Skip to main content

Inhibition of Poly(ADP-Ribosyl)ation Allows DNA Hypermethylation

  • Chapter
Book cover DNA Methylation and Cancer Therapy

Part of the book series: Medical Intelligence Unit ((MIUN))

  • 1088 Accesses

Abstract

This chapter emphasizes that along the chain of events that induce DNA methylation-dependent chromatin condensation, a post-synthetic modification other than histone acetylation, poly(ADP-ribosyl)ation, participates in the establishment and maintenance of methylation-free regions of chromatin. In fact, several lines of in vitro and in vivo evidence have shown that poly(ADP-ribosyl)ation is involved in the control of DNA methylation pattern, protecting genomic DNA from full methylation. More recent studies have provided some clues to the understanding of the molecular mechanism(s) connecting poly(ADP-ribosyl)ation with DNA methylation. We aim here to demonstrate the direct correlation existing between inhibition of poly(ADP-ribose) polymerases and DNA hypermethylation, and to describe some possible mechanisms underlying this molecular link. We will then present our hypothesis that the inhibition of the poly(ADP-ribosyl)ation process in the cell may be responsible for the anomalous hypermethylation of oncosuppressor gene promoters during tumorigenesis and to suggest the possibility that an active poly(ADP-ribosyl)ation process is also involved in maintaining the unmethylated state of CpG islands in normal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Robertson KD, Jones PA. DNA methylation: Past, present and future directions. Carcinogenisis 2000; 21:461–467.

    Article  CAS  Google Scholar 

  2. Baylin SB, Herman JG. DNA methylation in tumorigenesis. Epigenetics joins genetics. Trends Genet 2000; 16:168–174.

    Article  PubMed  CAS  Google Scholar 

  3. Costello JF, Plass C. Methylation matters. J Med Genet 2001; 38:285–303.

    Article  PubMed  CAS  Google Scholar 

  4. Bird AP, Wolffe AP. Methylation-induced repression-belts, braces and chromatin. Cell 1999; 99:451–454.

    Article  PubMed  CAS  Google Scholar 

  5. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16:6–21

    Article  PubMed  CAS  Google Scholar 

  6. Kass SU, Pruss D, Wolffe AP. How does methylation repress trnscription? Trends Genet 1997; 12:444–449.

    Article  Google Scholar 

  7. Razin A, Shemer R Epigenetic control of gene expression. Results Probl Cell Differ 1999; 25:189–204.

    PubMed  CAS  Google Scholar 

  8. Szyf M. The role of DNA methyltransferase 1 in growth control. Front Biosci 2001; 6:599–609.

    Google Scholar 

  9. Cervoni N, Szyf M. Demethylase activity is directed by histone acetylation. J Biol Chem 2001; 276:40778–40787.

    Article  PubMed  CAS  Google Scholar 

  10. Cervoni N, Detich N, Seo S-B et al. The oncoprotein Set/TAF-1b, an inhibitor of histone acetyltransferase, inhibits active demethylation of DNA, integrating DNA methylation and transcriptional silencing. J Biol Chem 2002; 277:25026–25031.

    Article  PubMed  CAS  Google Scholar 

  11. Nan X, Ng H-H, Johnson CA et al. Transcriptional repression by the methyl-CpG binding protein MeCP2 involves a histone deacetylase complex. Nature 1998; 393:386–389.

    Article  PubMed  CAS  Google Scholar 

  12. Jones PL, Veenstra GJC, Wade PA et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 1998; 19:187–191.

    Article  PubMed  CAS  Google Scholar 

  13. de Murcia G, Shall S, eds. From DNA damage and stress signaling to cell death Poly ADP-ribosylation reactions. Oxford University Press, 2000.

    Google Scholar 

  14. Alvarez-Gonzalez R, Althaus FR. Poly (ADP-ribose) catabolism in mammalian cells exposed to DNA-damaging agents. Mutation Res 1989; 218:67–74.

    PubMed  CAS  Google Scholar 

  15. Althaus FR, Richter C. ADP-Ribosylation of proteins: Enzymology and Biological Significance. Berlin: Springer-Verlag, 1987.

    Google Scholar 

  16. D’Amours D, Desnoyers S, D’Silva I et al. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 1999; 342:242–268.

    Google Scholar 

  17. Mendoza-Alvarez H, Alvarez-Gonzalez R. Poly (ADP-ribose) polymerase is a catalytic dimer and the automodification reaction is intermolecular. J Biol Chem 1993; 268:22575–22580.

    PubMed  CAS  Google Scholar 

  18. Alvarez-Gonzalez R, Jacobson MK. Characterization of polymers of adenosine diphosphate ribose generated in vitro and in vivo. Biochemistry 1987; 26:3218–3224.

    Article  PubMed  CAS  Google Scholar 

  19. Kawaichi M, Ueda K, Hayaishi O. Multiple poly(ADP-ribosyl)ation of rat liver poly(ADP-ribose) synthetase. Mode of modification and properties of automodified synthetase. J Biol Chem 1981; 256:9483–9489.

    PubMed  CAS  Google Scholar 

  20. Desmarais Y, Menard L, Lagueux J et al. Enzymological properties of poly(ADP-ribose)polymerase: characterization of automodification sites and NADase activity. Biochim Biophys Acta 1991; 1078:179–186.

    PubMed  CAS  Google Scholar 

  21. Ferro AM, Higgins NP, Olivera BM. Poly (ADP-ribosylation) of a DNA topoisomerase. J Biol Chem 1983; 258:6000–6003.

    PubMed  CAS  Google Scholar 

  22. Yoshihara K, Itaya A, Tanaka Y et al. Inhibition of DNA polymerase a, DNA polymerase b, terminal deoxynucleotidyl transferase, and DNA ligase II by poly(ADP-ribosyl)ation reaction in vitro. Biochem Biophys Res Commun 1985; 28:161–67.

    Google Scholar 

  23. Boulikas T. DNA str, breaks alter histone ADP-ribosylation. Proc Natl Acad Sci USA 1989; 86:3499–3503.

    Article  PubMed  CAS  Google Scholar 

  24. Scovassi AI, Mariani C, Negroni M et al. ADP-ribosylation of nonhistone proteins in HeLa cells: Modification of topoisomerase II. Exp Cell Res 1993; 206:177–181.

    Article  PubMed  CAS  Google Scholar 

  25. Ménissier-de Murcia J, Molinete M, Gradwohl G et al. Zinc-binding domain of poly(ADP-ribose) polymerase participates in the recognition of single strand breaks on DNA. J Mol Biol 1989; 210:229–233.

    Article  PubMed  Google Scholar 

  26. Gradwohl G, de Murcia JM, Molinete M et al. The second zinc-finger domain of poly(ADP-ribose) polymerase determines specificity for single-stranded breaks in DNA. Proc Natl Acad Sci USA 1990; 87:2990–2994.

    Article  PubMed  CAS  Google Scholar 

  27. Ikejma M, Noguchi S, Yameshita R et al. The zinc-fingers of human poly(ADP-ribose) polymerase are differentially required for the recognition of DNA breaks and nicks and the consequent enzyme activation. J Biol Chem 1990; 265:21907–21913.

    Google Scholar 

  28. de Murcia G, Ménissier-de Murcia J. Poly(ADP-ribose) polymerase: a molecular nick sensor. Trends Biochem Sci 1994; 19:172–176.

    Article  PubMed  Google Scholar 

  29. de Murcia G, Jacobson M, Shall S. Regulation by ADP-ribosylation. Trends Cell Biol 1995; 5:78–81.

    Article  PubMed  Google Scholar 

  30. Griesenbeck J, Oei SL, Mayer-Kuckuk P et al. Protein-protein interaction of the human poly(ADP-ribosyl)transferase depends on the functional state of the enzyme. Biochemistry 1997; 36:7297–7304.

    Article  PubMed  CAS  Google Scholar 

  31. Realini C, Althaus FR. Histone shuttling by poly (ADP-ribosylation). J Biol Chem 1992; 267:18858–188621.

    PubMed  CAS  Google Scholar 

  32. Panzeter PL, Realini CA, Althaus FR. Noncovalent interactions of poly(adenosine diphosphate ribose) with histones. Biochemistry 1992; 31:1379–1385.

    Article  PubMed  CAS  Google Scholar 

  33. Panzeter PL, Zweifel B, Malanga M et al. Targeting of histone tails by poly(ADP-ribose). J Biol Chem 1993; 268:17662–17664.

    PubMed  CAS  Google Scholar 

  34. Malanga M, Atorino L, Tramontano F et al. Poly(ADP-ribose) binding properties of histone H1 variants. Biochim Biophys Acta 1998; 1399:154–160.

    PubMed  CAS  Google Scholar 

  35. Reale A, Malanga M, Zardo G et al. In vitro induction of H1-H1 histone cross-linking by adenosine diphosphate-ribose polymers. Biochemistry 2000; 39:10413–10418.

    Article  PubMed  CAS  Google Scholar 

  36. Pleschke JM, Kleczkowska HE, Strom M et al. Poly(ADP-ribose) binds to specific domains in DNA damage checkpoint proteins. J Biol Chem 2000; 275:40974–40980.

    Article  PubMed  CAS  Google Scholar 

  37. Mayer-Kuckuk P, Ullrich O, Ziegler M et al. Functional interaction of poly(ADP-ribose) with the 20S proteasome in vitro. Biochem Biophys Res Commun 1999; 259:576–581.

    Article  PubMed  CAS  Google Scholar 

  38. Germain M, Affair EB, D’Amours D et al. Cleavage of automodified poly(ADP-ribose) polymerase during apoptosis. J Biol Chem 1999; 274:28379–28384.

    Article  PubMed  CAS  Google Scholar 

  39. Malanga M, Pleschke JM, Kleczkowska HE et al. Poly(ADP-ribose) binds to specific domains of p53 and alters its DNA binding functions. J Biol Chem 1998; 273:11839–11843.

    Article  PubMed  CAS  Google Scholar 

  40. Shall S, de Murcia G. Poly(ADP-ribose) polymerase-1: what have we learned from the deficient mouse model? Mutation Res 2000; 460:1–15.

    PubMed  CAS  Google Scholar 

  41. Schreiber V, Amé JC, Dollé P et al. Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J Biol Chem 2002; 277:23028–23036.

    Article  PubMed  CAS  Google Scholar 

  42. Althaus FR, Kleczkowska HE, Malanga M et al. Poly ADP-ribosylation: A DNA break signal mechanism. Mol Cell Biochem 1999; 193:5–11.

    Article  PubMed  CAS  Google Scholar 

  43. Zardo G, D’Erme M, Reale A et al. Does poly(ADP-ribosyl)ation regulate the DNA methylation pattern? Biochemistry 1997; 36:7937–7943.

    Article  PubMed  CAS  Google Scholar 

  44. Zardo G, Caiafa P The unmethylated state of CpG islands in mouse fibroblasts depends on the poly(ADP-ribosyl)ation process J Biol Chem 1998; 273:16517–16520.

    Article  PubMed  CAS  Google Scholar 

  45. de Capoa A, Febbo Giovannelli FR, Niveleau A et al. Reduced levels of poly(ADP-ribosyl)ation result in chromatin compaction and hypermethylation as shown by cell-by-cell computer assisted quantitative analysis. FASEB J 1999; 13:89–93.

    PubMed  Google Scholar 

  46. Zardo G, Marenzi S, Perilli M et al. I. nhibition of poly(ADP-ribosyl)ation introduces an anomalous methylation pattern in transfected foreign DNA. FASEB J 1999; 13:1518–1522.

    PubMed  CAS  Google Scholar 

  47. Bird AP. CpG islands as gene markers in the vertebrate nucleus. Trends Genet 1987; 3:342–347.

    Article  CAS  Google Scholar 

  48. Bird AP. CpG-rich islands and the function of DNA methylation. Nature 1986; 321:209–213.

    Article  PubMed  CAS  Google Scholar 

  49. Frommer M, McDonald IE, Millar DS et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA 1992; 89:1827–1831.

    Article  PubMed  CAS  Google Scholar 

  50. Buschhausen G, Wittig B, Graessmann M et al. Chromatin structure is required to block transcription of the methylated herpes simplex virus thymidine kinase gene. Proc Natl Acad Sci USA 1987; 84:1177–1181.

    Article  PubMed  CAS  Google Scholar 

  51. Kass SU, Landsberger N, Wolffe AP. DNA methylation directs a time-dependent repression of transcription initiation. Curr Biol 1997; 7 157–165.

    Article  PubMed  CAS  Google Scholar 

  52. Kass SU, Goddard JP, Adams RLP. Inactive chromatin spreads from a focus of methylation. Mol Cell Biol 1993; 13:7372–7379.

    PubMed  CAS  Google Scholar 

  53. Zardo G, Marenzi S, Caiafa P. Correlation between DNA methylation and poly(ADP-ribosylation) process. Gene Therapy Mol Biol 1998; 1:661–679.

    Google Scholar 

  54. Karymov MA, Tomschik M, Leuba SH et al. DNA methylation-dependent chromatin fiber compaction in vivo and in vitro: Requirement for linker histone. FASEB J 2001; 15:2631–2641.

    Article  PubMed  CAS  Google Scholar 

  55. Simpson RT, Thoma F, Brubaker JM. Chromatin reconstituted from tandemly repeated cloned DNA fragments and core histones; a model for study of higher order structure. Cell 1985; 42:799–808.

    Article  PubMed  CAS  Google Scholar 

  56. Antequera F, Bird A. CpG islands as genomic footprints of promoters that are associated with replication origins. Curr Biol 1999; 9:661–667.

    Article  Google Scholar 

  57. Keshet I, Ysraeli J, Cedar H. Effect of regional DNA methylation on gene expression. Proc Natl Acad Sci USA 1985; 82:2560–2564.

    Article  PubMed  CAS  Google Scholar 

  58. Szyf M, Tanigawa G, McCarthy PL Jr. A DNA signal from the Thy-1 gene defines de novo methylation patterns in embryonic stem cells. Mol Cell Biol 1990; 10:4396–4400.

    PubMed  CAS  Google Scholar 

  59. Tollefsbol TO, Hutchinson III CA. Control of methylation spreading in synthetic DNA sequences by the murine DNA methyltransferase. J Mol Biol 1997; 269:494–504.

    Article  PubMed  CAS  Google Scholar 

  60. Szyf M. DNA methylation patterns: an additional level of information? Biochem Cell Biol 1991; 69:764–767.

    Article  PubMed  CAS  Google Scholar 

  61. Mummaneni P, Bishop PL, Turker MS A cis-acting element accounts for a conserved methylation pattern upstream of the mouse adenine phosphoribosyltransferase gene. J Biol Chem 1993; 268:552–558.

    PubMed  CAS  Google Scholar 

  62. Brandeis M, Frank D, Keshet I et al. Spl elements protect a CpG island from de novo methylation. Nature 1994; 371:435–438.

    Article  PubMed  CAS  Google Scholar 

  63. Hasse A, Schulz WA. Enhancement of reporter gene de novo methylation by DNA fragments from the alpha-fetoprotein control region. J Biol Chem 1994; 269:1821–1826.

    PubMed  CAS  Google Scholar 

  64. MacLeod D, Charlton J, Mullins J et al. Sp1 sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev 1994; 8:2282–2292.

    PubMed  CAS  Google Scholar 

  65. Magewu AN, Jones PA. Ubiquitous and tenacesous methylation of the CpG sites in codon 248 of the p53 gene may explain its frequent appearance as a mutational hot spot in human cancer. Mol Cell Biol 1994; 14:4225–4232.

    PubMed  CAS  Google Scholar 

  66. Mummaneni P, Walker KA, Bishop PL et al. Epigenetic gene inactivation induced by a cis-acting methylation center. J Biol Chem 1995; 270:788–792.

    Article  PubMed  CAS  Google Scholar 

  67. Baylin SB. Tying it all together: epigenetics, genetics, cell cycle and cancer. Science 1997; 277:1948–1949.

    Article  PubMed  CAS  Google Scholar 

  68. Pradhan S, Kim GD. The retinoblastoma gene product interacts with maintenance human DNA (cytosine-5) methyltransferase and modulates its activity. EMBO J 2002; 21:1–10.

    Article  Google Scholar 

  69. Di Croce L, Raker VA, Corsaro M et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 2002; 295:1079–1082.

    Article  PubMed  Google Scholar 

  70. Szyf M, Bozivic V, Tanigawa G. Growth regulation of mouse DNA methyltransferase gene expression. J Biol Chem 1991; 266:10027–10030.

    PubMed  CAS  Google Scholar 

  71. Robertson KD, Keyomarsi K, Gonzales FA et al. Differential mRNA expression of the human DNA methyltransferase (DNMTs) 1, 3a and 3b during the G0/G1 to S phase transition in normal and tumor cells. Nucleic Acids Res 2000; 28:2108–2113.

    Article  PubMed  CAS  Google Scholar 

  72. Chuang LS, Ian HI, Koh TW et al. Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21 WAF1. Science 1997; 26:1996–2000.

    Article  Google Scholar 

  73. Zardo G, Reale A, Passananti C et al. Inhibition of poly(ADP-ribosyl)ation induces DNA hypermethylation: A possible molecular mechanism. FASEB J 2002; 21:1319–1321.

    Google Scholar 

  74. Goldman MA, Holmquist GP, Gray MC et al. Replication timing of genes and middle repetitive sequences. Science 1984; 224:686–692.

    Article  PubMed  CAS  Google Scholar 

  75. Selig S, Okumura K, Ward DC et al. Delineation of DNA replication time zones by fluorescence in situ hybridization. EMBO J 1992; 11:1217–1225.

    PubMed  CAS  Google Scholar 

  76. Simbulan-Rosenthal CM, Rosenthal DS, Boulares AH et al. Regulation of the expression or recruitment of components of the DNA synthesome by poly(ADP-ribose) polymerase. Biochemistry 1998; 37:9363–9370.

    Article  PubMed  CAS  Google Scholar 

  77. Zardo G, Marenzi S, Caiafa P. H1 histone as a trans-acting factor involved in protecting genomic DNA from full methylation. Biol Chem 1998; 353:647–654.

    Google Scholar 

  78. Meisterernst M, Stelzer G, Roeder RG. Poly(ADP-ribose) polymerase enhances activator-dependent transcription in vitro. Proc Natl Acad Sci USA 1997; 94:2261–2265.

    Article  PubMed  CAS  Google Scholar 

  79. Oei SL, Griesenbeck J, Schweiger M et al. Regulation of RNA polymerase II-dependent transcription by poly(ADP-ribosyl)ation of transcription factors. J Biol Chem 1998; 273:31644–31647.

    Article  PubMed  CAS  Google Scholar 

  80. Oei SL, Griesenbeck J, Ziegler M et al. A novel function of poly(ADP-ribosyl)ation: silencing of RNA polymerase II-dependent transcription. Biochemistry 1998; 37:1465–1469.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Reale, A., Zardo, G., Malanga, M., Zlatanova, J., Caiafa, P. (2005). Inhibition of Poly(ADP-Ribosyl)ation Allows DNA Hypermethylation. In: DNA Methylation and Cancer Therapy. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27443-X_11

Download citation

Publish with us

Policies and ethics