Skip to main content

Investigating the Modular Basis of BK Channel Activation by Calcium

  • Chapter
Pumps, Transporters, and Ion Channels

Part of the book series: Series of the Centro de Estudios Científicos ((SCEC))

  • 673 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4. References

  • Atkinson, N. S., Robertson, G. A., and Ganetzky, B., 1991, A component of calcium-activated potassium channels encoded by the Drosophila slo locus, Science, 253:551–555.

    Article  ADS  Google Scholar 

  • Behrens, R., Nolting, A., Reimann, F., Schwarz, M., Waldshüz, R., and Pongs, O., 2000, hKCNMB3 and hKCNMB4, cloning and characterization of two members of the large conductance calcium activated potassium channel β subunit family, FEBS Letters, 474:99–106.

    Article  Google Scholar 

  • Bian, S., Favre, I., and Moczydlowski, E., 2001, Ca2+-binding activity of a COOH-terminal fragment of the Drosophila BK channel involved in Ca2+-dependent activation, Proceedings of the National Academy of Science USA, 98:4776–4781.

    Article  ADS  Google Scholar 

  • Brenner, R., Jegla, T. J., Wickenden, A., Liu, Y., and Aldrich, R. W., 2000, Cloning and functional characterization of novel large conductance calcium-activated potassium channel β subunits, hKCNMB3 and hKCNMB4, Journal of Biological Chemistry, 275: 6453–6461.

    Article  Google Scholar 

  • Butler, A., Tsunoda, S., McCobb, D. P., Wei, A., and Salkoff, L., 1993, mSlo, a complex mouse gene encoding “maxi” calcium-activated potassium channels, Science, 261:221–224.

    Article  ADS  Google Scholar 

  • Coetzee, W. A., Amarillo, Y., Chiu, J., Chow, A., Lau, D., McCormack, T., Morena, H., Nadal, M. S., Ozaita, A., Pountney, D., Saganich, M., Vega-Saenz de Miera, E., and Rudy, B., 1999, Molecular Diversity of K+ Channels, Annals NY Academy of Science, 868:233–255.

    Article  ADS  Google Scholar 

  • Cox, D. H., and Aldrich, R. W., 2000, Role of β1 subunit in large conductance Ca2+-activated K+ channel gating energetics: mechanisms of enhanced Ca2+ sensitivity, Journal General Physiology, 116:411–432.

    Article  Google Scholar 

  • Cox, D. H., Cui, J., and Aldrich, R. W., 1997, Separation of gating properties from permeation and block in mslo large conductance Ca-activated K+ channels, Journal of General Physiology, 109:633–646.

    Article  Google Scholar 

  • Diaz, L., Meera, P., Amigo, J., Sefani, E., Alvarez, O., Toro, L., and Latorre, R., 1998, Role of the S4 segment in a voltage-dependent calcium-sensitive potassium (hSlo) channel, Journal of Biological Chemistry, 273:32430–32436.

    Article  Google Scholar 

  • Doyle, D. A., Morais-Cabral, J., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T., and MacKinnon, R. 1998, The structure of the potassium channel: molecular basis of K+ conduction and selectivity, Science, 280: 69–77.

    Article  ADS  Google Scholar 

  • Durell, S. R., Hao, Y., Nakamura, T., Bakker, E. P., and Guy, H. R., 1999, Evolutionary relationship between K+ channels and symporters, Biophysical Journal, 77:775–788.

    Article  ADS  Google Scholar 

  • Esguerra, M., Wang, J., Foster, C. D., Adelman, J. P., North, R. A., and Levitan, I. B. 1994, Cloned Ca2+-depdendent K+ channel modulated by a functionally associated protein kinase, Nature, 369:563–565.

    Article  ADS  Google Scholar 

  • Favre, I., and Moczydlowski, E., 1999, Simultaneous binding of basic peptides at intracellular sites on a large conductance Ca2+-activated K+ channel: equilibrium and kinetic basis of negatively coupled ligand interactions, Journal of General Physiology, 113:295–320.

    Article  Google Scholar 

  • García, M. L., Giangiacomo, K. M., Hanner, M., Knaus, H.-G., McManus, O. B., Schmalhofer, W. A., and Kaczorowski, G. J., 1999, Purification and functional reconstitution of high-conductance calcium-activated potassium channel from smooth muscle, Methods in Enzymology, 294:274–287.

    Article  Google Scholar 

  • García-Calvo, M., Knaus, H.-G., McManus, O. B., Giangiacomo, K. M., Kaczorowski, G. J., and Garcia, M. L., 1994, Purification and reconstitution of the high-conductance, calcium-activated potassium channel from tracheal smooth muscle, Journal of Biological Chemistry, 269:676–682.

    Google Scholar 

  • Golowasch, J., Kirkwood, A., and Miller, C., 1986, Allosteric effects of Mg2+ on the gating of Ca2+-activated K+ channels from mammalian skeletal muscle, Journal of Experimental Biology, 124:5–13.

    Google Scholar 

  • Hille, B., 2001, Potassium channels and chloride channels, in: Ion Channels of Excitable Membranes, Sinauer Assoc. Inc., Sunderland, MA, pp. 131–167.

    Google Scholar 

  • Horrigan, F T., Cui, J., and Aldrich, R. W., 1999, Allosteric gating of potassium channels I: mSlo ionic currents in the absence of Ca2+, Journal of General Physiology, 114:277–304.

    Article  Google Scholar 

  • Horrigan, F T., and Aldrich, R. W., 1999, Allosteric gating of potassium channels II: mSlo channel gating charge movement in the absence of Ca2+, Journal of General Physiology, 114:305–336.

    Article  Google Scholar 

  • Jiang, Y., and MacKinnon, R., 2000, The barium site in a potassium channel by X-ray crystallography, Journal of General Physiology, 115:269–272.

    Article  Google Scholar 

  • Jiang, Y., Pico, A., Cadene, M., Chait, B. T., and MacKinnon, R., 2001, Structure of the RCK domain from the E. coli K+ channel and the demonstration of its presence in the human BK channel, Neuron, 29:593–601.

    Article  Google Scholar 

  • Knaus, H.-G., Eberhart, A., Koch, R. O. A., Munujos, P., Schmalhofer, W. A., Warmke, J. W., Kaczorowski, G. J., and García, M. L., 1995, Characterization of tissue-expressed α subunits of the high conductance Ca2+-activated K+ channel, Journal of Biological Chemistry, 270:22434–22439.

    Article  Google Scholar 

  • Ling, S., Woronuk, G., Sy, L., Lev, S., and Braun, A. P., 2000, Enhanced activity of a large conductance, calcium-sensitive K+ channel in the presence of Src tyrosine kinase, Journal of Biological Chemistry, 275:30683–30689.

    Article  Google Scholar 

  • Lu, T., Katakam, P. V. G., VanRollins, M., Weintraub, N. L., Spector, A. A., and Lee, H.-C, 2001, Dihydroeicosatrienoic acids are potent activators of Ca2+-activated K+ channels in isolated rat coronary arterial myocytes, Journal of Physiology (London), 534.3:651–667.

    Article  Google Scholar 

  • Lu, Z., Klem, A. M., and Ramu, Y., 2001, Ion conduction pore is conserved among potassium channels. Nature, 413:809–813.

    Article  ADS  Google Scholar 

  • Lucchesi, K. J., and Moczydlowski, E. 1991, On the interaction of bovine pancreatic trypsin inhibitor with maxi Ca2+-activated K+ channels: a model system for analysis of peptide-induced subconductance states, Journal of General Physiology, 97:1295–1319.

    Article  Google Scholar 

  • MacKinnon, R., Cohen, S. L., Kuo, A., Lee, A., and Chait, B. T., 1998, Structural conservation in prokaryotic and eukaryotic potassium channels, Science, 280:106–109

    Article  ADS  Google Scholar 

  • Magleby, K. L., 2001, Kinetic gating mechanisms for BK channels: when complexity leads to simplicity. Journal of General Physiology, 118: 583–587.

    Article  Google Scholar 

  • McManus, O. B., and Magleby, K. L., 1988, Kinetic states and modes of single large conductance calcium activated potassium channels in cultured rat skeletal muscle, Journal of Physiology (London), 402:79–120.

    Google Scholar 

  • McManus, O. B., and Magleby, K. L., 1991, Accounting for the Ca2+-dependent kinetics of single large conductance Ca2+-activated K+ channels in rat skeletal muscle, Journal of Physiology (London), 443:739–777.

    Google Scholar 

  • Meera, P., Wallner, M., Song, M., and Toro, L., 1997, Large conductance voltage-and calcium-dependent K+ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0–S6), an extracellular N terminus, and an intracellular (S9–S10) C-terminus, Proceedings of the National Academy of Science USA, 94:14066–14071.

    Article  ADS  Google Scholar 

  • Meera, P., Wallner, M., and Toro, L., 2000, A neuronal β subunit (KCNMB4) makes the large conductance, voltage-and Ca2+-activated K+ channel resistant to charybdotoxin and iberiotoxin, Procedings of the National Academy of Science USA, 97:5562–5567.

    Article  ADS  Google Scholar 

  • Miller, C. 1995, The charybdotoxin family of K+ channel-blocking peptides, Neuron, 15:5–10.

    Article  Google Scholar 

  • Moczydlowski, E., Alvarez, O., Vergara, C., and Latorre, R., 1985, Effect of phospholipid surface charge on the conductance and gating of a Ca2+-activated K+ channel in planar lipid bilayers, Journal of Membrane Biology, 83:273–282.

    Article  Google Scholar 

  • Moss, G. W. J., Marshall, J., Morabito, M. Howe, J. R., and Moczydlowski, E., 1996a, An evolutionary conserved binding site for serine proteinase inhibitors in large conductance calcium activated potassium channels, Biochemistry, 35:16024–16035.

    Article  Google Scholar 

  • Moss, G. W. J., Marshall, and Moczydlowski, E., 1996b, Hypothesis for a serine proteinase-like domain at the COOH terminus of Slowpoke calcium-activated potassium channels, Journal of General Physiology, 108:473–484.

    Article  Google Scholar 

  • Moss, G. W. J., and Moczydlowski, E., 1996, Rectifying conductance substates in a large conductance Ca2+-activated K+ channel: evidence for a fluctuating barrier mechanism, Journal of General Physiology, 107:47–68.

    Article  Google Scholar 

  • Neyton, J., 1996, A Ba2+-chelator suppresses long shut events in fully activated high-conductance Ca2+-dependent K+ channels, Biophysical Journal, 71:220–226.

    Article  ADS  Google Scholar 

  • Oberhauser, A., Alvarez, O., and Latorre, R., 1988, Activation by divalent cations of a Ca2+-activated K+ channel from skeletal muscle membrane, Journal of General Physiology, 92:67–86.

    Article  Google Scholar 

  • Rothberg, B. S., Bello, R. A., Song, L., and Magleby, K. L., 1996, High Ca2+ concentrations induce a low activity mode and reveal Ca2+-independent long shut intervals in BK channels from rat muscle, Journal of Physiology (London), 493.3:673–689.

    Google Scholar 

  • Rothberg, B. S., and Magleby, K. L., 2000, Voltage and Ca2+ activation of single large-conductance Ca2+-activated K+ channels described by a two-tiered allosteric gating mechanism, Journal of General Physiology, 116:75–99.

    Article  Google Scholar 

  • Reinhart, P. H., and Levitan, I. B., 1995, Kinase and phosphatase activities intimately associated with a reconstituted calcium-dependent potassium channel, Journal of Neuroscience, 15: 4572–4579.

    Google Scholar 

  • Sabharwal, A. K., Birktoft, J. J., Gorka, J., Wildgoose, P., Petersen, L. C, and Bajaj, S. P., 1995, High affinity Ca2+-binding site in the serine protease domain of human factor VIIa and its role in tissue factor binding and development of catalytic activity, Journal of Biological Chemistry, 270:15523–15530.

    Article  Google Scholar 

  • Schreiber, M., and Salkoff, L., 1997, A novel calcium-sensing domain in the BK channel, Biophysical Journal, 73:1355–1363.

    Article  ADS  Google Scholar 

  • Schreiber, M., Wei, A., Yuan, A., Gaut, J., Saito, M., and Salkoff, L., 1998, Slo3, a novel pH-sensitive K+ channel from mammalian spermatocytes, Journal of Biological Chemistry, 273:3509–3516.

    Article  Google Scholar 

  • Schreiber, M., Yuan, A., and Salkoff, L. 1999, Transplantable sites confer calcium sensitivity to BK channels. Nature Neuroscience, 2:416–421.

    Article  Google Scholar 

  • Shi, J., and Cui, J., 2001, Intracellular Mg2+ enhances the function of BK-type Ca2+-activated K+ channels, Journal of General Physiology, 118:589–605.

    Article  ADS  Google Scholar 

  • Siberberg, S. D., Lagrutta, A., Adelman, J. P., and Magleby, K. L., 1996, Wanderlust kinetics and variable Ca2+-sensitivity of dSlo, a large conductance Ca2+-activated K+ channel, expressed in oocytes, Biophysical Journal, 70:2640–2651.

    Article  ADS  Google Scholar 

  • Stefani, E., Ottolia, M., Noceti, F., Oclese, R., Wallner, M., Latorre, R., and Toro, L., 1997, Voltage-controlled gating in a large conductance Ca2+-sensitive K+ channel (hSlo), Procedings of the National Academy of Science USA, 94:5427–5431.

    Article  ADS  Google Scholar 

  • Swayze, R. D., and Braun A. P., 2001, A catalytically inactive mutant of type I cGMP-dependent protein kinase prevents enhancement of large conductance, calcium-sensitive K+ channels by sodium nitroprusside and Cgmp, Journal of Biological Chemistry, 276:19729–19737.

    Article  Google Scholar 

  • Toro, L., Ottolia, M., Stefani, E., and Latorre, R., 1994, Structural determinants in the interaction of Shaker inactivating peptide and a Ca2+-activated K+ channel, Biochemistry, 33:7220–7228.

    Article  Google Scholar 

  • Toro, L., Wallner, M., Meera, P., and Tanaka, Y., 1998, Maxi-KCa, a unique member of the voltage-gated K channel superfamily, News Physiological Science, 13:112–117.

    Google Scholar 

  • Tseng-Crank, J., Foster, C. D., Krause, J. D., Mertz, R., Godinot, N., DiChiara, T. J., and Reinhart, P. H., 1994, Cloning, expression, and distribution of functionally distinct Ca2+-activated K+ channel isoforms from human brain, Neuron, 13:1315–1330.

    Article  Google Scholar 

  • Uebele, V. N., Larutta, A., Wade, T., Figueroa, D. J., Liu, Y., McKenna, E., Austin, C. P., Bennet, P. B., and Swanson, R., 2000, Cloning and functional expression of two families of β-subunits of the large conductance calcium-activated K+ channel, Journal of Biological Chemistry, 275:23211–23218.

    Article  Google Scholar 

  • Valverde, M. A., Rojas, P., Amigo, J., Cosmelli, D., Orio, P., Bahamonde, M. I., Mann, G. E., Vergara, C, and Latorre, R., 1999, Acute activation of maxi-K channels (hSlo) by estradiol binding to the beta subunit, Science, 285:1929–1931.

    Article  Google Scholar 

  • Vergara, C, and Latorre, R., 1983, Kinetics of Ca2+-activated K+ channels from rabbit muscle incorporated into planar bilayers: evidence for a Ca2+ and Ba2+ blockade, Journal of General Physiology, 82:543–568.

    Article  Google Scholar 

  • Wallner, M., Meera, P., and Toro, L., 1996, Determinant for β-subunit regulation in high conductance voltage-activated and Ca2+-sensitive K+ channels: an additional transmembrane region in the N terminus, Proceedings of the National Academy of Science USA, 93:14922–14927.

    Article  ADS  Google Scholar 

  • Wallner, M., Meera, P., and Toro, L., 1999, Molecular basis of fast inactivation in voltage and Ca2+-activated K+ channels: a transmembrane β-subunit homolog, Proceedings of the National Academy of Science USA, 96:4137–4142.

    Article  ADS  Google Scholar 

  • Wang, J., Zhou, Y., and Levitan, I. B., 1999, Simultaneous binding of two protein kinases to a calcium-dependent potassium channel, Journal of N euroscience, 19:RCA4:1–7.

    MATH  Google Scholar 

  • Wei, A., Solaro, C, Lingle, C, and Salkoff, L., 1994, Calcium sensitivity of BK-type KCa channel determined by a separable domain, Neuron, 13: 671–681.

    Article  Google Scholar 

  • Xia, X.-M., Ding, J.-P., Zeng, X.-H., Duan, K.-L., and Lingle, C., 2000, Rectification and rapid activation at low Ca2+ of Ca2+-activated, voltage-dependent BK currents: consequences of rapid inactivation by a novel β subunit, Journal of Neuroscience, 20:4890–4903.

    Google Scholar 

  • Yellen, G., 1998, The moving parts of voltage-gated ion channels, Quarterly Reviews of Biophysics, 31:239–295.

    Article  Google Scholar 

  • Zhang, X., Solaro, C. R., and Lingle, C. J., 2001, Allosteric regulation of BK channel gating by Ca2+ and Mg2+ through a nonselective, low affinity divalent cation site, Journal of General Physiology, 118:607–635.

    Article  Google Scholar 

  • Zhou, Y., Morais-Cabral, J. H., Kaufman, A., and MacKinnon, R., 2001a, Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution, Nature, 414:43–48.

    Article  ADS  Google Scholar 

  • Zhou, M., Morais-Cabral, J. H., Mann, S., and MacKinnon, R., 2001b, Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors, Nature, 411:657–661.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Moczydlowski, E. (2005). Investigating the Modular Basis of BK Channel Activation by Calcium. In: Sepúlveda, F.V., Bezanilla, F. (eds) Pumps, Transporters, and Ion Channels. Series of the Centro de Estudios Científicos. Springer, Boston, MA. https://doi.org/10.1007/0-387-27424-3_9

Download citation

Publish with us

Policies and ethics