Skip to main content

Selective Permeability of Voltage-Gated Calcium Channels

  • Chapter
Book cover Voltage-Gated Calcium Channels

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Advances based on experiment and theory are converging upon a structural description of the selectivity mechanism of voltage-gated calcium channels. The emerging description differs from that for potassium channels, which make use of a stiff filter lined with main chain carbonyl oxygens that snugly fit K+ ions. Instead, calcium channels use a selectivity filter composed of the side chain carboxylate oxygen atoms of a cluster of four glutamate residues (EEEE locus). These carboxylate-bearing side chains are thought to project into the aqueous lumen of the pore where they sort Ca2+ from other would-be permeant ions. The EEEE locus is evidently flexible: it can tightly bind a single Ca2+ ion in order to block Na+ flux but rearranges to accommodate multiple Ca2+ ions in order to allow high Ca2+ flux. The four glutamates are not functionally equivalent, an observation that is suspected to be important for Ca2+ passage through the selectivity filter. This chapter summarizes the experimental results that support these conclusions and the theoretical models that have been proposed to explain how calcium channels can be at once highly selective and yet readily permeated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McCleskey EW, Aimers W. The Ca channel in skeletal muscle is a large pore. Proc Natl Acad Sci USA 1985; 82:7149–7153.

    Article  PubMed  CAS  Google Scholar 

  2. Kostyuk PG, Mironov SL, Shuba YM. Two ion-selecting filters in the calcium channel of the somatic membrane of mollusc neurons. J Membr Biol 1983; 76:83–93.

    Article  Google Scholar 

  3. Aimers W, McCleskey EW, Palade PT. A non-selective cation conductance in frog muscle membrane blocked by micromolar external calcium ions. J Physiol 1984; 353:565–583.

    Google Scholar 

  4. Hess P, Tsien RW. Mechanism of ion permeation through calcium channels. Nature 1984; 309:453–456.

    Article  PubMed  CAS  Google Scholar 

  5. Fukushima Y, Hagiwara S. Currents carried by monovalent cations through calcium channels in mouse neoplastic B lymphocytes. J Physiol 1985; 358:255–284.

    PubMed  CAS  Google Scholar 

  6. Vereecke J, Carmeliet E. Sr action potentials in cardiac Purkinje fibres. II. Dependence of the Sr conductance on the external Sr concentration and Sr-Ca antagonism. Pflugers Arch 1971; 322:73–82.

    Article  PubMed  CAS  Google Scholar 

  7. Hagiwara S, Fukuda J, Eaton DC. Membrane currents carried by Ca, Sr, and Ba in barnacle muscle fiber during voltage clamp. J Gen Physiol 1974; 63:565–578.

    Article  PubMed  CAS  Google Scholar 

  8. Reuter H, Scholz H. A study of the ion selectivity and the kinetic properties of the calcium dependent slow inward current in mammalian cardiac muscle. J Physiol 1977; 264:17–47.

    PubMed  CAS  Google Scholar 

  9. Fenwick EM, Marty A, Neher E. Sodium and calcium channels in bovine chromaffin cells. J Physiol 1982; 331:599–635.

    PubMed  CAS  Google Scholar 

  10. Lee KS, Tsien RW. High selectivity of calcium channels in single dialysed heart cells of the guinea-pig. J Physiol 1984; 354:253–272.

    PubMed  CAS  Google Scholar 

  11. Hess P, Lansman JB, Tsien RW. Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells. J Gen Physiol 1986; 88:293–319.

    Article  PubMed  CAS  Google Scholar 

  12. Matsuda H, Noma A. Isolation of calcium current and its sensitivity to monovalent cations in dialysed ventricular cells of guinea-pig. J Physiol 1984; 357:553–573.

    PubMed  CAS  Google Scholar 

  13. Polo-Parada L, Korn SJ. Block of N-type calcium channels in chick sensory neurons by external sodium. J Gen Physiol 1997; 109:693–702.

    Article  PubMed  CAS  Google Scholar 

  14. Kuo CC, Hess P. Ion permeation through the L-type Ca2+ channel in rat phaeochromocytoma cells: two sets of ion binding sites in the pore. J Physiol 1993; 466:629–655.

    PubMed  CAS  Google Scholar 

  15. Kuo CC, Hess P. Characterization of the high-affinity Ca2+ binding sites in the L-type Ca2+ channel pore in rat phaeochromocytoma cells. J Physiol 1993; 466:657–682.

    PubMed  CAS  Google Scholar 

  16. Bezanilla F, Armstrong CM. Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons. J Gen Physiol 1972; 60:588–608.

    Article  PubMed  CAS  Google Scholar 

  17. Friel DD, Tsien RW. Voltage-gated calcium channels: direct observation of the anomalous mole fraction effect at the single-channel level. Proc Natl Acad Sci USA 1989; 86:5207–5211.

    Article  PubMed  CAS  Google Scholar 

  18. Aimers W, McCleskey EW. Non-selective conductance in calcium channels of frog muscle: calcium selectivity in a single-file pore. J Physiol 1984; 53:585–608.

    Google Scholar 

  19. Eisenman G, Sandblom JP, Walker JL. Membrane structure and ion permeation. Study of ion exchange membrane structure and function is relevant to analysis of biological ion permeation. Science 1967; 155:965–974.

    Article  PubMed  CAS  Google Scholar 

  20. Hille B, Schwarz W. Potassium channels as multi-ion single-file pores. J Gen Physiol 1978; 72:409–442.

    Article  PubMed  CAS  Google Scholar 

  21. Urban BW, Hladky SB, Haydon DA. Ion movements in gramicidin pores. An example of single-file transport. Biochim Biophys Acta 1980; 602:331–354.

    Article  PubMed  CAS  Google Scholar 

  22. Lansman JB, Hess P, Tsien RW. Blockade of current through single calcium channels by Cd2+, Mg2+, and Ca2+. Voltage and concentration dependence of calcium entry into the pore. J Gen Physiol 1986; 88:321–347.

    Article  PubMed  CAS  Google Scholar 

  23. Dang TX, McCleskey EW. Ion channel selectivity through stepwise changes in binding affinity. J Gen Physiol 1998; 111:185–193.

    Article  PubMed  CAS  Google Scholar 

  24. Armstrong CM, Neyton J. Ion permeation through calcium channels. A one-site model. Ann N Y Acad Sci 1991; 635:18–25.

    Article  PubMed  CAS  Google Scholar 

  25. Hodgkin A, Keynes R. The potassium permeability of a giant nerve fibre. J Physiol 1955; 128:61–88.

    PubMed  CAS  Google Scholar 

  26. Begenisich T, De Weer P. Potassium flux ratio in voltage-clamped squid giant axons. J Gen Physiol 1980; 76:83–98.

    Article  PubMed  CAS  Google Scholar 

  27. Neyton J, Miller C. Discrete Ba2+ block as a probe of ion occupancy and pore structure in the high-conductance Ca2+-activated K+ channel. J Gen Physiol 1988; 92:569–586.

    Article  PubMed  CAS  Google Scholar 

  28. Neyton J, Miller C. Potassium blocks barium permeation through a calcium-activated potassium channel. J Gen Physiol 1988; 92:549–567.

    Article  PubMed  CAS  Google Scholar 

  29. Korn SJ, Ikeda SR. Permeation selectivity by competition in a delayed rectifier potassium channel. Science 1995; 269:410–412.

    Article  PubMed  CAS  Google Scholar 

  30. Doyle DA, Morais-Cabral J, Pfuetzner RA et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 1998; 280:69–77.

    Article  PubMed  CAS  Google Scholar 

  31. Tanabe T, Takeshima H, Mikami A et al. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 1987; 328:313–318.

    Article  PubMed  CAS  Google Scholar 

  32. Ellis SB, Williams ME, Ways NR et al. Sequence and expression of mRNAs encoding the α1 and α2 subunits of a DHP-sensitive calcium channel. Science 1988; 241:1661–1664.

    Article  PubMed  CAS  Google Scholar 

  33. Mikami A, Imoto K, Tanabe T et al. Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature 1989; 340:230–233.

    Article  PubMed  CAS  Google Scholar 

  34. Schauer CK, Anderson PP. Calcium-selective ligands. 2. Structural and spectroscopic studies on calcium and cadmium complexes of EGTA4−. J Am Chem Soc 1987; 109:3646–3656.

    Article  CAS  Google Scholar 

  35. Heinemann SH, Terlau H, Stuhmer W et al. Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 1992; 356:441–443.

    Article  PubMed  CAS  Google Scholar 

  36. Kim MS, Morii T, Sun LX et al. Structural determinants of ion selectivity in brain calcium channel. FEBS Lett 1993; 318:145–148.

    Article  PubMed  CAS  Google Scholar 

  37. Tang S, Mikala G, Bahinski A et al. Molecular localization of ion selectivity sites within the pore of a human L-type cardiac calcium channel. J Biol Chem 1993; 268:13026–13029.

    PubMed  CAS  Google Scholar 

  38. Yang J, Ellinor PT, Sather WA et al. Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature 1993; 366:158–161.

    Article  PubMed  CAS  Google Scholar 

  39. Ellinor PT, Yang J, Sather WA et al. Ca2+ channel selectivity at a single locus for high-affinity Ca2+ interactions. Neuron 1995; 15:1121–1132.

    Article  PubMed  CAS  Google Scholar 

  40. Cibulsky SM, Sather WA. The EEEE locus is the sole high-affinity Ca2+ binding structure in the pore of a voltage-gated Ca2+ channel: block by Ca2+ entering from the intracellular pore entrance. J Gen Physiol 2000; 116:349–362.

    Article  PubMed  CAS  Google Scholar 

  41. Jiang Y, MacKinnon R. The barium site in a potassium channel by x-ray crystallography. J Gen Physiol 2000; 115:269–272.

    Article  PubMed  CAS  Google Scholar 

  42. Feng ZP, Hamid J, Doering C et al. Amino acid residues outside of the pore region contribute to N-type calcium channel permeation. J Biol Chem 2001; 276:5726–5730.

    Article  PubMed  CAS  Google Scholar 

  43. Dirksen RT, Nakai J, Gonzalez A et al. The S5–S6 linker of repeat I is a critical determinant of L-type Ca2+ channel conductance. Biophys J 1997; 73:1402–1409.

    PubMed  CAS  Google Scholar 

  44. Cibulsky SM, Sather WA. Control of ion conduction in L-type Ca2+ channels by the concerted action of S5–6 regions. Biophys J 2003; 84:1709–1719.

    PubMed  CAS  Google Scholar 

  45. Cloues RK, Cibulsky SM, Sather WA. Ion interactions in the high-affinity binding locus of a voltage-gated Ca2+ channel. J Gen Physiol 2000; 116:569–586.

    Article  PubMed  CAS  Google Scholar 

  46. Williamson AV, Sather WA. Nonglutamate pore residues in ion selection and conduction in voltage-gated Ca2+ channels. Biophys J 1999; 77:2575–2589.

    PubMed  CAS  Google Scholar 

  47. Chen XH, Bezprozvanny I, Tsien RW. Molecular basis of proton block of L-type Ca2+ channels. J Gen Physiol 1996; 108:363–374.

    Article  PubMed  CAS  Google Scholar 

  48. Chen XH, Tsien RW. Aspartate substitutions establish the concerted action of P-region glutamates in repeats I and III in forming the protonation site of L-type Ca2+ channels. J Biol Chem 1997; 272:30002–30008.

    Article  PubMed  CAS  Google Scholar 

  49. Klockner U, Mikala G, Schwartz A et al. Molecular studies of the asymmetric pore structure of the human cardiac voltage-dependent Ca2+ channel. Conserved residue, Glu-1086, regulates proton-dependent ion permeation. J Biol Chem 1996; 271:22293–22296.

    Article  PubMed  CAS  Google Scholar 

  50. Karlin A, Akabas MH. Substituted-cysteine accessibility method. Methods Enzymol 1998; 293:123–145.

    Article  PubMed  CAS  Google Scholar 

  51. Koch SE, Bodi I, Schwartz A et al. Architecture of Ca2+ channel pore-lining segments revealed by covalent modification of substituted cysteines. J Biol Chem 2000; 275:34493–34500.

    Article  PubMed  CAS  Google Scholar 

  52. Wu XS, Edwards HD, Sather WA. Side chain orientation in the selectivity filter of a voltage-gated Ca2+ channel. J Biol Chem 2000; 275:31778–31785.

    Article  PubMed  CAS  Google Scholar 

  53. Zhou Y, Morais-Cabral, JH, Kaufman A et al. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature 2001; 414:43–48.

    Article  PubMed  CAS  Google Scholar 

  54. Falke JJ, Drake SK, Hazard AL et al. Molecular tuning of ion binding to calcium signaling proteins. Q Rev Biophys 1994; 27:219–290.

    Article  PubMed  CAS  Google Scholar 

  55. Nonner W, Eisenberg B. Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type calcium channels. Biophys J 1998; 75:1287–1305.

    PubMed  CAS  Google Scholar 

  56. Corry B, Allen TW, Kuyucak S et al. Mechanisms of permeation and selectivity in calcium channels. Biophys J 2001; 80:195–214.

    PubMed  CAS  Google Scholar 

  57. Nonner W, Catacuzzeno L, Eisenberg B. Binding and selectivity in L-type calcium channels: a mean spherical approximation. Biophys J 2000; 79:1976–1992.

    PubMed  CAS  Google Scholar 

  58. Boda D, Busath D, Henderson D et al. Monte Carlo simulations of the mechanism for channel selectivity: the competition between volume exclusion and charge neutrality. Journal of Physical Chemistry 2000; 104:8903–8910.

    CAS  Google Scholar 

  59. Lipkind GM, Fozzard HA. Modeling of the outer vestibule and selectivity filter of the L-type Ca2+ channel. Biochemistry 2001; 40:6786–6794.

    Article  PubMed  CAS  Google Scholar 

  60. Barreiro G, Guimaraes CR, de Alencastro RB. A molecular dynamics study of an L-type calcium channel model. Protein Eng 2002; 15:109–122.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Sather, W.A. (2005). Selective Permeability of Voltage-Gated Calcium Channels. In: Voltage-Gated Calcium Channels. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27526-6_13

Download citation

Publish with us

Policies and ethics