Skip to main content

Phosphorylation-Dependent Regulation of Voltage-Gated Ca2+ Channels

  • Chapter
Voltage-Gated Calcium Channels

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 1434 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dolphin AC. L-type calcium channel modulation. Adv Second Mess Phos Res 1999; 33:153–177.

    CAS  Google Scholar 

  2. Bean BP. Modulating modulation. J Gen Physiol 2000; 115:273–275.

    Article  PubMed  CAS  Google Scholar 

  3. Catterall WA. Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 2000; 16:521–555.

    Article  PubMed  CAS  Google Scholar 

  4. Herzig S, Neumann J. Effects of serine/threonine protein phosphatases on ion channels in excitable membranes. Physiol Rev 2000; 80:173–210.

    PubMed  CAS  Google Scholar 

  5. Kamp TJ, Hell JW. Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circ Res 2000; 87:1095–1102.

    PubMed  CAS  Google Scholar 

  6. Carbone E, Carabelli V, Cesetti T et al. G-protein-and cAMP-dependent L-channel gating modulation: A manyfold system to control calcium entry in neurosecretory cells. Pflügers Arch 2001; 442:801–813.

    Article  PubMed  CAS  Google Scholar 

  7. Davis MJ, Wu X, Nurkiewicz TR et al. Regulation of ion channels by protein tyrosine phosphorylation. Am J Physiol 2001; 281:H1835–H1862.

    CAS  Google Scholar 

  8. Keef KD, Hume JR, Zhong J. Regulation of cardiac and smooth muscle Ca2+ channels (Cav1.2a,b) by protein kinases. Am J Physiol 2001; 281:C1743–C1756.

    CAS  Google Scholar 

  9. Ahern GP, Klyachko VA, Jackson MB. cGMP and S-nitrosylation: Two routes for modulation of neuronal excitability by NO. Trends Neurosci 2002; 25:510–517.

    Article  PubMed  CAS  Google Scholar 

  10. Hess P, Lansman JB, Tsien RW. Different modes of Ca2+ channel gating behaviour favoured by dihydropyridine Ca2+ agonists and antagonists. Nature 1984; 311:538–544.

    Article  PubMed  CAS  Google Scholar 

  11. Wilkens CM, Grabner M, Beam KG. Potentiation of the cardiac L-typc Ca2+ channel (α1C) by dihydropyridine agonist and strong depolarization occur via distinct mechanisms. J Gen Physiol 2001; 118:495–507.

    Article  PubMed  CAS  Google Scholar 

  12. Held B, Freise D, Freichel M et al. Skeletal muscle L-type Ca2+ current modulation in γ1-deficient and wildtype murine myotubes by the γ1 subunit and cAMP. J Physiol (Lond) 2002; 539:459–468.

    Article  PubMed  CAS  Google Scholar 

  13. Wu L, Bauer CS, Zhen X et al. Dual regulation of voltage-gated calcium channels by PtdIns(4,5)p2. Nature 2002; 419:947–952.

    Article  PubMed  CAS  Google Scholar 

  14. Michel JJ, Scott JD. AKAP mediated signal transduction. Annu Rev Pharmacol Toxicol 2002; 42:235–257.

    Article  PubMed  CAS  Google Scholar 

  15. Johnson BD, Scheuer T, Catterall WA. Voltage-dependent potentiation of L-type Ca2+ channels in skeletal muscle cells requires anchored cAMP-dependent protein kinase. Proc Natl Acad Sci USA 1994; 91:11492–11496.

    Article  PubMed  CAS  Google Scholar 

  16. Gao T, Yatani A, Dell’Acqua ML et al. cAMP-dependent regulation of cardiac L-type Ca2+ channels requires membrane targeting of PKA and phosphorylation of channel subunits. Neuron 1997; 19:185–196.

    Article  PubMed  CAS  Google Scholar 

  17. Gray PC, Johnson BD, Westenbroek RE et al. Primary structure and function of an A kinase anchoring associated with calcium channels. Neuron 1998; 20:1017–1026.

    Article  PubMed  CAS  Google Scholar 

  18. Zhong J, Hume JR, Keef KD. Anchoring protein is required for cAMP-dependent stimulation of L-type Ca2+ channels in rabbit portal vein. Am J Physiol 1999; 277:C840–C844.

    PubMed  CAS  Google Scholar 

  19. Tsunoda S, Sierralta J, Sun Y et al. A multivalent PDZ-domain protein assembles signaling com plexes in a G-protein-coupled cascade. Nature 1997; 388:243–249.

    Article  PubMed  CAS  Google Scholar 

  20. Marx SO, Kurokawa J, Reiken S et al. Requirement of a macromolecular signaling complex for β-adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science 2002; 295:496–499.

    Article  PubMed  CAS  Google Scholar 

  21. Hulme JT, Ahn M, Hauschka SD et al. A novel leucine zipper targets AKAP15 and cyclic AMP-dependent protein kinase to the C terminus of the skeletal muscle Ca2+ channel and modulates its function. J Biol Chem 2002; 277:4079–4087.

    Article  PubMed  CAS  Google Scholar 

  22. De Jongh KS, Warner C, Colvin AA et al. Characterization of the two size forms of the α1 subunit of skeletal muscle L-type calcium channels. Proc Natl Acad Sci USA 1991; 88:10778–10782.

    Article  PubMed  Google Scholar 

  23. Gerhardstein BL, Gao T, Bünemann M et al. Proteolytic processing of the C terminus of the α1c subunit of L-type calcium channels and the role of a proline-rich domain in membrane tethering of proteolytic fragments. J Biol Chem 2000; 275:8556–8563.

    Article  PubMed  CAS  Google Scholar 

  24. Gao T, Cuadra AE, Ma H et al. C-terminal fragments of the α1C (Cav1.2) subunit associate with and regulate L-type calcium channels containing truncated α1C subunits. J Biol Chem 2001; 276:21089–21097.

    Article  PubMed  CAS  Google Scholar 

  25. Davare MA, Avdonin V, Hall DD et al. A β2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cav1.2. Science 2001; 293:98–101.

    Article  PubMed  CAS  Google Scholar 

  26. Davare MA, Dong F, Rubin CS et al. The A-kinase anchor protein MAP2B and cAMP-dependent protein kinase are associated with class C L-type calcium channels in neurons. J Biol Chem 1999; 274:30280–30287.

    Article  PubMed  CAS  Google Scholar 

  27. Davare MA, Horne MC, Hell JW. Protein phosphatase 2A is associated with class C L-type cal cium channels (Cav1.2) and antagonizes channel phosphorylation by cAMP-dependent protein kinase. J Biol Chem 2000; 275:39710–39717.

    Article  PubMed  CAS  Google Scholar 

  28. Jurevicius J, Fischmeister R. cAMP compartmentation is responsible for a local activation of cardiac Ca2+ channels by β-adrenergic agonists. Proc Natl Acad Sci USA 1996; 93:295–299.

    Article  PubMed  CAS  Google Scholar 

  29. Chen-Izu Y, Xiao R-P, Izu LT et al. Gi-dependent localization of β2-adrencrgic receptor signaling to L-type Ca2+ channels. Biophys J 2000; 79:2547–2556.

    PubMed  CAS  Google Scholar 

  30. Zaccolo M, Pozzan T. Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 2002; 295:1711–1715.

    Article  PubMed  CAS  Google Scholar 

  31. Altier C, Dubel SJ, Barrère C et al. Trafficking of L-type calcium channels mediated by the postsynaptic scaffolding protein AKAP79. J Biol Chem 2002; 37:33598–33603.

    Article  Google Scholar 

  32. Chik CL, Liu Q-Y, Li B et al. α1D L-type Ca2+-channel currents: Inhibition by a β-adrenergic agonist and pituitary adenylate cyclase-activating polypeptide (PACAP) in pinealocytes. J Neurochem 1997; 68:1078–1087.

    Article  PubMed  CAS  Google Scholar 

  33. Stella Jr SL, Bryson EJ, Thoreson WB. A2 adenosine receptors inhibit calcium influx through L-type calcium channels in rod photoreceptors of the salamander retina. J Neurophysiol 2002; 87:351–360.

    PubMed  CAS  Google Scholar 

  34. Bech-Hansen NT, Naylor MJ, Maybaum TA et al. Loss-of-function mutations in a calcium-channel α1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat Genet 1998; 19:264–267.

    Article  PubMed  CAS  Google Scholar 

  35. Pemberton KE, Hill-Eubanks LJ, Jones SVP. Modulation of low-threshold T-type calcium channels by the five muscarinic receptor subtypes in NIH 3T3 cells. Pflügers Arch 2000; 440:452–461.

    Article  PubMed  CAS  Google Scholar 

  36. Lenglet S, Louiset E, Delarue C et al. Activation of 5-HT7 receptor in rat glomerulosa cells is associated with an increase in adenylyl cyclase activity and calcium influx through T-type calcium channels. Endocrinol 2002; 143:1748–1760.

    Article  CAS  Google Scholar 

  37. Huang C-C, Wang SJ, Gean PW. Selective enhancement of P-type calcium currents by isoproterenol in the rat amygdala. J Neurosci 1998; 18:2276–2282.

    PubMed  CAS  Google Scholar 

  38. Fournier F, Bourinet E, Nargeot J et al. Cyclic AMP-dependent regulation of P-type calcium channels expressed in Xenopus oocytes. Pflügers Arch 1993; 423:173–180.

    Article  PubMed  CAS  Google Scholar 

  39. Fukuda K, Kaneko S, Yada N et al. Cyclic AMP-dependent modulation of N-and Q-type Ca2+ channels expressed in Xenopus oocytes. Neurosci Lett 1996; 217:13–16.

    PubMed  CAS  Google Scholar 

  40. Kaneko S, Akaike A, Satoh M. Differential regulation of N-and Q-type Ca2+ channels by cyclic nucleotides and G-proteins. Life Sci 1998; 62:1543–1547.

    Article  PubMed  CAS  Google Scholar 

  41. Robbe D, Alonso G, Chaumont S et al. Role of P/Q-Ca2+ channels in metabotropic glutamate receptor 2/3-dependent presynaptic long-term depression at nucleus accumbens synapses. J Neurosci 2002; 22:4346–4356.

    PubMed  CAS  Google Scholar 

  42. Herring N, Paterson DJ. Nitric oxide—cGMP pathway facilitates acetylcholine release and bradycardia during vagal stimulation in the guinea-pig in vitro. J Physiol (Lond) 2001; 535:507–518.

    Article  PubMed  CAS  Google Scholar 

  43. Zhang X-F, Cooper DC, White FJ. Repeated cocaine treatment decreases whole-cell calcium cur rent in rat nucleus accumbens neurons. J Pharmacol Exp Ther 2002; 301:1119–1125.

    Article  PubMed  CAS  Google Scholar 

  44. Newton AC. Regulation of protein kinase C. Curr Opin Cell Biol 1997; 9:161–167.

    Article  PubMed  CAS  Google Scholar 

  45. Brose N, Rosenmund C. Move over protein kinase C, you’ve got company: Alternative cellular effectors of diacylglycerol and phorbol esters. J Cell Science 2002; 115:4399–4411.

    Article  PubMed  CAS  Google Scholar 

  46. Kazanietz MG. Novel “nonkinase” phorbol ester receptors: The C1 domain connection. Mol Pharmacol 2002; 61:759–767.

    Article  PubMed  CAS  Google Scholar 

  47. McCullough LA, Egan TM, Westfall TC. Neuropeptide Y inhibition of calcium channels in PC-12 pheochromocytoma cells. Am J Physiol 1998; 274:C1290–1297.

    PubMed  CAS  Google Scholar 

  48. Blumenstein Y, Kanevsky N, Sahar G et al. A novel long N-terminal isoform of human L-type Ca2+ channel is upregulated by protein kinase C. J Biol Chem 2002; 277:3419–3423.

    Article  PubMed  CAS  Google Scholar 

  49. Love JA, Richards NW, Owyang C et al. Muscarinic modulation of voltage-dependent Ca2+ channels in insulin-secreting HIT-T15 cells. Am J Physiol 1998; 274:G397–G405.

    PubMed  CAS  Google Scholar 

  50. Scholze A, Plant TD, Dolphin AC et al. Functional expression and characterization of a voltage-gated Cav1.3 (α1D) calcium channel subunit from an insulin-secreting cell line. Mol Endocrinol 2001; 15:1211–1221

    Article  PubMed  CAS  Google Scholar 

  51. Stea A, Soong TW, Snutch TP. Determinants of PKC-dependent modulation of a family of neuronal calcium channels. Neuron 1995; 15:929–940.

    Article  PubMed  CAS  Google Scholar 

  52. Kamatchi GL, Tiwari SN, Durieux ME et al. Effects of volatile anesthetics on the direct and indirect protein kinase C-mediated enhancement of α1E-type Ca2+ currents in Xenopus oocytes. J Pharmacol Exp Ther 2000; 293:360–369.

    PubMed  CAS  Google Scholar 

  53. Shekter LR, Taussig R, Gillard SE et al. Regulation of human calcium channels by G protein βγ subunits expressed in human embryonic kidney 293 cells. Mol Endocrinol 1997; 52:282–291.

    CAS  Google Scholar 

  54. Page KM, Canti C, Stephens GJ et al. Identification of the amino terminus of neuronal Ca2+ channel α1 subunits α1B and α1E as an essential determinant of G-protein modulation. J Neurosci 1998; 18:4815–4824.

    PubMed  CAS  Google Scholar 

  55. Meza U, Bannister RA, Melliti K et al. Biphasic, opposing modulation of cloned neuronal α1E Ca2+ channels by distinct signaling pathways coupled to M2 muscarinic acetylcholine receptors. J Neurosci 1999; 19:6806–6817.

    PubMed  CAS  Google Scholar 

  56. Melliti K, Meza U, Adams BA. Muscarinic stimulation of α1E Ca2+ channels is selectively blocked by the effector antagonist function of RGS2 and PLCβ1. J Neurosci 2000; 20:7167–7173.

    PubMed  CAS  Google Scholar 

  57. Bannister RA, Melliti K, Adams BA. Differential modulation of Cav2.3 Ca2+ channels by Gαq/11-coupled muscarinic receptors. Mol Pharmacol 2004; 65:381–388.

    Article  PubMed  CAS  Google Scholar 

  58. Morita H, Cousins H, Onoue H et al. Predominant distribution of nifedipine-inscnsitive, high voltage-activated Ca2+ channels in the terminal mesenteric artery of guinea pig. Circ Res 1999; 85:596–605.

    PubMed  CAS  Google Scholar 

  59. Morita H, Sharada T, Takewaki T et al. Multiple regulation by external ATP of nifedipine-insensitive, high voltage-activated Ca2+ current in guinea-pig mesenteric terminal arteriole. J Physiol (Lond) 2002; 539:805–816.

    Article  PubMed  CAS  Google Scholar 

  60. Garcia DE, Brown S, Hille B et al. Protein kinase C disrupts cannabinoid actions by the phosphorylation of the CB1 cannabinoid receptor. J Neurosci 1998; 18:2834–2284.

    PubMed  CAS  Google Scholar 

  61. Wu X, Kushwaha N, Albert PR et al. A critical protein kinase C phosphorylation site on the 5-HT1A receptor controlling coupling to N-type calcium channels. J Physiol (Lond) 2002; 538:41–51.

    Article  PubMed  CAS  Google Scholar 

  62. Hofmann F, Ammendola A, Schlossmann J. Rising behind NO: cGMP-dependent protein kinases. J Cell Sci 2000; 113:1671–1676.

    PubMed  CAS  Google Scholar 

  63. Chen C, Schofield GG. Nitric oxide modulates Ca2+ channel currents in rat sympathetic neurons. Eur J Pharmacol 1993; 243:83–86.

    Article  PubMed  CAS  Google Scholar 

  64. Kim SJ, Song S-K, Kim J. Inhibitory effect of nitric oxide on voltage-dependent calcium currents in rat dorsal root ganglion cells. Biochem Biophys Res Commun 2000; 271:509–514.

    Article  PubMed  CAS  Google Scholar 

  65. D’Ascenzo M, Martinotti G, Azzena et al. cGMP/protein kinase G-dependent inhibition of N-type Ca2+ channels induced by nitric oxide in human neuroblastoma IMR32 cells. J Neurosci 2002; 22:7485–7492.

    PubMed  CAS  Google Scholar 

  66. Pemberton KE, Jones SVP. Inhibition of the L-type calcium channel by the five muscarinic receptors (m1–m5) expressed in NIH 3T3 cells. Pflügers Arch 1997; 433:505–514.

    Article  PubMed  CAS  Google Scholar 

  67. Carabelli V, D’Ascenzo M, Carbone E et al. Nitric oxide inhibits neuroendocrine Cav1 L-type channel gating via cGMP-dependent protein kinase in cell-attached patches of bovine chromaffin cells. J Physiol (Lond) 2002; 541:351–366.

    Article  PubMed  CAS  Google Scholar 

  68. Abi-Gerges N, Fischmeister R, Méry P-F. G protein-mediated inhibitory effect of a nitric oxide donor on the L-type Ca2+ channel in rat ventricular myocytes. J Physiol (Lond) 2001; 531:117–130.

    Article  PubMed  CAS  Google Scholar 

  69. Abi-Gerges N, Szabo G, Otero AS et al. NO donors potentiate the β-adrenergic stimulation of ICa,L and the muscarinic activation of IK,ACh in rat cardiac myocytes. J Physiol (Lond) 2002; 540:411–424.

    Article  PubMed  CAS  Google Scholar 

  70. Vandecasteele G, Verde I, Rücker-Martin C et al. Cyclic GMP regulation of the L-type Ca2+ channel current in human atrial myocytes. J Physiol (Lond) 2001; 533:329–340.

    Article  PubMed  CAS  Google Scholar 

  71. Chen XL, Bayliss DA, Fern RJ et al. A role for T-type Ca2+ channels in the synergistic control of aldosterone production by ANG II and K+. Am J Physiol 1999; 276:F674–F683.

    PubMed  CAS  Google Scholar 

  72. Barrett PQ, Lu H-K, Colbran R et al. Stimulation of unitary T-type Ca2+ channel currents by calmodulin-dependent protein kinase II. Am J Physiol 2000; 279:C1694–C1703.

    CAS  Google Scholar 

  73. Wolfe JT, Wang H, Perez-Reyes E et al. Stimulation of recombinant Cav3.2, T-type, Ca2+ channel currents by CaMKIIγc. J Physiol (Lond) 2002; 538:343–355.

    Article  PubMed  CAS  Google Scholar 

  74. Gutiérrez LM, Viniegra S, Quintanar JL et al. Calyculin A blocks bovine chromaffin cell calcium channels independently of phosphatase inhibition. Neurosci Lett 1994; 178:55–58.

    Article  PubMed  Google Scholar 

  75. Bannister RA, Melliti K, Adams BA. Reconstituted slow muscarinic inhibition of neuronal (Cav1.2c) L-type Ca2+ channels. Biophys J 2002; 83:3256–3267.

    Article  PubMed  CAS  Google Scholar 

  76. Belevych AE, Warrier S, Harvey RD. Genistein inhibits cardiac L-type Ca2+ channel activity by a tyrosine kinase-independent mechanism. Mol Pharmacol 2002; 62:554–565.

    Article  PubMed  CAS  Google Scholar 

  77. Belevych AE, Nulton-Persson A, Sims C et al. Role of tyrosine kinase activity in α-adrenergic inhibition of the β-adrenergically regulated L-type Ca2+ current in guinea-pig ventricular myocytes. J Physiol (Lond) 2001; 537:779–792.

    Article  PubMed  CAS  Google Scholar 

  78. Hool LC. Hypoxia alters the sensitivity of the L-type Ca2+ channel to α-adrenergic receptor stimulation in the presence of β-adrenergic receptor stimulation. Circ Res 2001; 88:1036–1043.

    PubMed  CAS  Google Scholar 

  79. Meza U, Avila G, Felix R et al. Long-term regulation of calcium channels in clonal pituitary cells by epidermal growth factor, insulin, and glutocorticoids. J Gen Physiol 1994; 104:1019–1038.

    Article  PubMed  CAS  Google Scholar 

  80. Lei S, Drydcn WF, Smith PA. Regulation of N-and L-type Ca2+ channels in adult frog sympathetic ganglion B cells by nerve growth factor in vitro and in vivo. J Neurophysiol 1997; 78:3359–3370.

    PubMed  CAS  Google Scholar 

  81. Jia M, Li M, Liu X-W et al. Voltage-sensitive calcium currents are acutely increased by nerve growth factor in PC12 cells. J Neurophysiol 1999; 82:2847–2852.

    PubMed  CAS  Google Scholar 

  82. Diversé-Pierliussi M, Remmers AE, Neubig RR et al. Novel form of crosstalk between G protein and tyrosine kinase pathways. Proc Natl Acad Sci USA 1997; 94:5417–5421.

    Article  Google Scholar 

  83. Fitzgerald EM, Dolphin AC. Regulation of rat neuronal voltage-dependent calcium channels by endogenous p21-ras. Eur J Neurosci 1997; 9:1252–1261.

    Article  PubMed  CAS  Google Scholar 

  84. Blair LAC, Bence-Hanulec KK, Mehta S et al. Akt-dependent potentiation of L channels by insulin-like growth factor-1 is required for neuronal survival. J Neurosci 1999; 19:1940–1951.

    PubMed  CAS  Google Scholar 

  85. Berman DM, Gilman AG. Mammalian RGS proteins: Barbarians at the gate. J Biol Chem 1998; 273:1269–1272.

    Article  PubMed  CAS  Google Scholar 

  86. Mclliti K, Meza U, Adams BA. RGS2 blocks slow muscarinic inhibition of N-type Ca2+ channels reconstituted in a human cell line. J Physiol (Lond) 2001; 532:337–347.

    Article  Google Scholar 

  87. Hollinger S, Hepler JR. Cellular regulation of RGS proteins: Modulators and integrators of G protein signaling. Pharmacol Rev 2002; 54:527–559.

    Article  PubMed  CAS  Google Scholar 

  88. Schiff ML, Siderovski DP, Jordan JD et al. Tyrosine-kinase-dependent recruitment of RGS12 to the N-type calcium channel. Nature 2000; 408:723–727.

    Article  PubMed  CAS  Google Scholar 

  89. Strauss O, Buss F, Rosenthal R et al. Activation of neuroendocrine L-type channels (α1D subunits) in retinal epithelial cells and brain neurons by pp60c-src. Biochem Biophys Res Commun 2000; 270:806–810.

    Article  PubMed  CAS  Google Scholar 

  90. Rosenthal R, Thieme H, Strauss O. Fibroblast growth factor receptor 2 (FGFR2) in brain neurons and retinal pigment epithelial cells act via stimulation of neuroendocrine L-type channels (Cav1.3). FASEB J 2001; 15:970–977.

    Article  PubMed  CAS  Google Scholar 

  91. Weiss JL, Burgoyne RD. Voltage-independent inhibition of P/Q-type Ca2+ channels in adrenal chromaffin cells via a neuronal Ca2+ sensor-1-dependent pathway involves Src family tyrosine kinases. J Biol Chem 2001; 276:44804–44811.

    Article  PubMed  CAS  Google Scholar 

  92. Wu X, Davis GE, Meininger GA et al. Regulation of the L-type calcium channel by α5β1 integrin requires signaling between focal adhesion proteins. J Biol Chem 2001; 276:30285–30292.

    Article  PubMed  CAS  Google Scholar 

  93. Waitkus-Edwards KR, Martinez-Lemus LA, Wu X et al. α4β1 integrin activation of L-type calcium channels in vascular smooth muscle causes arteriole vasoconstriction. Circ Res 2002; 90:473–480.

    Article  PubMed  CAS  Google Scholar 

  94. Gutkind JS. Regulation of mitogen-activated protein kinase signaling networks by G protein-coupled receptors. Sci STKE 2001; 2000(40):RE1.

    Google Scholar 

  95. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 kinases. Science 2002; 298:1911–1912.

    Article  PubMed  CAS  Google Scholar 

  96. Wilk-Blaszczak MA, Stein B, Xu S et al. The mitogen-activated protein kinase p38-2 is necessary for the inhibition of N-type calcium current by bradykinin. J Neurosci 1998; 18:112–118.

    PubMed  CAS  Google Scholar 

  97. Lei S, Dryden WF, Smith PA. Involvement of Ras/MAP kinase in the regulation of Ca2+ channels in adult bullfrog sympathetic neurons by nerve growth factor. J Neurophysiol 1998; 80:1352–1361.

    PubMed  CAS  Google Scholar 

  98. Fitzgerald EM. Regulation of voltage-dependent calcium channels in rat sensory neurons involves a ras—mitogen-activated protein kinase pathway. J Physiol (Lond) 2000; 527:433–444.

    Article  PubMed  CAS  Google Scholar 

  99. Fitzgerald EM. The presence of Ca2+ channel β subunit is required for mitogen-activated protein kinase (MAPK)-dependent modulation of α1B Ca2+ channels in COS-7 cells. J Physiol (Lond) 2002; 543:425–437.

    Article  PubMed  CAS  Google Scholar 

  100. Steinberg SF. PI3King the L-type calcium channel activation mechanism. Circ Res 2001; 89:641–644.

    PubMed  CAS  Google Scholar 

  101. Cantley LC. The phosphoinositide 3-kinase pathway. Science 2002; 296:1655–1657.

    Article  PubMed  CAS  Google Scholar 

  102. Macrez N, Morel J-L, Kalkbrenner F et al. A βγ dimer derived from G13 transduces the angiotensin AT1 receptor signal to stimulation of Ca2+ channels in rat portal vein myocytes. J Biol Chem 1997; 272:23180–23185.

    Article  PubMed  CAS  Google Scholar 

  103. Viard P, Exner T, Maier U et al. Gβγ dimers stimulate vascular L-type Ca2+ channels via phosphoinositide 3-kinase. FASEB J 1999; 13:685–694.

    PubMed  CAS  Google Scholar 

  104. Quignard J-F, Mironneau J, Carricaburu V et al. Phosphoinositide 3-kinase γ mediates angiotensin II-induced stimulation of L-type calcium channels in vascular myocytes. J Biol Chem 2001; 276:32545–32551.

    Article  PubMed  CAS  Google Scholar 

  105. Macrez N, Mironneau C, Carricaburu V et al. Phosphoinositide 3-kinase isoforms selectively couple receptors to vascular L-type Ca2+ channels. Circ Res 2001; 89:692–699.

    PubMed  CAS  Google Scholar 

  106. Hilgemann DW, Feng S, Nasuhoglu C. The complex and intriguing lives of PIP2 with ion channels and transporters. Sci STKE 2001; (111):RE19.

    Google Scholar 

  107. Suh B-C, Hille B. Recovery from muscarinic modulation of M current channels requires phosphatidylinositol 4,5-bisphosphate synthesis. Neuron 2002; 35:507–520.

    Article  PubMed  CAS  Google Scholar 

  108. Hille B. Modulation of ion channels by G-protein-coupled receptors. Trends Neurosci 1994; 17:531–536.

    Article  PubMed  CAS  Google Scholar 

  109. Dhavan R, Tsai LH. A decade of CDK5. Nat Rev Mol Cell Biol 2001; 2:749–759.

    Article  PubMed  CAS  Google Scholar 

  110. Liu F, Ma XH, Ule J et al. Regulation of cyclin-dependent kinase 5 and casein kinase 1 by metabotropic glutamate receptors. Proc Natl Acad Sci USA 2001; 98:11062–11068.

    Article  PubMed  CAS  Google Scholar 

  111. Tomizawa K, Ohta J, Matsushita M et al. Cdk5/p35 regulates neurotransmitter release through phosphorylation and downregulation of P/Q-type voltage-dependent calcium channel activity. J Neurosci 2002; 22:2590–2597.

    PubMed  CAS  Google Scholar 

  112. Yan Z, Chi P, Bibb JA et al. Roscovitine: A novel regulator of P/Q-type calcium channels and transmitter release in central neurons. J Physiol (Lond) 2002; 540:761–770.

    Article  PubMed  CAS  Google Scholar 

  113. Dell’Acqua ML, Dodge KL, Tavalin SJ et al. Mapping the protein phosphatase-2B anchoring site on AKAP79. Binding and inhibition of phosphatase activity are mediated by residues 315–360. J Biol Chem 2002; 277:48796–48802.

    Article  PubMed  CAS  Google Scholar 

  114. Zhu Y, Yakel JL. Calcineurin modulates G protein-mediated inhibition of N-type calcium channels in rat sympathetic neurons. J Neurophysiol 1997; 78:1161–1169.

    PubMed  CAS  Google Scholar 

  115. Lukyanetz EA, Piper TP, Sihra TS. Calcineurin involvement in the regulation of high-threshold Ca2+ channels in NG108-15 (rodent neuroblastoma x glioma hybrid) cells. J Physiol (Lond) 1998; 510:371–385.

    Article  PubMed  CAS  Google Scholar 

  116. Hernández-López S, Tkatch T, Perez-Garcia E et al. D2 Dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLCβ1-IP3-calcineurin-signaling cascade. J Neurosci 2000; 20:8987–8995.

    PubMed  Google Scholar 

  117. Day M, Olson PA, Platzer J et al. Stimulation of 5-HT2 receptors in prefrontal pyramidal neurons inhibits Cav1.2 L-type Ca2+ currents via a PLC/IP3/calcineurin signaling cascade. J Neurophysiol 2002; 87:2490–2504.

    PubMed  CAS  Google Scholar 

  118. Manning G, Whyte DB, Martinez R et al. The protein kinase complement of the human genome. Science 2002; 298:1912–1934.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Bannister, R.A., Meza, U., Adams, B.A. (2005). Phosphorylation-Dependent Regulation of Voltage-Gated Ca2+ Channels. In: Voltage-Gated Calcium Channels. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27526-6_10

Download citation

Publish with us

Policies and ethics