delivered intrathecally, side effects may limit their usage. Future advances will come with the discovery of new probes for VSCC subtypes, particularly those that are more selective for pain path-ways and disease states.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Catterall WA. Structure and regulation of voltage-gated Ca2+ channels. Ann Rev Cell Dev Biol 2000; 16:521–55.

    Article  CAS  Google Scholar 

  2. Olivera BM, Miljanich GP, Ramachandran J et al. Calcium channel diversity and neurotransmitter release: the ω-conotoxins and ω-agatoxins. Annu Rev Biochem 1994; 63:823–67.

    Article  PubMed  CAS  Google Scholar 

  3. Adams ME, Myers RA, Imperial JS et al. Toxityping rat brain calcium channels with omega-toxins from spider and cone snail venoms. Biochemistry 1993; 32:12566–70.

    Article  PubMed  CAS  Google Scholar 

  4. Zamponi GW. Antagonist sites of voltage dependent calcium channels. Drug Dev Res 1997; 42:131–143.

    Article  CAS  Google Scholar 

  5. Ellinor PT, Zhang JF, Home WA et al. Structural determinants of the blockade of N-type calcium channels by a peptide neurotoxin. Nature 1994; 372:272–5.

    Article  PubMed  CAS  Google Scholar 

  6. Bourinet E, Soong TW, Sutton K et al. Splicing of α1A subunit gene generates phenotypic variants of P-and Q-type calcium channels. Nat Neurosci 1999; 2:407–15.

    Article  PubMed  CAS  Google Scholar 

  7. Li-Smerin Y, Swartz KJ. Gating modifier toxins reveal a conserved structural motif in voltage-gated Ca2+ and K+ channels. Proc Natl Acad Sci USA 1998; 95:8585–9.

    Article  PubMed  CAS  Google Scholar 

  8. McDonough SI, Lampe RA, Keith RA et al., Voltage-dependent inhibition of N-and P-type calcium channels by the peptide toxin ω-grammotoxin-SIA. Mol Pharmacol 1997; 52:1095–104.

    PubMed  CAS  Google Scholar 

  9. Olivera BM, Mclntosh JM, Cruz LJ et al. Purification and sequence of a presynaptic peptide toxin from Conus geographus venom. Biochemistry 1984; 23:5087–90.

    Article  PubMed  CAS  Google Scholar 

  10. Olivera BM, Gray WR, Zeikus R et al. Peptide neurotoxins from fish-hunting cone snails. Science 1985; 230:1338–43.

    Article  PubMed  CAS  Google Scholar 

  11. Olivera BM, Cruz LJ, de Santos V et al. Neuronal calcium channel antagonists. Discrimination between calcium channel subtypes using omega-conotoxin from Conus magus venom. Biochemistry 1987; 26:2086–90.

    Article  PubMed  CAS  Google Scholar 

  12. Hillyard DR, Monje VD, Mintz IM et al. A new Conus peptide ligand for mammalian presynaptic Ca2+ channels. Neuron 1992; 9:69–77.

    Article  PubMed  CAS  Google Scholar 

  13. Ramilo CA, Zafaralla GC, Nadaski L et al. Novel α-and ω-conotoxins from Conus striatus venom. Biochemistry 1992; 31:9919–26.

    Article  PubMed  CAS  Google Scholar 

  14. Fox JA. Novel ω-conopcptides reduced field potential amplitudes in the rat hippocampal slice. Neurosci Lett 1994; 165:157–60.

    Article  PubMed  CAS  Google Scholar 

  15. Favrcau P, Gilles N, Lamthanh H et al. A new ω-conotoxin that targets N-type voltage-sensitive calcium channels with unusual specificity. Biochemistry 2001; 40:14567–75.

    Article  CAS  Google Scholar 

  16. Lewis RJ, Nielsen KJ, Craik DJ et al. Novel ω-conotoxins from Conus catus discriminate among neuronal calcium channel subtypes. J Biol Chem 2000; 275: 35335–44.

    Article  PubMed  CAS  Google Scholar 

  17. Fainzilber M, Lodder JC, van der Schors RC et al. A novel hydrophobic ω-conotoxin blocks molluscan dihydropyridine-sensitive calcium channels. Biochemistry 1996; 35:8748–52.

    Article  PubMed  CAS  Google Scholar 

  18. Abbott JR, Litzingcr MJ. Different ω-conotoxins mark the development of Swiss Webster mouse cortex suggesting N-type voltage sensitive calcium channel subtypes. Int J Dev Neurosci 1994; 12:43–7.

    Article  PubMed  CAS  Google Scholar 

  19. Mouhat S, Jouirou B, Mosbah A, De Waard M, Sabatier J-M. Diversity of folds in animal toxins acting on ion channels. Biochem J 2004; 378:717–726.

    Article  PubMed  CAS  Google Scholar 

  20. Lewis RJ, Garcia ML. Therapeutic potential of venom peptides. Nature Reviews Drug Discovery 2003; 2:790–802.

    Article  PubMed  CAS  Google Scholar 

  21. Terlau H, Olivera BM. Conus venoms: A rich source of novel ion channel-targeted peptides. Physiol Rev 2004; 84:41–68.

    Article  PubMed  CAS  Google Scholar 

  22. Kim JI, Takahashi M, Ogura A et al. Hydroxyl group of Tyr13 is essential for the activity of ω-conotoxin GVIA, a peptide toxin for N-type calcium channel. J Biol Chem 1994; 269:23876–8.

    PubMed  CAS  Google Scholar 

  23. Kim JI, Takahashi M, Martin-Moutot N et al. Tyr13 is essential for the binding of ω-conotoxin MVIIC to the P/Q-type calcium channel. Biochem Biophys Res Commun 1995; 214:305–9.

    Article  PubMed  CAS  Google Scholar 

  24. Sato K, Park NG, Kohno T et al. Role of basic residues for the binding of ω-conotoxin GVIA to N-type calcium channels. Biochem Biophys Res Commun 1993; 194:1292–6.

    Article  PubMed  CAS  Google Scholar 

  25. Lew MJ, Flinn JP, Pallaghy PK et al. Structure-function relationships of ω-conotoxin GVIA. Synthesis, structure, calcium channel binding, and functional assay of alanine-substituted analogues. J Biol Chem 1997; 272:12014–23.

    Article  PubMed  CAS  Google Scholar 

  26. Nadasdi L, Yamashiro D, Chung D et al. Structure-activity analysis of a Conus peptide blocker of N-type neuronal calcium channels. Biochemistry 1995; 34:8076–81.

    Article  PubMed  CAS  Google Scholar 

  27. Sasaki T, Feng ZP, Scott R et al. Synthesis, bioactivity, and cloning of the L-type calcium channel blocker ω-conotoxin TxVII. Biochemistry 1999; 38:12876–84.

    Article  PubMed  CAS  Google Scholar 

  28. Kobayashi K, Sasaki T, Sato K et al. Three-dimensional solution structure of ω-conotoxin TxVII, an L-type calcium channel blocker. Biochemistry 2000; 39:14761–7.

    Article  PubMed  CAS  Google Scholar 

  29. Kohno T, Sasaki T, Kobayashi K et al. Three-dimensional structure in solution of the δ-conotoxin TxVIA. J Biol Chem 2002; 277:36387–91.

    Article  PubMed  CAS  Google Scholar 

  30. Hansson K, Ma X, Eliasson L et al. The first γ-carboxyglutamic acid-containing contryphan. A selective L-type calcium ion channel blocker isolated from venom of Conus marmoreus. Biochem J 2004; 270: 32453–63.

    Google Scholar 

  31. Jimenez EC, Olivera BM, Gray WR, Cruz LJ. Contryphan is a D-tryptophan containing conus peptide. J Biol Chem 1996; 27:28002–5.

    Google Scholar 

  32. Eliseo T, Cicero DO, Romeo C et al. Solution structure of the cyclic peptide contryphan-Vn, a Ca2+-dependent K+ channel modulator. Biopolymers 2004; 74:189–98.

    Article  PubMed  CAS  Google Scholar 

  33. Grant MA, Hansson K, Furie BC et al. The metal-free and calcium bound structures of a γ-carboxyglutamic acid-containing contryphan from Conus marmoreus, glacontryphan-M. J Biol Chem 2004; 279:32464–73.

    Article  PubMed  CAS  Google Scholar 

  34. Endo T, Tamiya N. Current view on the structure-function relationship of postsynaptic neurotoxins from snake venoms. Pharmacol Ther 1987; 34:403–451.

    Article  PubMed  CAS  Google Scholar 

  35. Dufton MJ, Hider RC. Structure and pharmacology of elapid cytotoxins. Pharmacol Ther 1988; 36:1–40.

    Article  PubMed  CAS  Google Scholar 

  36. Ruoppoio M, Talamo F, Pucci P et al. Slow folding of three-fingered toxins is associated with the accumulation of native disulfide-bonded intermediates. Biochemistry 2001; 40:15257–66.

    Article  CAS  Google Scholar 

  37. Harrison PM, Sternberg MJ. The disulphide β-cross: from cystine geometry and clustering to classification of small disulphide-rich protein folds. J Mol Biol 1996; 264:603–23.

    Article  PubMed  CAS  Google Scholar 

  38. Strydom DJ. The amino-acid sequence of a short-neurotoxin homolo from Dendroaspis polylepis polylepis (black mamba) venom. Eur J Biochem 1977; 76:99–106.

    Article  PubMed  CAS  Google Scholar 

  39. Joubert FJ, Taljaard N. The complete primary structures of two reduced and S-carboxymethylated Angusticeps-type toxins from Dendroaspis angusticeps (green mamba) venom. Biochim Biophys Acta 1980; 623:449–56.

    PubMed  CAS  Google Scholar 

  40. Karlsson E, Mbugua PM, Rodriguez-Ithurralde D. Anticholinesterase toxins. Pharmacol Ther 1985; 30:259–76.

    Article  PubMed  CAS  Google Scholar 

  41. Spcdding M. Assessment of “Ca2+-antagonist” effects of drugs in K+-depolarized smooth muscle. Differentiation of antagonist subgroups. Naunyn Schmiedebergs Arch Pharmacol 1980; 318:234–40.

    Article  Google Scholar 

  42. Garcia MC, Hernandez-Gallegos Z, Escamilla J et al. Calciseptine, a Ca2+ channel blocker, has agonist actions on L-type Ca2+ currents of frog and mammalian skeletal muscle. J Membr Biol 2001; 184:121–9.

    Article  PubMed  CAS  Google Scholar 

  43. Mintz IM, Venema VJ, Adams ME et al. Inhibition of N-and L-type Ca2+ channels by the spider venom toxin ω-Aga-IIIA. Proc Natl Acad Sci USA 1991; 88:6628–31.

    Article  PubMed  CAS  Google Scholar 

  44. deWeille JR, Schweitz H, Maes P et al. Calciseptine, a peptide isolated from black mamba venom, is a specific blocker of the L-type calcium channel. Proc Natl Acad Sci USA 1991; 88:2437–40.

    Article  CAS  Google Scholar 

  45. Stotz SC, Spaetgens RL, Zamponi GW. Block of voltage-dependent calcium channel by the green mamba toxin calcidudine. J Membr Biol 2000; 174:157–65.

    Article  PubMed  CAS  Google Scholar 

  46. Kini RM, Caldwell RA, Wu QY et al. Flanking proline residues identify the L-type Ca2+ channel binding site of Calciseptine and FS2. Biochemistry 1998a; 37:9058–63.

    Article  PubMed  CAS  Google Scholar 

  47. Kini RM. Proline brackets and identificatioin of potential functional sites in proteins: toxins to therapeutics. Toxicon 1998b; 36:1659–70.

    Article  PubMed  CAS  Google Scholar 

  48. Albrand JP, Blackledge MJ, Pascaud F et al. NMR and restrained molecular dynamics study of the three-dimensional solution structure of toxin FS2, a specific blocker of the L-type calcium channel, isolated from black mamba venom. Biochemistry 1995; 34:5923–37.

    Article  PubMed  CAS  Google Scholar 

  49. Schweitz H, Heurteaux C, Bois P et al. Calcidudine, a venom peptide of the Kunitz-type protease inhibitor family, is a potent blocker of high-threshold Ca2+ channels with a high affinity for L-type channels in cerebellar granule neurons. Proc Natl Acad Sci USA 1994; 91:878–82.

    Article  PubMed  CAS  Google Scholar 

  50. Gilquin B, Lecoq A, Desne F et al. Conformational and functional variability supported by the BPTI fold: solution structure of the Ca2+ channel blocker calcidudine. Proteins 1999; 34:520–32.

    Article  PubMed  CAS  Google Scholar 

  51. Nishio H, Katoh E, Yamazaki T et al. Structure-activity relationships of calcidudine and dendrotoxin-I, homologous peptides acting on different targets, calcium and potassium channels. Biochem Biophys Res Commun 1999; 262:319–21.

    Article  PubMed  CAS  Google Scholar 

  52. Katoh E, Nishio H, Inui T et al. Structural basis for the biological activity of dendrotoxin-I, a potent potassium channel blocker. Biopolymers 2000; 54:44–57.

    Article  PubMed  CAS  Google Scholar 

  53. Sutton KG, Siok C, Stea A et al. Inhibition of neuronal calcium channels by a novel peptide spider toxin, DW13.3. Mol Pharmacol 1998; 54:407–18.

    PubMed  CAS  Google Scholar 

  54. Cohen CJ, Ertel EA, Smith MM et al. High affinity block of myocardial L-type calcium channel gating currents with spider toxin ω-Aga-IIIA: advantages over 1, 4-dihydropyridines. Mol Pharmacol 1992; 42:947–51.

    PubMed  CAS  Google Scholar 

  55. Ertel EA, Smith MM, Leibowitz MD et al. Isolation of myocardial L-type calcium channel gating currents with the spider toxin ω-Aga-IIIA. J Gen Physiol 1994; 103:731–53.

    Article  PubMed  CAS  Google Scholar 

  56. Mintz IM. Block of Ca channels in rat central neurons by the spider toxin ω-Aga-IIIA. J Neurosci 1994; 14:2844–53.

    PubMed  CAS  Google Scholar 

  57. Cruz LJ, Gray WR, Olivera BM et al. Conus geographus toxins that discriminate between neuronal and muscle sodium channels. J Biol Chem 1985; 260:9280–8.

    PubMed  CAS  Google Scholar 

  58. Cruz LJ, Olivera BM. Calcium channel antagonists. ω-Conotoxin defines a new high affinity site. J Biol Chem 1986; 261:6230–3.

    PubMed  CAS  Google Scholar 

  59. McCleskey EW, Fox AP, Feldman DH et al. ω-Conotoxin: direct and persistent blockade of specific types of calcium channels in neurons but not muscle. Proc Natl Acad Sci USA 1987; 84:4327–31.

    Article  PubMed  CAS  Google Scholar 

  60. Pallaghy PK, Nielsen KL, Craik DJ et al. A common structural motif incorporating a cystine knot and a triple-stranded β-sheet in toxic and inhibitory polypeptides. Protein Sci 1994; 3:1833–9.

    PubMed  CAS  Google Scholar 

  61. Norton RS, Pallaghy PK. The cystine knot structure of ion channel toxins and related polypeptides. Toxicon 1998; 36:1573–83.

    Article  PubMed  CAS  Google Scholar 

  62. Terlau H, Shon KJ, Grilley M et al. Strategy for rapid immobilization of prey by a fish-hunting marine snail. Nature 1996; 381:148–51.

    Article  PubMed  CAS  Google Scholar 

  63. Scanlon MJ, Naranjo D, Thomas L et al. Solution structure and proposed binding mechanism of a novel potassium channel toxin K-conotoxin PVIIA. Structure 1997; 5:1585–97.

    Article  PubMed  CAS  Google Scholar 

  64. Saether O, Craik DJ, Campbell ID et al. Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1. Biochemistry 1995; 34:4147–58.

    Article  PubMed  CAS  Google Scholar 

  65. Mould J, Yasuda T, Schroeder CI et al. The α2δ auxiliary subunit reduces affinity of ω-conotoxins for recombinant N-type (Cav2. 2) calcium channels. J Biol Chem 2004; 279:34705–14.

    Article  PubMed  CAS  Google Scholar 

  66. Feng ZP, Hamid J, Doering CJ et al. Residue Gly1326 of the N-type calcium channel α1B subunit controls reversibility of ω-conotoxin GVIA and MVIIA block. J Biol Chem 2001; 276:15728–35.

    Article  PubMed  CAS  Google Scholar 

  67. Nielsen KJ, Schroeder T, Lewis R. Structure-activity relationships of ω-conotoxins at N-type voltage-sensitive calcium channels. J Mol Recognit 2000; 13:55–70.

    Article  PubMed  CAS  Google Scholar 

  68. Adams DJ, Smith AB, Schroeder CI et al. ω-Conotoxin CVID inhibits a pharmacologically distinct voltage-sensitive calcium channel associated with transmitter release from preganglionic nerve terminals. J Biol Chem 2003; 278:4057–62.

    Article  PubMed  CAS  Google Scholar 

  69. Nielsen KJ, Adams DA, Alewood PF et al. Effects of chirality at Tyr13 on the structure-activity relationships of ω-conotoxins from Conus magus. Biochemistry 1999; 38:6741–51.

    Article  PubMed  CAS  Google Scholar 

  70. Flinn JP, Pallaghy PK, Lew MJ. Roles of key functional groups in ω-conotoxin GVIA synthesis, structure, and functional assay of selected peptide analogues. Eur J Biochem 1999; 262:447–55.

    Article  PubMed  CAS  Google Scholar 

  71. Nielsen KJ, Adams D, Thomas L et al. Structure-activity relationships of ω-conotoxin MVIIA, MVIIC and 14 loop splice hybrids at N and P/Q-type calcium channels. J Mol Biol 1999;289:1405–21.

    Article  PubMed  CAS  Google Scholar 

  72. Skalicky JJ, Metzler WJ, Ciesla DJ et al. Solution structure of the calcium channel antagonist ω-conotoxin GVIA. Protein Sci 1993; 2:1591–603.

    PubMed  CAS  Google Scholar 

  73. Sevilla P, Bruix M, Santoro J et al. Three-dimentional structure of ω-conotoxin GVIA determined by 1H NMR. Biochem Biophys Res Commun 1993; 192:1238–44.

    Article  PubMed  CAS  Google Scholar 

  74. Pallaghy PK, Duggan BM, Pennington MW et al. Three-dimentional structure in solution of the calcium channel blocker ω-conotoxin. J Mol Biol 1993; 234:405–20.

    Article  PubMed  CAS  Google Scholar 

  75. Davis JH, Bradley EK, Miljanich GP et al. Solution structure of ω-conotoxin GVIA using 2-D NMR spectroscopy relaxation matrix analysis. Biochem 1993; 32:7396–405.

    Article  CAS  Google Scholar 

  76. Pallaghy PK, Norton RS. Refined solution structure of w-conotoxin GVIA: Implications for calcium channel binding. J Pept Res 1999; 53:343–51.

    Article  PubMed  CAS  Google Scholar 

  77. Basus VJ, Nadaski L, Ramachadran J et al. Solution structure of ω-conotoxin MVIIA using 2D NMR spectroscopy. FEBS Lett 1995; 370:163–169.

    Article  PubMed  CAS  Google Scholar 

  78. Kohno T, Kim JI, Kobayashi K et al. Three-dimentional structure in solution of the calcium chan nel blocker ω-conotoxin MVIIA. Biochemistry 1995; 34:10256–65.

    Article  PubMed  CAS  Google Scholar 

  79. Nielsen KJ, Thomas L, Lewis R et al. A consensus structure for ω-conotoxins with different selectivities for voltage-sensitive calcium channel subtypes: comparison of MVIIA, SVIB and SNX-202. J Mol Biol 1996; 263:297–310.

    Article  PubMed  CAS  Google Scholar 

  80. Corzo G, Adachi-Akahane S, Nagao T et al. Novel peptides from assassin bugs (Hemiptera: Reduviidae): isolation, chemical and biological characterization. FEBS Lett 2001; 499:256–61.

    Article  PubMed  CAS  Google Scholar 

  81. Bernard C, Corzo G, Mosbah A et al. Solution structure of Ptul, a toxin from the assassin bug Peirates turpis that blocks the voltage-sensitive calcium channel N-type. Biochemistry 2001;40:12795–800.

    Article  PubMed  CAS  Google Scholar 

  82. Kits KS, Lodder JC, van der Schors RC et al. Novel ω-conotoxins block dihydropyridine-insensitive high voltage-activated calcium channels in molluscan neurons. J Neurochem 1996; 67:2155–63.

    Article  PubMed  CAS  Google Scholar 

  83. Yan L, Adams ME. The spider toxin ω-Aga IIIA defines a high affinity site on neuronal high voltage-activated calcium channels. J Biol Chem 2000; 275:21309–16.

    Article  PubMed  CAS  Google Scholar 

  84. Peng K, Chen X-D, Liang S-P. The effect of Huwentoxin-I on Ca2+ channels in differentiated NG108-15 cells, a patch-clamp study. Toxicon 2001; 39:491–498.

    Article  PubMed  CAS  Google Scholar 

  85. Takeuchi KK, Park EJ, Lee CW et al. Solution structure of ω-grammotoxin SLA, a gating modifier of P/Q and N-type Ca2+ channel. J Mol Biol 2002; 321:517–526.

    Article  PubMed  CAS  Google Scholar 

  86. Qu Y, Liang S, Ding J et al. Proton nuclear magnetic resonance studies on huwentoxin-I from the venom of the spider Selenocosmia huwena: 2. Three-dimensional structure in solution. J Protein Chem 1997; 16:565–74.

    Article  PubMed  CAS  Google Scholar 

  87. Miljanich GP, Ramachandran J. Antagonists of neuronal calcium channels: structure, function, and therapeutic implications. Annu Rev Pharmacol Toxicoi 1995; 35:707–34.

    Article  CAS  Google Scholar 

  88. Reily MD, Thanabal V, Adams ME. The solution structure of ω-Aga-IVB, a P-type calcium channel antagonist from venom of the funnel web spider, Agelenopsis aperta. J Biomol NMR 1995;5:122–32.

    Article  PubMed  CAS  Google Scholar 

  89. Reily MD, Holub KE, Gray WR et al. Structure-activity relationships for P-type calcium channel-selective ω-agatoxins. Nat Struct Biol 1994; 1:853–6.

    Article  PubMed  CAS  Google Scholar 

  90. Narasimhan L, Singh J, Humblet C et al. Snail and spider toxins share a similar tertiary structure and ‘cystine motif’. Nat Struct Biol 1994; 1:850–2.

    Article  PubMed  CAS  Google Scholar 

  91. Newcomb R, Szoke B, Palma A et al. Selective peptide antagonists of the class E calcium channel from the venom of the Tarantula Hysterocrates gigas. Biochemistry 1998; 37:15353–62.

    Article  PubMed  CAS  Google Scholar 

  92. Swartz KJ, McKinnon R. An inhibitor of the Kv2.1 potassium channel isolated from the venom of a Chilean tarantula. Neuron 1995; 15:941–949.

    Article  PubMed  CAS  Google Scholar 

  93. Wang G, Dayanithi G, Newcomb R et al. An R-type Ca2+current in neurohypophysial terminals preferentially regulates oxytocin secretion. J Neurosci 1995; 19:9235–41.

    Google Scholar 

  94. Soong TW, Stea A, Hodson CD et al. Structure and functional expression of a member of the low voltage-activate calcium channel family. Science 1993; 260:1133–6.

    Article  PubMed  CAS  Google Scholar 

  95. Williams ME, Marubio LM, Deal CR et al. Structure and functional characterisation of neuronal α1E calcium channel subtypes. J Biol Chem 1994; 269:22347–57.

    PubMed  CAS  Google Scholar 

  96. Yokoyama CT, Westenbroek RE, Hell JW et al. Biochemical properties and subcellular distribution of the neuronal class E calcium channel al subunit. J Neurosci 1995; 15:6419–32.

    PubMed  CAS  Google Scholar 

  97. Bourinet E, Stotz SC, Spaetgens RL et al. Interaction of SNX-482 with domains III and IV inhib its activation gating of a1E (Cav2.3) calcium channels. Biophysical J 2001; 81:79–88.

    Article  CAS  Google Scholar 

  98. Lambert RC, McKenna F, Maulet Y et al. Low-voltage activated Ca2+ currents are generated by members of the CavT subunit family (α1G/H) in rat primary sensory neurons. J Neurosci 1998; 18:8605–13.

    PubMed  CAS  Google Scholar 

  99. Perez-Reyes E, Cribbs LL, Daud A et al. Molecular characterisation of a neuronal low-voltage activated T-type calcium channel. Nature 1998; 391:896–900.

    Article  PubMed  CAS  Google Scholar 

  100. Lee JH, Daud AN, Cribbs LL et al. Cloning and expression of a novel member of the low-voltage activated T-type calcium channel family. J Neurosci 1999; 19:1912–21.

    PubMed  CAS  Google Scholar 

  101. Chuang RS, Jaffe H, Cribbs LL et al. Inhibition of T-type voltage-gated calcium channels by a new scorpion toxin. Nat Neurosci 1998; 1:668–74.

    Article  PubMed  CAS  Google Scholar 

  102. Meves H, Simard JM, Watt DD. Interactions of scorpion toxins with the sodium channel. Ann NY Acad Sci 1986; 479:113–32.

    Article  PubMed  CAS  Google Scholar 

  103. Sidach SS, Mintz IM. Kurtoxin, a gating modifier of neuronal high-and low-threshold Ca channels. J Neurosci 2002; 22:2023–34.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Schroeder, C.I., Lewis, R.J., Adams, D.J. (2005). Block of Voltage-Gated Calcium Channels by Peptide Toxins. In: Voltage-Gated Calcium Channels. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27526-6_19

Download citation

Publish with us

Policies and ethics