Skip to main content

Calcium Channelopathies

  • Chapter
Voltage-Gated Calcium Channels

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ertel EA, Campbell KP, Harpold MM et al. Nomenclature of voltage-gated calcium channels. Neuron 2000; 25:533–535.

    PubMed  CAS  Google Scholar 

  2. Choi DW. Calcium-mediated neurotoxicity: Relationship to specific channel types and role in ischemic damage. Trends Neurosci 1988; 11:465–469.

    PubMed  CAS  Google Scholar 

  3. Koh JY, Cotman CW. Programmed cell death: Its possible contribution to neurotoxicity mediated by calcium channel antagonists. Brain Res 1992; 587:233–240.

    PubMed  CAS  Google Scholar 

  4. Koike T, Martin DP, Johnson Jr EM. Role of Ca2+ channels in the ability of membrane depolarization to prevent neuronal death induced by trophic-factor deprivation: Evidence that levels of internal Ca2+ determine nerve growth factor dependence of sympathetic ganglion cells. Proc Natl Acad Sci USA 1989; 86:6421–6425.

    PubMed  CAS  Google Scholar 

  5. McCaslin PP, Smith TG. Low calcium-induced release of glutamate results in autotoxicity of cerebellar granule cells. Brain Res 1990; 53:280–285.

    Google Scholar 

  6. Bech-Hansen NT, Naylor MJ, Maybaum TA et al. Loss-of-function mutations in a calcium-channel (α1-subunit gene in Xp11.23 cause incomplete X-linked stationary night blindness. Nature Genet 1998; 19:264–267.

    PubMed  CAS  Google Scholar 

  7. Strom TM, Nyakatura G, Apefelstedt-Sylla E et al. A L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness. Nature Genet 1998; 19:260–263.

    PubMed  CAS  Google Scholar 

  8. Nakamura M, Ito S, Terasaki H et al. Novel CACNA1F mutations in Japanese patients with incomplete congenital stationary night blindness. Investigative Opthalmology & Visual Science 2001; 42(7):1610–1616.

    CAS  Google Scholar 

  9. Boycott KM, Maybaum TA, Naylor MJ et al. A summary of 20 CACNA1F mutations identified in 36 families with incomplete X-linked congenital stationary night blindness, and characterization of splice variants. Hum Genet 2001; 108:91–97.

    PubMed  CAS  Google Scholar 

  10. Schmitz Y, Witzovsky P. Dependence of photoreceptor glutamate release on a dihydropyridine-sensitive calcium channel. Neuroscience 1998; 78:1209–1216.

    Google Scholar 

  11. Westenbroek RE, Sakurai T, Elliott EM et al. Immunochemical identification and subcellular distribution of the (α1A subunits of brain calcium channels. J Neurosci 1995; 15:6403–6418.

    PubMed  CAS  Google Scholar 

  12. Mori Y, Friedrich T, Kim M-S et al. Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 1991; 350:398–402.

    PubMed  CAS  Google Scholar 

  13. Sather WA, Tanabe T, Zhang J-F et al. Distinctive biophysical and pharmacological properties of Class A (B1) calcium channel α1 subunits. Neuron 1993; 11:291–303.

    PubMed  CAS  Google Scholar 

  14. Starr TVB, Prystay W, Snutch TP. Primary structure of a calcium channel that is highly expressed in the rat cerebellum. Proc Natl Acad Sci USA 1991; 88:5621–5625.

    PubMed  CAS  Google Scholar 

  15. Stea A, Tomlinson WJ, Soong TW et al. Localization and functional properties of a rat brain α1A calcium channel reflect similarities to neuronal Q-and P-type channels. Proc Natl Acad Sci USA 1994; 91:10576–10580.

    PubMed  CAS  Google Scholar 

  16. Bourinet E, Soong TW, Sutton K et al. Splicing of the α1A subunit gene generates phenotypic variants of P-and Q-type calcium channels. Nature Neurosci 1999; 2:407–415.

    PubMed  CAS  Google Scholar 

  17. Regehr WG, Mintz IM. Participation of multiple calcium channel types in transmission at single climbing fiber to Purkinje cell synapses. Neuron 1994; 12:605–613.

    PubMed  CAS  Google Scholar 

  18. Wheeler DB, Randall A, Tsien RW. Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission. Science 1994; 264:107–111.

    PubMed  CAS  Google Scholar 

  19. Zhuchenko O, Bailey J, Bonnen P et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the (α1A-voltage-dependent calcium channel. Nature Genet 1997; 15:62–69.

    PubMed  CAS  Google Scholar 

  20. Mintz IM, Adams ME, Bean BP. P-type calcium channels in rat central and peripheral neurons. Neuron 1992; 9:85–95.

    PubMed  CAS  Google Scholar 

  21. Ophoff RA, Terwindt GM, Vergouwe MN et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 1996; 543–552.

    Google Scholar 

  22. Battistini S, Stenirri S, Piatti M et al. A new CACNA1A gene mutation in acetazolamide-responsive familial hemiplegic migraine and ataxia. Neurol 1999; 53:38–43.

    CAS  Google Scholar 

  23. Carrera P, Piatti M, Stenirri S et al. Genetic heterogeneity in Italian families with familial hemiplegic migraine. Neurol 1999; 53:26–32.

    CAS  Google Scholar 

  24. Ducros A, Denier C, Joutel A et al. Recurrence of the T666M calcium channel CACNA1A gene mutation in familial hemiplegic migraine with progressive cerebellar ataxia. Am J Hum Genet 1999; 64:89–98.

    PubMed  CAS  Google Scholar 

  25. Vahedi K, Denier C, Ducros A et al. CACNA1A gene de novo mutation causing hemiplegic migraine, coma, and cerebellar atrophy. Neurol 2000; 55:1040–1042.

    CAS  Google Scholar 

  26. Ducros A, Denier CD, Joutel A et al. The clinical spectrum of familial hemiplegic migraine associated with mutations in a neuronal calcium channel. N Eng J Med 2001; 345:17–24.

    CAS  Google Scholar 

  27. Kors EE, Terwindt GM, Vermeulen FLMG et al. Delayed cerebral edema and fatal coma after minor head trauma: Role of the GACNA1A calcium channel subunit gene and relationship with familial hemiplegic migraine. Ann Neurol 2001; 49:753–760.

    PubMed  CAS  Google Scholar 

  28. Hans M, Luvisetto S, Williams ME et al. Functional consequences of mutations in the human α1A calcium channel subunit linked to familial hemiplegic migraine. J Neurosci 1999; 19:1610–1619.

    PubMed  CAS  Google Scholar 

  29. Tottene A, Fellin T, Pagnutti S et al. Familial hemiplegic migraine mutations increase Ca2+ influx through single human Cav2.1 channels and decrease Cav2.1 current density in neurons. Proc Natl Acad Sci 2002; 99:13284–13289.

    PubMed  CAS  Google Scholar 

  30. Kraus RL, Sinnegger MJ, Glossmann H et al. Familial hemiplegic migraine mutations change α1A Ca2+ channel kinetics. J Biol Chem 1998; 273:5586–5590.

    PubMed  CAS  Google Scholar 

  31. Kraus RL, Sinnegger MJ, Koschak A et al. Three new familial hemiplegic migraine mutants affect P/Q-type Ca2+ channel kinetics. J Biol Chem 2000; 275:9239–9243.

    PubMed  CAS  Google Scholar 

  32. Jodice C, Mantuano E, Veneziano L et al. Episodic ataxia type 2 (EA2) and spinocerebellar ataxia type 6 (SCA6) due to CAG repeat expansion in the CACNA1A gene on chromosome 19p. Hum Molec Genet 1997; 6:1973–1978.

    PubMed  CAS  Google Scholar 

  33. Denier C, Ducros A, Vahedi K et al. High prevalence of CACNA1A truncations and broader clinical spectrum in episodic ataxia type 2. Neurol 1999; 52:1816–1821.

    CAS  Google Scholar 

  34. Tournier-Lasserve E. CACNA1A mutations. Hemiplegic migraine, episodic ataxia type 2, and the others. Neurology 1999; 53:3–4.

    PubMed  CAS  Google Scholar 

  35. Jen J, Yue Q, Nelson SF et al. A novel nonsense mutation in CACNA1A causes episodic ataxia and hemiplegia. Neurology 1999; 53:34–37.

    PubMed  CAS  Google Scholar 

  36. Yue Q, Jen JC, Thwe MM et al. De novo mutation in CACNA1A caused acetazolamide-responsive episodic ataxia. Am J Med Genet 1998; 77:298–301.

    PubMed  CAS  Google Scholar 

  37. Friend KL, Crimmins D, Phan TG et al. Detection of a novel missense mutation and second recurrent mutation in the CACNA1A gene in individuals with EA-2 and FHM. Hum Genet 1999; 105:261–265.

    PubMed  CAS  Google Scholar 

  38. Denier C, Ducros A, Durr A et al. Missense CACNA1A mutation causing episodic ataxia type 2. Arch Neurol 2001; 58:292–295.

    PubMed  CAS  Google Scholar 

  39. Guida S, Trettel F, Pagnutti S et al. Complete loss of P/Q calcium channel activity caused by a CACNA1A missense mutation carried by patients with episodic ataxia type 2. Am J Hum Genet 2001; 68:759–764.

    PubMed  CAS  Google Scholar 

  40. Scoggan KA, Chandra T, Nelson R et al. Identification of two novel mutation in the CACNA1A gene responsible for episodic ataxia type 2. J Med Genet 2001; 38:249–253.

    PubMed  CAS  Google Scholar 

  41. Wappl E, Koschak A, Poteser M et al. Functional consequences of P/Q-type Ca2+ channel Cav2.1 missense mutations associated with episodic ataxia type 2 and progressive ataxia. J Biol Chem 2002; 277:6960–6.

    PubMed  CAS  Google Scholar 

  42. Yue Q, Jen JC, Nelson SF et al. Progressive ataxia due to a missense mutation in a calcium-channel gene. Am J Hum Genet 1997; 61:1078–1087.

    PubMed  CAS  Google Scholar 

  43. Jouvenceau A, Eunson LH, Spauschus A et al. Human epilepsy associated with dysfunction of the brain P/Q-type calcium channel. Lancet 2001; 358:801–807.

    PubMed  CAS  Google Scholar 

  44. Yang Q, Hashizume Y, Yoshida M et al. Morphological Purkinje cells changes in spinocerebellar ataxia type 6. Acta Neuropathol 2000; 100:371–376.

    PubMed  CAS  Google Scholar 

  45. Geschwind DH, Perlman S, Figueroa KP et al. Spinocerebellar ataxia type 6: Frequency of the mutation and genotype-phenotype correlations. Neurology 1997; 49:1247–1251.

    PubMed  CAS  Google Scholar 

  46. Kato T, Tanaka F, Yamamoto M et al. Sisters homozygous for the spinocerebellar ataxia type 6 (SCA6)/ CACNA1A gene associated with different clinical phenotypes. Clinical Genetics 2000; 58:69–73.

    PubMed  CAS  Google Scholar 

  47. Matsuyama Z, Wakamori M, Mori Y et al. Direct alteration of the P/Q-type Ca2+ channel property by polyglutamine expansion in spinocerebellar ataxia 6. J Neurosci 1999; 19:RC14.

    PubMed  CAS  Google Scholar 

  48. Restituito S, Thompson RM, Eliet J et al. The polyglutamine expansion in spinocerebellar ataxia type 6 causes a β subunit-specific enhanced activation of P/Q-type calcium channels in Xenopus oocytes. J Neurosci 2000; 20:6394–6403.

    PubMed  CAS  Google Scholar 

  49. Piedras-Renteria ES, Watase K, Harata N et al. Increased expression of α1A Ca2+ channel currents arising from expanded trinudeotide repeats in spinocerebellar ataxia type 6. J Neurosci 2001; 21:9185–9193.

    PubMed  CAS  Google Scholar 

  50. Toru S, Murakoshi T, Ishikawa K et al. Spinocerebellar ataxia type 6 mutation alters P-type calcium channel function. J Biol Chem 2000; 275:10893–10898.

    PubMed  CAS  Google Scholar 

  51. Noebels JL. A single gene error of noradrenergic axon growth synchronizes central neurones. Nature 1984; 310:4019–411.

    Google Scholar 

  52. Hess EJ, Wilson MC. Tottering and leaner mutations perturb transient developmental expression of tyrosine hydroxylase in embryologically distinct Purkinje cells. Neuron 1991; 6:123–132.

    PubMed  CAS  Google Scholar 

  53. Fletcher CF, Lutz CM, O’Sullivan TN et al. Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell 1996; 87:607–617.

    PubMed  CAS  Google Scholar 

  54. Doyle J, Ren X, Lennon G et al. Mutations in the Cacnl1a4 calcium channel gene are associated with seizures, cerebellar degeneration, and ataxia in tottering and leaner mutant mice. Mamm Genome 1997; 8:113–120.

    PubMed  CAS  Google Scholar 

  55. Wakamori M, Yamazaki K, Matsunodaira H et al. Single tottering mutations responsible for the neuropathic phenotype of the P-type calcium channel. J Biol Chem 1998; 273:34857–34867.

    PubMed  CAS  Google Scholar 

  56. Ayata C, Shimizu-Sasamata M, Lo EH et al. Impaired neurotransmitter release and elevated threshold for cortical spreading depression in mice with mutations in the α1A subunit of the P/Q type calcium channels. Neuroscience 1999; 95:639–645.

    Google Scholar 

  57. Qian J, Noebels JL. Presynaptic Ca2+ influx at a mouse central synapse with Ca2+ channel subunit mutations. J Neurosci 2000; 20:163–170.

    PubMed  CAS  Google Scholar 

  58. Herrup K, Wilczynski SL. Cerebellar cell degeneration in the leaner mutant mouse. Neuroscience 1982; 7:2185–2196.

    PubMed  CAS  Google Scholar 

  59. Heckroth JA, Abbott LC. Purkinje cell loss from alternating sagittal zones in the cerebellum of leaner mutant mice. Brain Res 1994; 658:93–104.

    PubMed  CAS  Google Scholar 

  60. Sawada K, Fukui Y. Expression of tyrosine hydroxylase in cerebellar Purkinje cells of ataxic mutant mice: Its relation to the onset and/or development of ataxia. J Med Invest 2001; 48:5–10.

    PubMed  CAS  Google Scholar 

  61. Lorenzon NM, Lutz CM, Frankel MN et al. Altered calcium channel currents in Purkinje cells of the neurological mutant mouse leaner. J Neurosci 1998; 18:4482–4489.

    PubMed  CAS  Google Scholar 

  62. Dove LS, Abbott LC, Griffith WH. Whole-cell and single-channel analysis of P-type calcium currents in cerebellar Purkinje cells of leaner mutant mice. J Neurosci 1998; 18:7687–7699.

    PubMed  CAS  Google Scholar 

  63. Dove LS, Nahm S-S, Murchison D et al. Altered calcium homeostasis in cerebellar Purkinje cells of mutant mice. J Neurophysiol 2000; 84:513–524.

    PubMed  CAS  Google Scholar 

  64. Mori Y, Wakamori, Oda S-I et al. Reduced voltage-sensitivity of activation of P/Q-type Ca2+ channels is associated with the ataxic mouse mutation rolling Nagoya (tgrol). J Neurosci 2000; 20(15):5654–5662.

    PubMed  CAS  Google Scholar 

  65. Zwingman TA, Neumann PE, Noebels JL et al. Rocker is a new variant of the voltage-dependent calcium channel gene Cacna1a. J Neurosci 2001; 21:1169–1178.

    PubMed  CAS  Google Scholar 

  66. Jun K, Piedras-Penteria E, Smith SM et al. Ablation of the P/Q-type Ca2+ channel currents, altered synaptic transmission, and progressive ataxia in mice lacking the α1A-subunit. PNAS 1999; 96:15245–15250.

    PubMed  CAS  Google Scholar 

  67. Fletcher CF, Tottene A, Lennon VA et al. Dystonia and cerebellar atrophy in Cacna1a null mice lacking P/Q calcium channel activity. FASEB J 2001; 15:1288–1290.

    PubMed  CAS  Google Scholar 

  68. Walker D, DeWaard M. Subunit interaction sites in voltage-dependent Ca2+ channels: Role in channel function. TINS 1998; 21:148–154.

    PubMed  CAS  Google Scholar 

  69. Escayg A, De Waard M, Lee DD et al. Coding and noncoding variation of the human calcium-channel β4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am J Hum Genet 2000; 66:1531–1539.

    PubMed  CAS  Google Scholar 

  70. Dung HC, Swigart RH. Histo-pathologic observations of the nervous and lymphoid tissues of the “lethargic” mutant mouse. Tex Rep Biol Med 1972; 30:23–39.

    PubMed  CAS  Google Scholar 

  71. Burgess DL, Jones JM, Meisler MH et al. Mutation of the Ca2+ channel β subunit gene Cchb4 is associated with ataxia and seizures in the lethargic (1h) mouse. Cell 1997; 88:385–392.

    PubMed  CAS  Google Scholar 

  72. McEnery MW, Copeland TD, Vance CL. Altered expression and assembly of N-type calcium channel α1B and β subunits in epileptic lethargic (1h/1h) mouse. J Biol Chem 1998; 273:21435–21438.

    PubMed  CAS  Google Scholar 

  73. Brodbeck J, Davies A, Courtney J-M et al. The ducky mutation in Cacna2d2 results in altered Purkinje cell morphology and is associated with the expression of a truncated α2δ-2 protein with abnormal function. J Biol Chem 2002; 277:7684–7693.

    PubMed  CAS  Google Scholar 

  74. Barclay J, Balaguero N, Mione M et al. Ducky mouse phenotype of epilepsy and ataxia is associated with mutation in the Cacna2d2 gene and decreased calcium channel current in cerebellar Purkinje cells. J Neurosci 2001; 21:6095–6104.

    PubMed  CAS  Google Scholar 

  75. Noebels JL, Qiao X, Bronson RT et al. Stargazer: A new neurological mutant on Chromosome 15 in the mouse with prolonged cortical seizures. Epilepsy Res 1990; 7:129–135.

    PubMed  CAS  Google Scholar 

  76. Kang M-G, Chen C-C, Felix R et al. Biochemical and biophysical evidence for γ2 subunit association with neuronal voltage-activated Ca2+ channels. J Biol Chem 2001; 276:32917–32924.

    PubMed  CAS  Google Scholar 

  77. Chen L, Chetkovich DM, Petralia RS et al. Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 2000; 408:936–943.

    PubMed  CAS  Google Scholar 

  78. Letts VA, Felix R, Biddlecome GH et al. The mouse stargazer gene encodes a neuronal Ca2+channel γ subunit. Nature Genet 1998; 19:340–347.

    PubMed  CAS  Google Scholar 

  79. Tanabe T, Takeshima H, Mikami A et al. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 1987; 328:313–318.

    PubMed  CAS  Google Scholar 

  80. Rios E, Brum G. Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature 1987; 325:717–720.

    PubMed  CAS  Google Scholar 

  81. Chaudhari N. A single nucleotide deletion in the skeletal muscle-specific calcium channel transcript of muscular dysgenesis (mdg) mice. J Biol Chem 1992; 267:25636–25639.

    PubMed  CAS  Google Scholar 

  82. Takeshima H, Iino M, Takekura H et al. Excitation-contraction uncoupling and muscular dysgeneration in mice lacking functional skeletal muscle ryanodine-rcceptor gene. Nature 1994; 369:556–559.

    PubMed  CAS  Google Scholar 

  83. Buck ED, Nguyen HT, Pessah IN et al. Dyspedic mouse skeletal muscle expresses major elements of the triadic junction but lacks detectable ryanodine receptor protein and function. J Biol Chem 1997; 272:7360–7367.

    PubMed  CAS  Google Scholar 

  84. Takeshima H, Yamazawa T, Ikemoto T et al. Ca2+-induced Ca2+ release in myocytes from dyspedic mice lacking the type-1 ryanodine receptor. EMBO J 1995; 14:2999–3006.

    PubMed  CAS  Google Scholar 

  85. Fleig A, Takeshima H, Penner R. Absence of Ca2+ current facilitation in skeletal muscle of transgenic mice lacking the type 1 ryanodine receptor. J Physiol 1996; 496:339–345.

    PubMed  CAS  Google Scholar 

  86. Nakai J, Dirksen RT, Nguyen HT et al. Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor. Nature 1996; 380:72–75.

    PubMed  CAS  Google Scholar 

  87. Avila G, Dirksen RT. Functional impact of the ryanodine receptor on the skeletal muscle L-type Ca2+ channel. J Gen Physiol 2000; 115:467–480.

    PubMed  CAS  Google Scholar 

  88. Jurkat-Rott K, Lehmann-Horn F, Elbaz A et al. A calcium channel mutation causing hypokalemic periodic paralysis. Hum Mol Genet 1994; 56:374–380.

    Google Scholar 

  89. Ptacek LJ, Tawil R, Griggs RC et al. Dihydropyridine receptor mutations cause hypokalemic periodic paralysis. Cell 1994; 77:863–868.

    PubMed  CAS  Google Scholar 

  90. Fouad G, Dalakas M, Servidei S et al. Genotype-phenotype correlations of DHP receptor α1-subunit gene mutations causing hypokalemic periodic paralysis. Neuromuscul Disord 1997; 7:33–38.

    PubMed  CAS  Google Scholar 

  91. Jurkat-Rott K, Uetz U, Pika-Hartlaub U et al. Calcium currents and transients of native and heterologously expressed mutant skeletal muscle DHP receptor α1 subunits (R528H). FEBS Lett 1998; 423:198–204.

    PubMed  CAS  Google Scholar 

  92. Morrill JA, Brown Jr RH, Cannon SC. Gating of the L-type Ca channel in human skeletal myotubes: An activation defect caused by the hypokalemic periodic paralysis mutation R528H. J Neurosci 1998; 18:10320–10334.

    PubMed  CAS  Google Scholar 

  93. Lapie P, Goudet C, Nargeot J et al. Electrophysiological properties of the hypokalemic periodic paralysis mutation (R528H) of the skeletal muscle α1S subunit as expressed in mouse L cells. FEBS Lett 1996; 382:244–248.

    PubMed  CAS  Google Scholar 

  94. Lerche H, Klugbauer N, Lehmann-Horn F et al. Expression and functional characterization of the cardiac L-type calcium channel carrying a skeletal muscle DHP-receptor mutation causing hypokalemic periodic paralysis. Pflugers Arch 1996; 431:461–463.

    PubMed  CAS  Google Scholar 

  95. Gonzalez A, Nakai J, Beam K. IVS4 mutations which alter inactivation of the skeletal L-type calcium channel without affecting activation. Biophys J 1996; 70:A128.

    Google Scholar 

  96. Rudel R, Lehmann-Horn F, Ricker K et al. Hypokalemic periodic paralysis: In vitro investigation of muscle fiber membrane parameters. Muscle Nerve 1984; 7:110–120.

    PubMed  CAS  Google Scholar 

  97. Morrill JA, Cannon SC. Effects of mutations causing hypokalemic periodic paralysis on the skeletal muscle L-type Ca2+ channel expressed in Xenopus laevis oocytes. J Physiol 1999; 520(2):321–336.

    PubMed  CAS  Google Scholar 

  98. Mickelson JR, Louis CF. Malignant hyperthermia: Excitation-contraction coupling, Ca2+ release channel, and cell Ca2+ regulation defects. Physiol 1996; Rev 76:537–592.

    CAS  Google Scholar 

  99. Loke J, MacLennan DH. Malignant hyperthermia and central core disease: Disorders of Ca2+ release channels. Am J Med 1998; 104:470–486.

    PubMed  CAS  Google Scholar 

  100. Jurkat-Rott K, McCarthy T, Lehmann-Horn F. Genetics and pathogenesis of malignant hyperthermia. Muscle & Nerve 2000; 23:4–17.

    CAS  Google Scholar 

  101. MacLennan DH. Ca2+ signalling and muscle disease. Eur J Biochem 2000; 267:5291–5297.

    PubMed  CAS  Google Scholar 

  102. Gillard EF, Otsu K, Fujii J et al. A substitution of cysteine for arginine 614 in the ryanodine receptor is potentially causative of human malignant hyperthermia. Genomics 1991; 11:751–755.

    PubMed  CAS  Google Scholar 

  103. Gillard EF, Otsu K, Fujii J et al. Polymorphisms and deduced amino acid substitutions in the coding sequence of the ryanodine receptor (RYR1) gene and individuals with malignant hyperthermia. Genomics 1992; 13:1247–1254.

    PubMed  CAS  Google Scholar 

  104. Quane KA, Healy JMS, Keating KE et al. Mutations in the ryanodine receptor gene in central core disease and malignant hyperthermia. Nature Genet 1993; 5:51–55.

    PubMed  CAS  Google Scholar 

  105. Zhang Y, Chen HS, Khanna VK et al. A mutation in the human ryanodine receptor gene associated with central core diseases. Nat Genet 1993; 5:46–49.

    PubMed  CAS  Google Scholar 

  106. Keating KE, Quane KA, Manning BM et al. Detection of a novel RYR1 mutation in four malignant hyperthermia pedigrees. Hum Mol Genet 1994; 10:1855–1858.

    Google Scholar 

  107. Quane KA, Keating KE, Healy JMS et al. Mutation screening of the RYR1 gene in malignant hyperthermia: Detection of a novel Tyr to Ser mutation in a pedigree with associated central cores. Genomics 1994a; 23:236–239.

    PubMed  CAS  Google Scholar 

  108. Quane KA, Keating KE, Manning BM et al. Detection of a novel mutation in a ryanodine receptor gene in malignant hyperthermia: Implications for diagnosis and heterogeneity studies. Hum Mol Genet 1994b; 3:471–476.

    PubMed  CAS  Google Scholar 

  109. Keating KE, Giblin L, Lynch PJ et al. Detection of a novel mutation in the ryanodine receptor gene in an Irish malignant hyperthcrmia pedigree: Correlation of the IVCT response with the affected and unaffected haplotypes. J Med Genet 1997; 34:91–296.

    Google Scholar 

  110. Lynch PJ, Krivosic-Horber R, Reyford H et al. Identification of heterozygous and homozygous individuals with a novel RYR1 mutation in a large kindred. Anesthesiology 1997; 86:620–626.

    PubMed  CAS  Google Scholar 

  111. Quane KA, Ording H, Keating KE et al. Detection of a novel mutation at amino acid position 614 in the ryanodine receptor in malignant hyperthermia. Br J Anaesth 1997; 79:332–337.

    PubMed  CAS  Google Scholar 

  112. Manning BM, Quane KA, Lynch PJ et al. Novel mutations at a CpG dinudeotide in the ryanodine receptor in malignant hyperthermia. Hum Mutat 1998a; 11:45–50.

    PubMed  CAS  Google Scholar 

  113. Manning BM, Quane KA, Ording H et al. Identification of novel mutations in the ryanodine-receptor gene (RYR1) in malignant hyperthermia: Genotype phenotype correlation. Am J Hum Genet 1998b; 62:599–609.

    PubMed  CAS  Google Scholar 

  114. Barone V, Massa O, Intravaia E et al. Mutation screening of the RyR1 gene and identification of two novel mutations in Italian Malignant Hypothermia families. J Med Genet 1999; 36:115–118.

    PubMed  CAS  Google Scholar 

  115. Brandt A, Schleithoff L, Jurkat-Rott K et al. Screening of the ryanodine receptor gene in 105 malignant hyperthermia families: Novel mutations and concordance with the in vitro contracture test. Hum Mol Genet 1999; 8:2055–2062.

    PubMed  CAS  Google Scholar 

  116. Lynch PJ, Tong J, Lehane M et al. A mutation in the transmembrane/luminal domain of the ryanodine receptor is associated with abnormal Ca2+ release channel function and severe central core disease. PNAS 1999; 96:4164–4169.

    PubMed  CAS  Google Scholar 

  117. Brown RL, Pollock AN, Couchman KG et al. A novel ryanodine receptor mutation and genotype-phenotype correlation in a large malignant hyperthermia New Zealand Maori pedigree. Hum Mol Genet 2000; 9:1515–1524.

    PubMed  CAS  Google Scholar 

  118. Chamley D, Pollock NA, Stowell KM et al. Malignant hyperthermia in infancy and identification of novel RYR1 mutation. Br J Anaesth 2000; 84:500–504.

    PubMed  CAS  Google Scholar 

  119. Fortunato G, Berruti R, Brancadoro V et al. Identification of a novel mutation in the ryanodine receptor gene (RYR1) in a malignant hyperthermia Italian family. Eur J Human Genet 2000; 8:149–152.

    CAS  Google Scholar 

  120. Gencik M, Gencik A, Mortier W et al. Novel mutation in the RyR1 gene (R2454C) in a patient with malignant hyperthermia. Hum Mutat 2000; 15:122.

    PubMed  CAS  Google Scholar 

  121. Monnier N, Romero NB, Lerale J et al. An autosomal dominant congenital myopathy with cores and rods is associated with a neomutation in the RYR1 gene encoding the skeletal muscle ryanodine receptor. Hum Mol Genet 2000; 9:2599–2608.

    PubMed  CAS  Google Scholar 

  122. Monnier N, Romero NB, Lerale J et al. Familial and sporadic forms of central core disease are associated with mutations in the C-terminal domain of the skeletal muscle ryanodine receptor. Hum Mol Genet 2001; 10:2581–2592.

    PubMed  CAS  Google Scholar 

  123. Rueffert H, Kraus H, Olthoff D et al. Identification of a novel mutation in the ryanodine receptor gene (RYR1) in patients with malignant hyperthermia. Hum Mutat 2001; 17:238.

    PubMed  CAS  Google Scholar 

  124. Sambuughin N, McWilliams S, de Bantel A et al. Single-amino-acid deletion in the RYR1 gene, associated with malignant hyperthermia susceptibility and unusual contraction phenotype. Am J Hum Genet 2001a; 69:204–208.

    PubMed  CAS  Google Scholar 

  125. Sambuughin N, Sei Y, Gallagher KL et al. North American malignant hyperthermia population: Screening of the ryanodine receptor gene and identification of novel mutations. Anesthesiology 2001b; 95:594–599.

    PubMed  CAS  Google Scholar 

  126. Oyamada H, Oguchi K, Saitoh N et al. Novel mutations in C-terminal channel region of the ryanodine receptor in malignant hyperthermia patients. Jpn J Pharmacol 2002; 88:159–166.

    PubMed  CAS  Google Scholar 

  127. McCarthy TV, Quane KA, Lynch PJ. Ryanodine receptor mutations in malignant hyperthermia and central core disease. Human Mut 2000; 15:410–417.

    CAS  Google Scholar 

  128. Roberts MC, Mickelson JR, Patterson EE et al. Autosomal dominant canine malignant hyperthermia is caused by a mutation in the gene encoding the skeletal muscle calcium release channel (RyR1). Anesthesiology 2001; 95:716–725.

    PubMed  CAS  Google Scholar 

  129. Monnier N, Procaccio V, Stieglitz P et al. Malignant-hyperthermia susceptibility is associated with a mutation of the α1-subunit of the human dihydropyridine-sensitive L-type voltage-dependent calcium-channel receptor in skeletal muscle. Am J Hum Genet 1997; 60:1316–1325.

    PubMed  CAS  Google Scholar 

  130. Schleithoff L, Mehrke G, Reutlinger BL. Genomic structure and functional expression of a human alpha(2)/delta calcium channel subunit gene (CACNA2). Genomics 1999; 61:201–209.

    PubMed  CAS  Google Scholar 

  131. Censier K, Urwyler A, Zorzato F et al. Intracellular calcium homeostasis in human primary muscle cells from malignant hyperthermia-susceptible and normal individuals. J Clin Invest 1998; 101:1233–242.

    PubMed  CAS  Google Scholar 

  132. Brinkmeier H, Kramer J, Kramer R et al. Malignant hyperthermia causing Gly2435Arg mutation of the ryanodine receptor facilitates ryanodine-induced calcium release in myotubes. Br J Anaesth 1999; 83:855–861.

    PubMed  CAS  Google Scholar 

  133. Richter M, Schleithoff L, Deufel T et al. Functional characterization of a distinct ryanodine receptor mutation in human malignant hyperthermia-susceptible muscle. J Biol Chem 1997; 272:5256–5260.

    PubMed  CAS  Google Scholar 

  134. O’Sullivan GH, McIntosh JM, Heffron JJA. Abnormal uptake and release of Ca2+ ions form human malignant hyperthermia-susceptible sarcoplasmic reticulum. Biochem Pharmacol 2001; 61:1479–1485.

    PubMed  CAS  Google Scholar 

  135. Otsu K, Nishida K, Kimura Y et al. The point mutation Arg615→Cys in the Ca2+ release channel of skeletal sarcoplasmic reticulum is responsible for hypersensitivity to caffeine and halothane in malignant hyperthermia. J Biol Chem 1994; 269:9413–9415.

    PubMed  CAS  Google Scholar 

  136. Dietze B, Henke J, Eichinger HM et al. Malignant hyperthermia mutation Arg615Cys in the porcine ryanodine receptor alters voltage dependence of Ca2+ release. J Physiol 2000; 526(3):507–514.

    PubMed  CAS  Google Scholar 

  137. Tong J, Oyamada H, Demaurex N et al. Caffeine and halothane sensitivity of intracellular Ca2+ release is altered by 15 calcium release channel (ryanodine receptor) mutations associated with malignant hyperthermia and/or central core disease. J Biol Chem 1997; 272:26332–26339.

    PubMed  CAS  Google Scholar 

  138. Lopez JR, Contreras J, Linares N et al. Hypersensivity of malignant hyperthermia-susceptible swine skeletal muscle to caffeine is mediated by high resting myoplasmic [Ca2+]. Anesthesiology 2000; 92:1799–1806.

    PubMed  CAS  Google Scholar 

  139. Avila G, O’Brien JJ, Dirksen RT. Excitation-contraction uncoupling by a human central core disease mutation in the ryanodine receptor. PNAS 2001; 98:4215–4220.

    PubMed  CAS  Google Scholar 

  140. Tiso N, Stephan DA, Nava A et al. Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum Mol Genet 2001; 10:189–194.

    PubMed  CAS  Google Scholar 

  141. Priori SG, Napolitano C, Tiso N et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 2000; 103:196–200.

    Google Scholar 

  142. Laitinen PJ, Brown KM, Piippo K et al. Mutations of the cardiac ryanodine receptor (RyR2) gene in familial polymorphic ventricular tachycardia. Circulation 2001; 103:485–490.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Lorenzon, N.M., Beam, K.G. (2005). Calcium Channelopathies. In: Voltage-Gated Calcium Channels. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27526-6_16

Download citation

Publish with us

Policies and ethics