Skip to main content

Virus Induced Signaling to Initiate the Interferon Mediated Anti-Viral Host Response

  • Chapter
  • 734 Accesses

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Signaling cascades leading to the activation of an anti-viral host response have been subject to intense investigations over the last decade. Consequently our understanding of the initial switches that launch this response have increased greatly. The establishment of an anti- viral state hinges on the co-ordinated production of type I interferons. These cytokines link the innate and adaptive anti-viral response. The expression of “early phase” interferons, comprising IFNß, murine IFNα4 or human IFNα1, are controlled by Toll-like receptor-induced signaling cascades that activate the latent transcription factors NF-кB and interferon regulatory factor (IRF)-3. In turn, the early IFNs induce signals to promote the expression and activation of transcription factors. These go on to induce the expression of a variety of cytokines and chemokines that propel cells of the adaptive immune system towards an anti-viral response.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hoffmann JA, Kafatos FC, Janeway CA et al. Phylogenetic perspectives in innate immunity. Science 1999; 284:1313–1318.

    PubMed  CAS  Google Scholar 

  2. Fearon DT, Locksley RM. The instructive role of innate immunity in the acquired immune response. Science 1996; 272:50–53.

    PubMed  CAS  Google Scholar 

  3. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998; 392:245–252.

    PubMed  CAS  Google Scholar 

  4. Akira S, Takeda K, Kaisho T. Toll-like receptors: Critical proteins linking innate and acquired immunity. Nat Immunol 2001; 2:675–80.

    PubMed  CAS  Google Scholar 

  5. Dunne A, O’Neill LA. The interleukin-1 receptor/Toll-like receptor superfamily: Signal transduction during inflammation and host defense. Sci STKE 2003; (171):re3.

    Google Scholar 

  6. Rock FL, Hardiman G, Timans JC et al. Family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA 1998; 95:588–593.

    PubMed  CAS  Google Scholar 

  7. Poltorak A, He X, Smirnova I et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. Science 1998; 282:2085–2088.

    PubMed  CAS  Google Scholar 

  8. Kurt-Jones EA, Popova L, Kwinn L et al. Pattern recognition receptors TLR4 and CD 14 mediate response to respiratory syncytial virus. Nat Immunol 2000; 1:398–401.

    PubMed  CAS  Google Scholar 

  9. Haynes LM, Moore DD, Kurt-Jones EA et al. Involvement of toll-like receptor 4 in innate immunity to respiratory syncytial virus. J Virol 2001; 75:10730–10737.

    PubMed  CAS  Google Scholar 

  10. Ohashi K, Burkart V, Flohe S et al. Cutting edge: Heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 2000; 164:558–561.

    PubMed  CAS  Google Scholar 

  11. Vabulas RM, Ahmad-Nejad P, Ghose S et al. HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 2002; 277:15107–15112.

    PubMed  CAS  Google Scholar 

  12. Alexopoulou L, Holt AC, Medzhitov R et al. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001; 413:732–738.

    PubMed  CAS  Google Scholar 

  13. Hemmi H, Kaisho T, Takeuchi O et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 2002; 3:196–200.

    PubMed  CAS  Google Scholar 

  14. Jurk M, Heil F, Vollmer J et al. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol 2002; 3:499.

    PubMed  CAS  Google Scholar 

  15. Burns K, Martinon F, Esslinger C et al. MyD88, an adapter protein involved in interleukin-1 signaling. J Biol Chem 1998; 273:12203–12209.

    PubMed  CAS  Google Scholar 

  16. Kawai T, Adachi O, Ogawa T et al. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 1999; 11:115–122.

    PubMed  CAS  Google Scholar 

  17. Kawai T, Takeuchi O, Fujita T et al. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysac-charide-inducible genes. J Immunol 2001; 167:5887–5894.

    PubMed  CAS  Google Scholar 

  18. Oshiumi H, Matsumoto M, Funami K et al. TICAM-1, an adapter molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol 2003; 4:161–167.

    PubMed  CAS  Google Scholar 

  19. Yamamoto M, Sato S, Mori K et al. Cutting edge: A novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol 2002; 169:6668–6672.

    PubMed  CAS  Google Scholar 

  20. Yamamoto M, Sato S, Hemmi H et al. Role of Adapter TRIF in the MyD88-Independent Toll-Like Receptor Signaling Pathway. Science 2003; 301:640–643.

    PubMed  CAS  Google Scholar 

  21. Hoebe K, Du X, Georgel P et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 2003; 424:743–748.

    PubMed  CAS  Google Scholar 

  22. Fitzgerald KA, Palsson-McDermott EM, Bowie AG et al. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 2001; 413:78–83.

    PubMed  CAS  Google Scholar 

  23. Horng T, Barton GM, Medzhitov R. TIRAP: An adapter molecule in the Toll signaling pathway. Nat Immunol 2001; 2:835–841.

    PubMed  CAS  Google Scholar 

  24. Horng T, Barton GM, Flavell RA et al. The adapter molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 2002; 420:329–333.

    PubMed  CAS  Google Scholar 

  25. Yamamoto M, Sato S, Hemmi H et al. Essential role for TIRAP in activation of the signaling cascade shared by TLR2 and TLR4. Nature 2002; 420:324–329.

    PubMed  CAS  Google Scholar 

  26. Bin LH, Xu LG, Shu HB. TIRP: A novel TIR domain-containing adapter protein involved in Toll/interleukin-1 receptor signaling. J Biol Chem 2003; 278:24526–24532

    PubMed  CAS  Google Scholar 

  27. O’Neill LA, Fitzgerald KA, Bowie AG. The Toll-IL-1 receptor adapter family grows to five members. Trends Immunol 2003; 24:286–90.

    PubMed  Google Scholar 

  28. Maran A, Maitra RK, Kumar A et al. Blockage of NF-kappa B signaling by selective ablation of an mRNA target by 2-5A antisense chimeras. Science 1994; 265:789–792.

    PubMed  CAS  Google Scholar 

  29. Yang YL, Reis LF, Pavlovic J et al. Deficient signaling in mice devoid of double-stranded RNA-dependent protein kinase. Embo J 1995; 14:6095–6106.

    PubMed  CAS  Google Scholar 

  30. Kerr IM, Brown RE. pppA2′p5′A2′p5′A: An inhibitor of protein synthesis synthesized with an enzyme fraction from interferon-treated cells. Proc Natl Acad Sci USA 1978; 75:256–260.

    PubMed  CAS  Google Scholar 

  31. Silverman RH, Cirinio NM. RNA decay by the interferon-regulated 2-5A system as a host defense against viruses. New York: Wiley-Liss Inc, 1997.

    Google Scholar 

  32. Silverman RH. 2-5A-dependent RNAseL: A regulated endoribonuclease in the interferon system. New York: Academic Press, 1997.

    Google Scholar 

  33. Williams BR. Signal integration via PKR. Sci STKE 2001; re2.

    Google Scholar 

  34. Dagon Y, Dovrat S, Vilchik S et al. Double-stranded RNA-dependent protein kinase, PKR, down-regulates CDC2/cyclin B1 and induces apoptosis in non-transformed but not in v-mos transformed cells. Oncogene 2001; 20:8045–8056.

    PubMed  CAS  Google Scholar 

  35. Robertson HD, Mathews MB. The regulation of the protein kinase PKR by RNA. Biochimie 1996; 78:909–914.

    PubMed  CAS  Google Scholar 

  36. Chu WM, Ostertag D, Li ZW et al. JNK2 and IKKbeta are required for activating the innate response to viral infection. Immunity 1999; 11:721–731.

    PubMed  CAS  Google Scholar 

  37. Zamanian-Daryoush M, Mogensen TH, DiDonato JA et al. NF-kappaB activation by double-stranded-RNA-activated protein kinase (PKR) is mediated through NF-kappaB-inducing kinase and IkappaB kinase. Mol Cell Biol 2000; 20:1278–1290.

    PubMed  CAS  Google Scholar 

  38. Israel A. The IKK complex: An integrator of all signals that activate NF-kappaB? Trends Cell Biol 2000; 10:129–133.

    PubMed  CAS  Google Scholar 

  39. Perkins ND. Achieving transcriptional specificity with NF-kappa B. Int J Biochem Cell Biol 1997; 29:1433–1448.

    PubMed  CAS  Google Scholar 

  40. Wong AH, Tarn NW, Yang YL et al. Physical association between STAT1 and the interferon-inducible protein kinase PKR and implications for interferon and double-stranded RNA signaling pathways. Embo J 1997; 16:1291–1304.

    PubMed  CAS  Google Scholar 

  41. Ramana CV, Grammatikakis N, Chernov M et al. Regulation of c-myc expression by IFN-gamma through Statl-dependent and-independent pathways. Embo J 2000; 19:263–272.

    PubMed  CAS  Google Scholar 

  42. Kumar A, Yang YL, Flati V et al. Deficient cytokine signaling in mouse embryo fibroblasts with a targeted deletion in the PKR gene: Role of IRF-1 and NF-kappaB. Embo J 1997; 16:406–416.

    PubMed  CAS  Google Scholar 

  43. Clemens MJ, Elia A. The double-stranded RNA-dependent protein kinase PKR: Structure and function. J Interferon Cytokine Res 1997; 17:503–524.

    PubMed  CAS  Google Scholar 

  44. Diebold SS, Montoya M, Unger H et al. Viral infection switches non-plasmacytoid dendritic cells into high interferon producers. Nature 2003; 424:324–328.

    PubMed  CAS  Google Scholar 

  45. Miyamoto M, Fujita T, Kimura Y et al. Regulated expression of a gene encoding a nuclear factor, IRF-1, that specifically binds to IFN-beta gene regulatory elements. Cell 1988; 54:903–913.

    PubMed  CAS  Google Scholar 

  46. Harada H, Fujita T, Miyamoto M et al. Structurally similar but functionally distinct factors, IRF-1 and IRF-2, bind to the same regulatory elements of IFN and IFN-inducible genes. Cell 1989; 58:729–739.

    PubMed  CAS  Google Scholar 

  47. Fujii Y, Shimizu T, Kusumoto M et al. Crystal structure of an IRF-DNA complex reveals novel DNA recognition and cooperative binding to a tandem repeat of core sequences. Embo J 1999; 18:5028–5041.

    PubMed  CAS  Google Scholar 

  48. Moore PS, Boshoff, C Weiss RA et al. Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science 1996; 274:1739–1744.

    PubMed  CAS  Google Scholar 

  49. Lubyova B, Pitha PM. Characterization of a novel human herpesvirus 8-encoded protein, vIRF-3, that shows homology to viral and cellular interferon regulatory factors. J Virol 2000; 74:8194–8201.

    PubMed  CAS  Google Scholar 

  50. Cunningham C, Barnard S, Blackbourn DJ et al. Transcription mapping of human herpesvirus 8 genes encoding viral interferon regulatory factors. J Gen Virol 2003; 84:1471–1483.

    PubMed  CAS  Google Scholar 

  51. Taniguchi T, Ogasawara K, Takaoka A et al. IRF family of transcription factors as regulators of host defense. Annu Rev Immunol 2001; 19:623–655.

    PubMed  CAS  Google Scholar 

  52. Servant MJ, Grandvaux N, Hiscott J. Multiple signaling pathways leading to the activation of interferon regulatory factor 3. Biochem Pharmacol 2002; 64:985–992.

    PubMed  CAS  Google Scholar 

  53. Servant MJ, Tenoever B, Lin R. Overlapping and distinct mechanisms regulating IRF-3 and IRF-7 function. J Interferon Cytokine Res 2002; 22:49–58.

    PubMed  CAS  Google Scholar 

  54. Levy DE, Marie I, Smith E et al. Enhancement and diversification of IFN induction by IRF-7-mediated positive feedback. J Interferon Cytokine Res 2002; 22:87–93.

    PubMed  CAS  Google Scholar 

  55. Mamane Y, Heylbroeck C, Genin P et al. Interferon regulatory factors: The next generation. Gene 1999; 237:1–14.

    PubMed  CAS  Google Scholar 

  56. Lin R, Mamane Y, Hiscott J. Multiple regulatory domains control IRF-7 activity in response to virus infection. J Biol Chem 2000; 275:34320–34327.

    PubMed  CAS  Google Scholar 

  57. Sato M, Hata N, Asagiri M et al. Positive feedback regulation of type I IFN genes by the IFN-inducible transcription factor IRF-7. FEBS Lett 1998; 441:106–110.

    PubMed  CAS  Google Scholar 

  58. Marie I, Durbin JE, Levy DE. Differential viral induction of distinct interferon-alpha genes by positive feedback through interferon regulatory factor-7. Embo J 1998; 17:6660–6669.

    PubMed  CAS  Google Scholar 

  59. Lin R, Genin P, Mamane Y et al. Selective DNA binding and association with the CREB binding protein coactivator contribute to differential activation of alpha/beta interferon genes by interferon regulatory factors 3 and 7. Mol Cell Biol 2000; 20:6342–6353.

    PubMed  CAS  Google Scholar 

  60. Au WC, Moore PA, Lowther W et al. Identification of a member of the interferon regulatory factor family that binds to the interferon-stimulated response element and activates expression of interferon-induced genes, Proc Natl Acad Sci USA 1995; 92:11657–11661.

    PubMed  CAS  Google Scholar 

  61. Sato M, Tanaka N, Hata N et al. Involvement of the IRF family transcription factor IRF-3 in virus-induced activation of the IFN-beta gene. FEBS Lett 1998; 425:112–116.

    PubMed  CAS  Google Scholar 

  62. Sato M, Suemori H, Hata N et al. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity 2000; 13:539–548.

    PubMed  CAS  Google Scholar 

  63. Bluyssen AR, Durbin JE, Levy DE. ISGF3 gamma p48, a specificity switch for interferon activated transcription factors. Cytokine Growth Factor Rev 1996; 7:11–7.

    PubMed  CAS  Google Scholar 

  64. Darnell Jr JE, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994; 264:1415–1421.

    PubMed  CAS  Google Scholar 

  65. Harada H, Matsumoto M, Sato M et al. Regulation of IFN-alpha/beta genes: Evidence for a dual function of the transcription factor complex ISGF3 in the production and action of IFN-alpha/beta. Genes Cells 1996; 1:995–1005.

    PubMed  CAS  Google Scholar 

  66. Erlandsson L, Blumenthal R, Eloranta ML et al. Interferon-beta is required for interferon-alpha production in mouse fibroblasts. Curr Biol 1998; 8:223–226.

    PubMed  CAS  Google Scholar 

  67. Lin R, Heylbroeck C, Pitha PM et al. Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. Mol Cell Biol 1998; 18:2986–2996.

    PubMed  CAS  Google Scholar 

  68. Lin R, Mamane Y, Hiscott J. Structural and functional analysis of interferon regulatory factor 3: Localization of the transactivation and autoinhibitory domains. Mol Cell Biol 1999; 19:2465–2474.

    PubMed  CAS  Google Scholar 

  69. Yoneyama M, Suhara W, Fukuhara Y et al. Direct triggering of the type I interferon system by virus infection: Activation of a transcription factor complex containing IRF-3 and CBP/p300. Embo J 1998; 17:1087–1095.

    PubMed  CAS  Google Scholar 

  70. Servant MJ, ten Oever B, LePage C et al. Identification of distinct signaling pathways leading to the phosphorylation of interferon regulatory factor 3. J Biol Chem 2001; 276:355–363.

    PubMed  CAS  Google Scholar 

  71. Servant MJ, Grandvaux N, tenOever BR et al. Identification of the minimal phosphoacceptor site required for in vivo activation of interferon regulatory factor 3 in response to virus and double-stranded RNA. J Biol Chem 2003; 278:9441–9447.

    PubMed  CAS  Google Scholar 

  72. Sharma S, tenOever BR, Grandvaux N et al. Triggering the interferon antiviral response through an IKK-related pathway. Science 2003; 300:1148–1151.

    PubMed  CAS  Google Scholar 

  73. Fitzgerald KA, McWhirter SM, Faia KL et al. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 2003; 4:491–496.

    PubMed  CAS  Google Scholar 

  74. Suhara W, Yoneyama M, Iwamura T et al. Analyses of virus-induced homomeric and heteromeric protein associations between IRF-3 and coactivator CBP/p300. J Biochem (Tokyo) 2000; 128:301–307.

    PubMed  CAS  Google Scholar 

  75. Suhara W, Yoneyama M, Kitabayashi I et al. Direct involvement of CREB-binding protein/p300 in sequence-specific DNA binding of virus-activated interferon regulatory factor-3 holocomplex. J Biol Chem 2002; 277:22304–22313.

    PubMed  CAS  Google Scholar 

  76. Doyle S, Vaidya S, O’Connell R et al. IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity 2002; 17:251–263.

    PubMed  CAS  Google Scholar 

  77. Wietek C, Miggin SM, Jefferies CA et al. IRF-3-mediated activation of the interferon-sensitive response element by TLR4 but not TLR3 requires the p65 subunit of NF-κB. J Biol Chem 2003; 278:50923–50931.

    PubMed  CAS  Google Scholar 

  78. Civas A, Island ML, Genin P et al. Regulation of virus-induced interferon-A genes. Biochimie 2002; 84:643–654.

    PubMed  CAS  Google Scholar 

  79. Mogensen KE, Lewerenz M, Reboul J et al. The type I interferon receptor: Structure, function, and evolution of a family business. J Interferon Cytokine Res 1999; 19:1069–1098.

    PubMed  CAS  Google Scholar 

  80. Colamonici OR, Uyttendaele H, Domanski P et al. pl35tyk2, an interferon-alpha-activated tyrosine kinase, is physically associated with an interferon-alpha receptor. J Biol Chem 1994; 269:3518–3522.

    PubMed  CAS  Google Scholar 

  81. Novick D, Cohen B, Rubinstein M. The human interferon alpha/beta receptor: Characterization and molecular cloning. Cell 1994; 77:391–400.

    PubMed  CAS  Google Scholar 

  82. Yan H, Krishnan K, Lim JT et al. Molecular characterization of an alpha interferon receptor 1 subunit (IFNaRl) domain required for TYK2 binding and signal transduction. Mol Cell Biol 1996;16:2074–2082.

    PubMed  CAS  Google Scholar 

  83. Leung S, Qureshi SA, Kerr IM et al. Role of STAT2 in the alpha interferon signaling pathway. Mol Cell Biol 1995; 15:1312–1317.

    PubMed  CAS  Google Scholar 

  84. Qureshi SA, Leung S, Kerr IM et al. Function of Stat2 protein in transcriptional activation by alpha interferon. Mol Cell Biol 1996; 16:288–293.

    PubMed  CAS  Google Scholar 

  85. Shuai K, Ziemiecki A, Wilks AF et al. Polypeptide signalling to the nucleus through tyrosine phosphorylation of Jak and Stat proteins. Nature 1993; 366:580–583.

    PubMed  CAS  Google Scholar 

  86. Veals SA, Schindler C, Leonard D et al. Subunit of an alpha-interferon-responsive transcription factor is related to interferon regulatory factor and Myb families of DNA-binding proteins. Mol Cell Biol 1992; 12:3315–3324.

    PubMed  CAS  Google Scholar 

  87. Toshchakov V, Jones BW, Perera PY et al. TLR4, but not TLR2, mediates IFN-beta-induced STAT1alpha/beta-dependent gene expression in macrophages. Nat Immunol 2002; 3:392–398.

    PubMed  CAS  Google Scholar 

  88. Yeow WS, Au WC, Lowther WJ et al. Downregulation of IRF-3 levels by ribozyme modulates the profile of IFNA subtypes expressed in infected human cells. J Virol 2001; 75:3021–3027.

    PubMed  CAS  Google Scholar 

  89. Stark GR, Kerr IM, Williams BR et al. How cells respond to interferons. Annu Rev Biochem 1998; 67:227–264.

    PubMed  CAS  Google Scholar 

  90. Ward SV, Samuel CE. Regulation of the interferon-inducible PKR kinase gene: The KCS element is a constitutive promoter element that functions in concert with the interferon-stimulated response element. Virology 2002; 296:136–146.

    PubMed  CAS  Google Scholar 

  91. Rebouillat D, Hovnanian A, David G et al. Characterization of the gene encoding the 100-kDa form of human 2′,5′ oligoadenylate synthetase. Genomics 2000; 70:232–240.

    PubMed  CAS  Google Scholar 

  92. Ohmori Y, Hamilton TA. Requirement for STAT1 in LPS-induced gene expression in macrophages. J Leukoc Biol 2001; 69:598–604.

    PubMed  CAS  Google Scholar 

  93. Doyle SE, O’Connell R, Vaidya SA et al. Toll-like receptor 3 mediates a more potent antiviral response than toll-like receptor 4. J Immunol 2003; 170:3565–3571.

    PubMed  CAS  Google Scholar 

  94. Nelson N, Marks MS, Driggers PH et al. Interferon consensus sequence-binding protein, a member of the interferon regulatory factor family, suppresses interferon-induced gene transcription. Mol Cell Biol 1993; 13:588–599.

    PubMed  CAS  Google Scholar 

  95. Endo TA, Masuhara M, Yokouchi M et al. A new protein containing an SH2 domain that inhibits JAK kinases. Nature 1997; 387:921–924.

    PubMed  CAS  Google Scholar 

  96. Naka T, Narazaki M, Hirata M et al. Structure and function of a new STAT-induced STAT inhibitor. Nature 1997; 387:924–929.

    PubMed  CAS  Google Scholar 

  97. Starr R, Willson TA, Viney EM et al. A family of cytokine-inducible inhibitors of signalling. Nature 1997; 387:917–921.

    PubMed  CAS  Google Scholar 

  98. Boisclair YR, Wang J, Shi J et al. Role of the suppressor of cytokine signaling-3 in mediating the inhibitory effects of interleukin-1beta on the growth hormone-dependent transcription of the acid-labile subunit gene in liver cells. J Biol Chem 2000; 275:3841–3847.

    PubMed  CAS  Google Scholar 

  99. Dalpke AH, Opper S, Zimmermann S et al. Suppressors of cytokine signaling (SOCS)-l and SOCS-3 are induced by CpG-DNA and modulate cytokine responses in APCs. J Immunol 2001; 166:7082–7089.

    PubMed  CAS  Google Scholar 

  100. Stoiber D, Kovarik P, Cohney S et al. Lipopolysaccharide induces in macrophages the synthesis of the suppressor of cytokine signaling 3 and suppresses signal transduction in response to the activating factor IFN-gamma. J Immunol 1999; 163:2640–2647.

    PubMed  CAS  Google Scholar 

  101. Kinjyo I, Hanada T, Inagaki-Ohara K et al. SOCS1/JAB is a negative regulator of LPS-induced macrophage activation. Immunity 2002; 17:583–591.

    PubMed  CAS  Google Scholar 

  102. Nakagawa R, Naka T, Tsutsui H et al. SOCS-1 participates in negative regulation of LPS responses. Immunity 2002; 17:677–687.

    PubMed  CAS  Google Scholar 

  103. Wathelet MG, Lin CH, Parekh BS et al. Virus infection induces the assembly of coordinately activated transcription factors on the IFN-beta enhancer in vivo. Mol Cell 1998; 1:507–518.

    PubMed  CAS  Google Scholar 

  104. Yie J, Senger K, Thanos D. Mechanism by which the IFN-beta enhanceosome activates transcription. Proc Natl Acad Sci USA 1999; 96:13108–13113.

    PubMed  CAS  Google Scholar 

  105. Kim T, Kim TY, Lee WG et al. Signaling pathways to the assembly of an interferon-beta enhanceosome. Chemical genetic studies with a small molecule. J Biol Chem 2000; 275:16910–16917.

    PubMed  CAS  Google Scholar 

  106. Agalioti T, Lomvardas S, Parekh B et al. Ordered recruitment of chromatin modifying and general transcription factors to the IFN-beta promoter. Cell 2000; 103:667–678.

    PubMed  CAS  Google Scholar 

  107. Thanos D, Maniatis T. The high mobility group protein HMG I(Y) is required for NF-kappa B-dependent virus induction of the human IFN-beta gene. Cell 1992; 71:777–789.

    PubMed  CAS  Google Scholar 

  108. Yie J, Liang S, Merika M et al. Intra-and intermolecular cooperative binding of high-mobility-group protein I(Y) to the beta-interferon promoter. Mol Cell Biol 1997; 17:3649–3662.

    PubMed  CAS  Google Scholar 

  109. Falvo JV, Thanos D, Maniatis T. Reversal of intrinsic DNA bends in the IFN beta gene enhancer by transcription factors and the architectural protein HMG I(Y). Cell 1995; 83:1101–1111.

    PubMed  CAS  Google Scholar 

  110. Yeow WS, Au WC, Juang YT et al. Reconstitution of virus-mediated expression of interferon alpha genes in human fibroblast cells by ectopic interferon regulatory factor-7. J Biol Chem 2000; 275:6313–6320.

    PubMed  CAS  Google Scholar 

  111. Au WC, Pitha PM. Recruitment of multiple interferon regulatory factors and histone acetyltransferase to the transcriptionally active interferon a promoters. J Biol Chem 2001; 276:41629–41637.

    PubMed  CAS  Google Scholar 

  112. Barnes BJ, Moore PA, Pitha PM. Virus-specific activation of a novel interferon regulatory factor, IRF-5, results in the induction of distinct interferon alpha genes. J Biol Chem 2001; 276:23382–23390.

    PubMed  CAS  Google Scholar 

  113. Bowie A, Kiss-Toth E, Symons JA et al. A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proc Natl Acad Sci USA 2000; 97:10162–10167.

    PubMed  CAS  Google Scholar 

  114. Harte MT, Haga IR, Maloney G et al. The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J Exp Med 2003; 197:343–351.

    PubMed  CAS  Google Scholar 

  115. Ronco LV, Karpova AY, Vidal M et al. Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes Dev 1998; 12:2061–2072.

    PubMed  CAS  Google Scholar 

  116. Foy E, K Li, C Wang et al. Regulation of interferon regulatory factor-3 by the hepatitis C virus serine protease. Science 2003; 300:1145–1148.

    PubMed  CAS  Google Scholar 

  117. Basler CF, Mikulasova A, Martinez-Sobrido L et al. The Ebola virus VP35 protein inhibits activation of interferon regulatory factor 3. J Virol 2003; 77:7945–7956.

    PubMed  CAS  Google Scholar 

  118. Barnard P, Payne E, McMillan NA. The human papillomavirus E7 protein is able to inhibit the antiviral and anti-growth functions of interferon-alpha. Virology 2000; 277:411–419.

    PubMed  CAS  Google Scholar 

  119. Zimring JC, Goodbourn S, Offermann MK. Human herpesvirus 8 encodes an interferon regulatory factor (IRF) homolog that represses IRF-1-mediated transcription. J Virol 1998; 72:701–707.

    PubMed  CAS  Google Scholar 

  120. Gao SJ, Boshoff C, Jayachandra S et al. KSHV ORF K9 (vIRF) is an oncogene which inhibits the interferon signaling pathway. Oncogene 1997; 15:1979–1985.

    PubMed  CAS  Google Scholar 

  121. Lin R, Genin P, Mamane Y et al. HHV-8 encoded vIRF-1 represses the interferon antiviral response by blocking IRF-3 recruitment of the CBP/p300 coactivators. Oncogene 2001; 20:800–811.

    PubMed  CAS  Google Scholar 

  122. Symons JA, Alcami A, Smith GL. Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. Cell 1995; 81:551–560.

    PubMed  CAS  Google Scholar 

  123. Colamonici OR, Domanski P, Sweitzer SM et al. Vaccinia virus B18R gene encodes a type I interferon-binding protein that blocks interferon alpha transmembrane signaling. J Biol Chem 1995; 270:15974–15978.

    PubMed  CAS  Google Scholar 

  124. Alcami A, Smith GL. Vaccinia, cowpox, and camelpox viruses encode soluble gamma interferon receptors with novel broad species specificity. J Virol 1995; 69:4633–4639.

    PubMed  CAS  Google Scholar 

  125. Weihua X, Ramanujam S, Lindner DJ et al. The polyoma virus T antigen interferes with interferon-inducible gene expression. Proc Natl Acad Sci USA 1998; 95:1085–1090.

    PubMed  CAS  Google Scholar 

  126. Young DF, Didcock L, Goodbourn S et al. Paramyxoviridae use distinct virus-specific mechanisms to circumvent the interferon response. Virology 2000; 269:383–390.

    PubMed  CAS  Google Scholar 

  127. Andrejeva J, Young DF, Goodbourn S et al. Degradation of STAT1 and STAT2 by the V proteins of simian virus 5 and human parainfluenza virus type 2, respectively: Consequences for virus replication in the presence of alpha/beta and gamma interferons. J Virol 2002; 76:2159–2167.

    PubMed  CAS  Google Scholar 

  128. Tan SL, Katze MG. Biochemical and genetic evidence for complex formation between the influenza A virus NS1 protein and the interferon-induced PKR protein kinase. J Interferon Cytokine Res 1998; 18:757–766.

    PubMed  CAS  Google Scholar 

  129. Sharp TV, Moonan F, Romashko A et al. The vaccinia virus E3L gene product interacts with both the regulatory and the substrate binding regions of PKR: Implications for PKR autoregulation. Virology 1998; 250:302–315.

    PubMed  CAS  Google Scholar 

  130. Rivas C, Gil J, Melkova Z et al. Vaccinia virus E3L protein is an inhibitor of the interferon (i.f.n.)-induced 2–5A synthetase enzyme. Virology 1998; 243:406–414.

    PubMed  CAS  Google Scholar 

  131. Gale MJ, Korth MJ, Tang NM et al. Evidence that hepatitis C virus resistance to interferon is mediated through repression of the PKR protein kinase by the nonstructural 5A protein. Virology 1997; 230:217–227.

    PubMed  CAS  Google Scholar 

  132. Martinand C, Montavon C, Salehzada T et al. RNase L inhibitor is induced during human immunodeficiency virus type 1 infection and down regulates the 2–5A/RNase L pathway in human T cells. J Virol 1999; 73:290–296.

    PubMed  CAS  Google Scholar 

  133. Fitzgerald KA, Rowe DC, Barnes BJ et al. LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the Toll adapters TRAM and TRIF. J Exp Med 2003; 198:1043–1055.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Wietek, C., O’Neill, L.A.J. (2005). Virus Induced Signaling to Initiate the Interferon Mediated Anti-Viral Host Response. In: Toll and Toll-Like Receptors: An Immunologic Perspective. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27445-6_6

Download citation

Publish with us

Policies and ethics