Skip to main content

Introduction

Toll Receptors and the Renaissance of Innate Immunity

  • Chapter
Toll and Toll-Like Receptors: An Immunologic Perspective

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

In the last few pages of Immunology: The Science of Self-Nonself Discrimination Jan Klein ponders on what he would study if he were to start over in the lab. Dismissing the antibody, MHC, the T-cell and parasitology, he considers instead the phylogeny of immune reactions, particularly in ancient phyla. As for a favored cell he chooses the macrophage. Describing it as a “MddchenfUr alles,” (all purpose kitchen maid) Klein believed that this immunocyte still had secrets to reveal. Toll-Like Receptor (TLR) biology would prove to be one of these secrets. Analyses of the evolution of these receptors (Tolls and TLRs) have also helped us to rethink immune system phylogeny. In the first part of this chapter the history of the discovery of Toll and TLR biology is described. The evolution of the TLR genes and theories of immune function are covered in later sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Klein J. Immunology. The Science of Self-Nonself Discrimination. 1st ed. New York: John Wiley & Sons, 1982.

    Google Scholar 

  2. Anderson KV, Nüsslein-Volhard C. Information for the dorsal-ventral pattern of the Drosophila embryo is stored as maternal mRNA. Nature 1984; 311:223–227.

    Article  PubMed  CAS  Google Scholar 

  3. Christiane Nüsslein-Volhard. The identification of genes controlling development in flies and fishes. Nobel Lecture 1995; Physiology or Medicine: 285–306.

    Google Scholar 

  4. Belvin MP, Anderson KV. A conserved signaling pathway: the Drosophila toll-dorsal pathway. Ann Rev Cell Dev Biol 1996; 12:393–416.

    Article  CAS  Google Scholar 

  5. Lemaitre B, Nicolas E, Michaut L et al. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996; 86:973–983.

    Article  PubMed  CAS  Google Scholar 

  6. Hashimoto C, Hudson KL, Anderson KV. The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 1988; 52:269–279.

    Article  PubMed  CAS  Google Scholar 

  7. Janeway CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002; 20:197–216.

    Article  PubMed  CAS  Google Scholar 

  8. Desowitz R. The thorn in the starfish. The immune system and how it works. 1st ed. New York: W.W. Norton & Company, 1987.

    Google Scholar 

  9. Agrawal A, Eastman QM, Schatz DG. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 1998; 394:744–751.

    Article  PubMed  CAS  Google Scholar 

  10. Stathopoulos A, Levine M. Dorsal gradient networks in the Drosophila embryo. Dev Biol 2002; 246:57–67.

    Article  PubMed  CAS  Google Scholar 

  11. Sims JE, March CJ, Cosman D et al. cDNA expression cloning of the IL-1 receptor, a member of the immunoglobulin superfamily. Science 1988; 241:585–589.

    Article  PubMed  CAS  Google Scholar 

  12. Gay NJ and Keith FJ. Drosophila Toll and IL-1 receptor. Nature 1991; 351:355–356.

    Article  PubMed  CAS  Google Scholar 

  13. Engstrom Y, Kadalayil L, Sun SC et al. kappa B-like motifs regulate the induction of immune genes in Drosophila. J Mol Biol 1993; 232:327–333.

    Article  PubMed  CAS  Google Scholar 

  14. Hoffmann JA. The immune response of Drosophila. Nature 2003; 426:33–8.

    Article  PubMed  CAS  Google Scholar 

  15. Anderson KV. Toll signaling pathways in the innate immune response. Curr Opin Immunol 2000; 12:13–19.

    Article  PubMed  CAS  Google Scholar 

  16. Imler JL, Hoffmann JA. Toll receptors in Drosophila: a family of molecules regulating development and immunity. Curr Top Microbiol Immunol 2002; 270:63–79

    PubMed  CAS  Google Scholar 

  17. Khush RS, Lemaitre B. Genes that fight infection. What the Drosophila genome says about animal immunity. TIG 2000; 16:442–448.

    PubMed  CAS  Google Scholar 

  18. Janeway CA, Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 1989; 54:1–13.

    PubMed  CAS  Google Scholar 

  19. Barton GM, Medzhitov R. Toll-like receptors and their ligands. Curr Top Microbiol Immunol 2002; 270:81–92.

    PubMed  CAS  Google Scholar 

  20. Zhang D, Zhang G, Hayden MS et al. A toll-like receptor that prevents infection by uropathogenic bacteria. Science 2004; 303:1522–1526.

    Article  PubMed  CAS  Google Scholar 

  21. Heil F, Hemmi H, Hochrein H. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004; 303:1526–1529.

    Article  PubMed  CAS  Google Scholar 

  22. Diebold SS, Kaisho T, Hemmi H. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 2004; 303:1529–1531.

    Article  PubMed  CAS  Google Scholar 

  23. Gömez-Gömez L, Boiler T. Flagellin perception: A paradigm for innate immunity. Trends Plant Sci 2002; 7:251–256.

    Article  PubMed  Google Scholar 

  24. Felix G, Duran JD, Volko S et al. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 1999: 18;265–276.

    Article  PubMed  CAS  Google Scholar 

  25. Gewirtz AT, Navas TA, Lyons S. Cutting edge: bacterial flagellin activates basolaterally expressed tlr5 to induce epithelial proinflammatory gene expression. J Immunol 2001; 167:1882–1885.

    PubMed  CAS  Google Scholar 

  26. Gewirtz AT. Intestinal epithelial toll-like receptors: to protect. And serve? Curr Pharm Des 2003; 9:1–5.

    Article  PubMed  CAS  Google Scholar 

  27. Smith KD, Andersen-Nissen E, Hayashi F et al. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat Immunol 2003; 4:1247–1253.

    Article  PubMed  CAS  Google Scholar 

  28. Gewirtz AT, Yu Y, Krishna US et al. Helicobacter pylori Flagellin Evades Toll-Like Receptor 5-Mediated Innate Immunity. Jr J Infect Dis 2004; 189:1914–1920.

    Article  CAS  Google Scholar 

  29. Beutler B, Rehli M. Evolution of the TIR, tolls and TLRs: functional inferences from computational biology. Curr Top Microbiol Immunol 2002; 270:1–21.

    PubMed  CAS  Google Scholar 

  30. Fluhr R, Kaplan-Levy RN. Plant disease resistance: commonality and novelty in multicellular innate immunity. Curr Top Microbiol Immunol 2002; 270:23–46.

    PubMed  CAS  Google Scholar 

  31. Robert Fluhr. Sentinels of Disease. Plant Resistance Genes Plant Physiol 2001; 127:1367–1374.

    Google Scholar 

  32. Turner JD. A bioinformatic approach to the identification of bacterial proteins interacting with Toll-interleukin 1 receptor-resistance (TIR) homology domains. FEMS Immunol Med Microbiol 2003; 37:13–21.

    Article  PubMed  CAS  Google Scholar 

  33. Khush RS, Lemaitre B. Genes that fight infection: What the Drosophila genome says about animal immunity. Trends Genet 2000; 16:442–449.

    Article  PubMed  CAS  Google Scholar 

  34. Christophides GK. Immunity-related genes and gene families in Anopheles gambiae. Science 2002; 298:159–165.

    Article  PubMed  CAS  Google Scholar 

  35. Blandin S, Levashina EA. Mosquito immune responses against malaria parasites. Curr Opin Immunol 2004; 16:16–20.

    Article  PubMed  CAS  Google Scholar 

  36. Christophides GK, Vlachou D, Kafatos FC. Comparative and functional genomics of the innate immune system in the malaria vector Anopheles gambiae. Immunol Rev 2004; 198:127–148.

    Article  PubMed  CAS  Google Scholar 

  37. Luna C, Wang X, Huang Y. Characterization of four Toll related genes during development and immune responses in Anopheles gambiae. Insect Biochem Mol Biol 2002; 32:1171–1179.

    Article  PubMed  CAS  Google Scholar 

  38. Tan M-W, Aususbel F. Caenorhabditis elegans: A model genetic host to study pseudomonas aeruginosa. Curr Opin Microbiol 2000; 3:29–34.

    Article  PubMed  CAS  Google Scholar 

  39. Rich T, Allen R, Lucas A-M et al. Pellino-related sequences from Caenorhabditis elegans and Homo sapiens. Immunogenetics 2000; 52:145–134.

    Article  PubMed  CAS  Google Scholar 

  40. Couillault C, Pujol N, Reboul J et al. TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nat Immunol 2004; 5:488–494.

    Article  PubMed  CAS  Google Scholar 

  41. Millet CM and Ewbank JJ. Immunity in Caenorhabditis elegans. Curr Opin Immunol 2004; 16:4–9.

    Article  PubMed  CAS  Google Scholar 

  42. Schulenburg H, Kurz CL, Ewbank JJ. Evolution of the innate immune system: the worm perspective. Immunol Rev 2004: 198;36–58.

    Article  PubMed  CAS  Google Scholar 

  43. Schulenburg H, Müller S. Natural variation in the response of Caenorhabditis elegans towards Bacillus thuringiensis. Parasitology 2004; 128:433–443.

    Article  PubMed  CAS  Google Scholar 

  44. Alcami A, Koszinowski UH. Viral mechanisms of immune evasion. Trends Microbiol 2000; 8:410–418.

    Article  PubMed  CAS  Google Scholar 

  45. Jault C, Pichon L, Chluba J. Toll-like receptor gene family and TIR-domain adapters in Danio rerio. Mol Immunol 2004; 40:759–771.

    Article  PubMed  CAS  Google Scholar 

  46. Feys BJ, Parker JE. Interplay of signaling pathways in plant disease resistance. Trends Genet 2000; 16:449–455.

    Article  PubMed  CAS  Google Scholar 

  47. Cohn J, Sessa G, Martin GB. Innate immunity in plants. Curr Opin Immunol 2001; 13:55–62.

    Article  PubMed  CAS  Google Scholar 

  48. Jebanathirajah JA, Peri S, Pandey A. Toll and interleukin-1 receptor (TIR) domain-containing proteins in plants: a genomic perspective. Trends in Plant Sciences 2002; 7:388–391.

    Article  CAS  Google Scholar 

  49. Lancet D, Sadovsky E, Seidemann E. Probability model for molecular recognition in biological receptor repertoires: significance to the olfactory system. PNAS 1993; 90:3715–3719.

    Article  PubMed  CAS  Google Scholar 

  50. Jones DA, Takemoto D. Plant innate immunity-direct and indirect recognition of general and specific pathogen-associated molecules. Curr Opin Immunol 2004; 16:48–62.

    Article  PubMed  CAS  Google Scholar 

  51. Kerr JFR, Wyllie AH, Currie AR. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26:239–257.

    PubMed  CAS  Google Scholar 

  52. Vabulas RM, Ahmad-Nejad P, Ghose S et al. Hsp70 as endogenous stimulus of the Toll/Interleukin-1 receptor signal pathway. J Biol Chem 2002; 277:15107–15112.

    Article  PubMed  CAS  Google Scholar 

  53. Vabulas RM, Ahmad-Nejad P, da Costa C et al. Endocytosed HSP60s use Toll-like receptor 2 (TLR2) and TLR4 to activate the Toll/Interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 2001; 276:31332–31339.

    Article  PubMed  CAS  Google Scholar 

  54. Vabulas RM, Braedel S, Hilf N et al. The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J Biol Chem 2002; 277:20847–20853.

    Article  PubMed  CAS  Google Scholar 

  55. Gao B, Tsan MF. Endotoxin contamination in recombinant human heat shock protein 70 (Hsp70) preparation is responsible for the induction of tumor necrosis factor alpha release by murine macrophages. J Biol Chem 2003; 278:174–179.

    Article  PubMed  CAS  Google Scholar 

  56. Vabulas RM, Wagner H, Schild H. Heat shock proteins as ligands of toll-like receptors. Curr Top Microbiol Immunol 2002; 270:169–84.

    PubMed  CAS  Google Scholar 

  57. Randow F, Seed B. Endoplasmic reticulum chaperone gp96 is required for inate immunity but not cell viability. Nat Cell Biol 2001; 3:891–896.

    Article  PubMed  CAS  Google Scholar 

  58. Rutherford Sl, Lindquist S. Hsp90 as a capacitor for morphological evolution. Nature 1998, 396:336–342.

    Article  PubMed  CAS  Google Scholar 

  59. Leadbetter EA, Rifkin IR, Hohlbaum AM et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 2002; 416:603–607.

    Article  PubMed  CAS  Google Scholar 

  60. Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol 1994; 12:991–1045.

    PubMed  CAS  Google Scholar 

  61. Matzinger P. An innate sense of danger. Semin Immunol 1998; 10:399–415.

    Article  PubMed  CAS  Google Scholar 

  62. Matzinger P. The danger model: A renewed sense of self. Science 2002; 296:301–305

    Article  PubMed  CAS  Google Scholar 

  63. Leng Q, Bentwich Z. Beyond self and nonself: fuzzy recognition of the immune system. Scand J Immunol 2002; 56:224.

    Article  PubMed  CAS  Google Scholar 

  64. Efroni S, Cohen IR. Simplicity belies a complex system: A response to the minimal model of immunity of Langman and Cohn. Cell Immunol 2002; 216:23–30.

    Article  PubMed  CAS  Google Scholar 

  65. Langman RE, Cohn M. If the immune system is large, random, and somatically generated, then... Cell Immunol 2002; 216:15–22.

    Article  PubMed  CAS  Google Scholar 

  66. Cohn M, Langman RE, Mata JJ. A computerized model for the self-non-self discrimination at the level of the T(h) (Th-genesis). I. The origin of “primer” effective T(h)cells. Int Immunol 2002; 14:1105–1112.

    Article  PubMed  CAS  Google Scholar 

  67. Keller EF. Drosophila embryos as transitional objects: The work of Donald Poulson and Christiane Nüsslein-Volhard. History and Sociology of the Physical Sciences 1996; 26:313–346.

    CAS  Google Scholar 

  68. Keller EF. What impact, if any, has feminism had on science? J Biosci 2004; 29:7–13

    PubMed  Google Scholar 

  69. Ashburner M. “Epilogue” to The Development of Drosophila melanogaster. Bate M, Arias AM, eds. Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press, 1993.

    Google Scholar 

  70. Weasel L. Dismantling the self/other divide in science: Towards a feminist theory of the immune system. Hypatia 2001; 16:27–44.

    Article  Google Scholar 

  71. Haraway D. The biopolitics of postmodern bodies: Determination of self in immune system discourse. Differences 1989; 1:3–43.

    Google Scholar 

  72. Sontag S. Illness as metaphor and AIDs and its metaphors. Picador USA, 2001.

    Google Scholar 

  73. Beutler B. Not “molecular patterns” but molecules. Immunity 2003; 19:155–156.

    Article  PubMed  CAS  Google Scholar 

  74. Beutler B, Rietschel ET. Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol 2003; 3:169–176.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Bassett, E.H., Rich, T. (2005). Introduction. In: Toll and Toll-Like Receptors: An Immunologic Perspective. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27445-6_1

Download citation

Publish with us

Policies and ethics