Skip to main content

CA2+ Dynamics at Nerve-Terminal Active Zones Monitored by Endogenous KCa Channels

  • Chapter
Pumps, Transporters, and Ion Channels

Part of the book series: Series of the Centro de Estudios Científicos ((SCEC))

  • 665 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  • Andreu, R. and Barrett, E.F., 1980, Calcium dependence of evoked transmitter release at very low quantal contents at the frog neuromuscular junction. Journal of Physiology, 308: 79–97.

    Google Scholar 

  • Armstrong, D. and Eckert, R., 1987, Voltage-activated calcium channels that must be phosphorylated to respond to membrane depolarization. Proceedings of the National Academy of Sciences USA, 84: 2518–2522.

    Article  ADS  Google Scholar 

  • Art, J.J., Wu, Y.-C. and Fettiplace, R., 1995, The calcium-activated potassium channels of turtle hair cells, Journal of General Physiology, 105: 49–72.

    Article  Google Scholar 

  • Bielefeldt, K. and Jackson, M.B., 1993, A calcium-activated potassium channel causes frequency-dependent action-potential failures in a mammalian nerve terminal. Journal of Neurophysiology, 70: 284–298.

    Google Scholar 

  • Blundon, J.A., Wright, S.N., Brodwick, M.S., and Bittner, G.D., 1993, Residual free calcium is not responsible for facilitation of neurotransmitter release. Proceedings of the National Academy of Sciences USA, 90:9388–9392.

    Article  ADS  Google Scholar 

  • Blundon, J.A., Wright, S.N., Brodwick, M.S., and Bittner, G.D., 1995, Presynaptic calcium-activated potassium channels and calcium channels at a crayfish neuromuscular junction. Journal of Neurophysiology, 73:178–189.

    Google Scholar 

  • Burrone, J., Neves, G., Gomis, A., Cooke, A., and Lagnado, L., 2002, Endogenous calcium buffers regulate fast exocytosis in the synaptic terminal of retinal bipolar cells. Neuron, 3;33(1): 101–12.

    Article  Google Scholar 

  • Couteaux, R. and Pécot-Dechavassine, M., 1970, Vésicules synaptiques et poches au niveau des zones actives de la jonction neuromusculaire. C.R. Academy of Science (Paris), 271: 2346–2349 (in French).

    Google Scholar 

  • DiGregorio, D. A. and Vergara, J. L., 1997, Localized detection of action potential-induced presynaptic calcium transients at a Xenopus neuromuscular junction. Journal of Physiology, 505.3: 585–592.

    Article  Google Scholar 

  • DiGregorio, D.A., Peskoff, A., and Vergara, J.L., 1999, Measurement of action potential-induced presynaptic calcium domains at a cultured neuromuscular junction. Journal of Neuroscience, 19: 7846–7859.

    Google Scholar 

  • Dopico, A.M., Widmer, H., Wang, G., Lemos, J.R. and Treistman, S.N., 1999, Rat supraoptic magnocellular neurones show distinct large conductance, Ca2+-activated K+ channel subtypes in cell bodies versus nerve endings. Journal of Physiology, 519: Pt 1, 101–114.

    Article  Google Scholar 

  • Harlow, M.L., Ress, D., Stoschek, A., Marshall, R.M., and McMahan, U.J., 2001, The architecture of active zone material at the frog’s neuromuscular junction. Nature, 409: 479–84.

    Article  ADS  Google Scholar 

  • Hille, B., 1992, Ionic Channels of Excitable Membranes, Sinauer, Sunderland, Massachusetts, 2nd edition, pp. 83–114.

    Google Scholar 

  • Horn, R. and Marty, A., 1988, Muscarinic activation of ionic currents measured by a new whole-cell recording method. Journal of General Physiology, 92: 145–159

    Article  Google Scholar 

  • Hudspeth, A.J. and Lewis, R.S., 1988, Kinetic analysis of voltage-and ion-dependent conductances in saccular hair cells of the bullfrog, Rana catesbeiana. Journal of Physiology, 400: 237–274.

    Google Scholar 

  • Klingauf, J. and Neher, E., 1997, Modeling buffered Ca2+ diffusion near the membrane: implications for secretion in neuroendocrine cells. Biophysical Journal, 72: 674–690.

    Article  ADS  Google Scholar 

  • Llinás, R.R., Sugimori, M., and Silver, R.B., 1995, The concept of calcium concentration microdomains in synaptic transmission. Neuropharmacology, 34: 1443–1451.

    Article  Google Scholar 

  • Meir, A., Ginsburg, S., Butkevich, A., Kachalsky, S.G., Kaiserman, I., Ahdut, R., Demirgoren, S., and Rahamimoff, R., 1999, Ion channels in presynaptic nerve terminals and control of transmitter release. Physiological Reviews, 79: 1019–1088.

    Google Scholar 

  • Nieuwkoop, P.D. and Faber, J., 1967, Normal table of Xenopus laevis. 2nd Edition Amsterdam: North Holand.

    Google Scholar 

  • Pattillo, J.M., Yazejian, B., DiGregorio, D.A., Vergara, J.L., Grinnell, A.D., and Meriney, S.D., 2001, Contribution of presynaptic calcium-activated potassium currents to transmitter release regulation in cultured Xenopus nerve-muscle synapses. Neuroscience, 102: 229–240.

    Article  Google Scholar 

  • Pumplin, D. W., Reese, T. S. and Llinás, R., 1981, Are the presynaptic membrane particles the calcium channels? Proceedings of the National Academy of Sciences USA, 78: 7210–7213.

    Article  ADS  Google Scholar 

  • Rae, J., Cooper, K., Gates, P., and Warsky, M., 1991, Low access resistance perforated patch recordings using amphotericin B. Journal of Neuroscience Methods, 37: 15–26.

    Article  Google Scholar 

  • Roberts, W.M., 1993, Spatial calcium buffering in saccular hair cells. Nature, 363: 74–76.

    Article  ADS  Google Scholar 

  • Roberts, W.M., 1994, Localization of calcium signals by a mobile calcium buffer in frog saccular hair cells. Journal of Neuroscience, 14(5): 3246–3262.

    Google Scholar 

  • Roberts, W.M., Jacobs, R.A., and Hudspeth, A.J., 1990, Co-localization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells. Journal of Neuroscience, 10: 3664–3684.

    Google Scholar 

  • Robitaille, R. and Charlton, M.P., 1992, Presynaptic calcium signals and transmitter release are modulated by calcium-activated potassium channels. Journal of Neuroscience, 12: 297–305.

    Google Scholar 

  • Robitaille, R., Garcia, M.L., Kaczorowski, G.J., and Charlton, M.P., 1993, Functional co-localization of calcium and calcium-gated potassium channels in control of transmitter release. Neuron, 11: 645–655.

    Article  Google Scholar 

  • Sabatini, B.L. and Regehr, W.G., 1996, Timing of neurotransmission at fast synapse in the mammalian brain. Nature, 384: 170–172.

    Article  ADS  Google Scholar 

  • Sah, P., 1996, Ca2+-activated K+ currents in neurones: types, physiological roles and modulation. Trends in Neuroscience, 19: 150–154.

    Article  Google Scholar 

  • Sakaba, T., Ishikane, H., and Tachibana, M., 1997, Ca2+-activated K+ current at presynaptic terminals of goldfish retinal bipolar cells. Neuroscience Research, 27: 219–228.

    Article  Google Scholar 

  • Sand, O., Chen, B.-M., and Grinnell, A.D., 2001, Contribution of L-type Ca2+ channels to evoked transmitter release in cultured Xenopus nerve-muscle synapses. Journal of Physiology, 536: 21–33.

    Article  Google Scholar 

  • Sheng, M., Tsaur, M.L., Jan, Y.N., and Jan, L.Y., 1994, Contrasting sub-cellular localization of the Kvl.2 K+ channel subunit in different neurons of rat brain. Journal of Neuroscience, 14: 2408–2417.

    Google Scholar 

  • Simon, S.M. and Llinás, R.R., 1985, Compartmentalization of the sub-membrane calcium activity during calcium influx and its significance in transmitter release. Biophysical Journal, 48: 485–498.

    Article  ADS  Google Scholar 

  • Storm, J.F., 1987, Action potential depolarization and a fast after-hyperpolarization in rat hippocampal pyramidal cells. Journal of Physiology, 385: 733–759.

    Google Scholar 

  • Sugihara, I., 1994, Calcium-activated potassium channels in goldfish hair cells. Journal of Physiology, 476.3:373–390.

    Google Scholar 

  • Sun, X.-P., Schlichter, L.C., and Stanley, E.F., 1999, Single-channel properties of BK-type calcium-activated potassium channels at a cholinergic presynaptic nerve terminal. Journal of Physiology, 518: 639–651.

    Article  Google Scholar 

  • Yazejian, B., DiGregorio, D., Vergara, J.L., Poage, R., Meriney, S.D., and Grinnell, A.D., 1997, Direct measurements of presynaptic calcium and calcium-activated potassium currents regulating neuro-transmitter release at cultured Xenopus nerve-muscle synapses. Journal of Neuroscience, 17: 2990–3001.

    Google Scholar 

  • Yazejian, B.M., Sun, X.-P., and Grinnell, A.D., 2000, Tracking presynaptic Ca++ dynamics during neurotransmitter release with Ca++-activated K+ channels. Nature Neuroscience, 3: 566–571.

    Article  Google Scholar 

  • Zucker, R.S. and Fogelson, A.L., 1986, Relationship between transmitter release and presynaptic calcium influx when calcium enters through discrete channels. Proceedings of the National Academy of Sciences USA, 83: 3032–3036.

    Article  ADS  Google Scholar 

  • Zucker, R.S., 1996, Exocytosis: a molecular and physiological perspective. Neuron 17: 1049–1055.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Grinnell, A.D., Yazejian, B., Sun, X., Chen, BM. (2005). CA2+ Dynamics at Nerve-Terminal Active Zones Monitored by Endogenous KCa Channels. In: Sepúlveda, F.V., Bezanilla, F. (eds) Pumps, Transporters, and Ion Channels. Series of the Centro de Estudios Científicos. Springer, Boston, MA. https://doi.org/10.1007/0-387-27424-3_13

Download citation

Publish with us

Policies and ethics