Skip to main content

Synthetic Zinc Finger Transcription Factors

  • Chapter
  • 2167 Accesses

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

The possibility of using designed transcription factors to control gene expression is highly appealing in view of a wide range of promising applications in research and biomedicine. In the last decade, the efforts of several research groups have clarified the molecular interactions between zinc finger proteins and DNA, generating a “recognition code” that relates amino acids in specific positions of the finger domain to its DNA target sequence. This chapter describes the methods to design artificial zinc finger transcription factors using the “code” and recent novel selection approaches. Efficacy and possible applications of artificial transcription factors are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ptashne M, Gann A. Transcriptional activation by recruitment. Nature 1997; 386(6625):569–577.

    Article  PubMed  CAS  Google Scholar 

  2. Sauer F, Tjian R. Mechanisms of transcriptional activation: Differences and similarities between yeast, Drosophila, and man. Curr Opin Genet Dev 1997; 7(2):176–181.

    Article  PubMed  CAS  Google Scholar 

  3. Hampsey M. Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol Mol Biol Rev 1998; 62(2):465–503.

    PubMed  CAS  Google Scholar 

  4. Cremer T, Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2001; 2(4):292–301.

    Article  PubMed  CAS  Google Scholar 

  5. Venter JC, Adams MD, Myers EW et al. The sequence of the human genome. Science 2001; 291(5507):1304–1351.

    Article  PubMed  CAS  Google Scholar 

  6. Desjarlais JR, Berg JM. Toward rules relating zinc finger protein sequences and DNA binding site preferences. Proc Natl Acad Sci USA 1992; 89(16):7345–7349.

    Article  PubMed  CAS  Google Scholar 

  7. Isalan M, Choo Y. Rapid, high-throughput engineering of sequence-specific zinc finger DNA-binding proteins. Methods Enzymol 2001; 340:593–609.

    Article  PubMed  CAS  Google Scholar 

  8. Pabo CO, Peisach E, Grant RA. Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem 2001; 70:313–340.

    Article  PubMed  CAS  Google Scholar 

  9. Pavletich NP, Pabo CO. Zinc finger-DNA recognition: Crystal structure of a Zif268-DNA complex at 2.1 A. Science 1991; 252(5007):809–817.

    Article  PubMed  CAS  Google Scholar 

  10. Jamieson AC, Kim SH, Wells JA. In vitro selection of zinc fingers with altered DNA-binding specificity. Biochemistry 1994; 33(19):5689–5695.

    Article  PubMed  CAS  Google Scholar 

  11. Choo Y, Klug A. Toward a code for the interactions of zinc fingers with DNA: Selection of randomized fingers displayed on phage. Proc Natl Acad Sci USA 1994; 91(23):11163–7.

    Article  PubMed  CAS  Google Scholar 

  12. Choo Y, Klug A. Selection of DNA binding sites for zinc fingers using rationally randomized DNA reveals coded interactions. Proc Natl Acad Sci USA 1994; 91(23):11168–11172.

    Article  PubMed  CAS  Google Scholar 

  13. Beerli RR, Dreier B, Barbas III CF. Positive and negative regulation of endogenous genes by designed transcription factors. Proc Natl Acad Sci USA 2000; 97(4):1495–1500.

    Article  PubMed  CAS  Google Scholar 

  14. Jamieson AC, Miller JC, Pabo CO. Drug discovery with engineered zinc-finger proteins. Nat Rev Drug Discov 2003; 2(5):361–368.

    Article  PubMed  CAS  Google Scholar 

  15. Ansari AZ, Mapp AK. Modular design of artificial transcription factors. Curr Opin Chem Biol 2002; 6(6):765–772.

    Article  PubMed  CAS  Google Scholar 

  16. Urnov FD, Rebar EJ, Reik A et al. Designed transcription factors as structural, functional and therapeutic probes of chromatin in vivo. Fourth in review series on chromatin dynamics. EMBO Rep 2002; 3(7):610–615.

    Article  PubMed  CAS  Google Scholar 

  17. Urnov FD, Rebar EJ. Designed transcription factors as tools for therapeutics and functional genomics. Biochem Pharmacol 2002; 64(5–6):919–923.

    Article  PubMed  CAS  Google Scholar 

  18. Pabo CO, Sauer RT. Transcription factors: Structural families and principles of DNA recognition. Annu Rev Biochem 1992; 61:1053–1095.

    Article  PubMed  CAS  Google Scholar 

  19. Rhodes D, Klug A. An underlying repeat in some transcriptional control sequences corresponding to half a double helical turn of DNA. Cell 1986; 46(1):123–132.

    Article  PubMed  CAS  Google Scholar 

  20. Berg JM. Zinc finger domains: Hypotheses and current knowledge. Annu Rev Biophys Biophys Chem 1990; 19:405–421.

    Article  PubMed  CAS  Google Scholar 

  21. Pavletich NP, Pabo CO. Zinc finger-DNA recognition: Crystal structure of a Zif268-DNA complex at 2.1 A. Science 1991; 252(5007):809–817.

    Article  PubMed  CAS  Google Scholar 

  22. Desjarlais JR, Berg JM. Redesigning the DNA-binding specificity of a zinc finger protein: A data base-guided approach. Proteins 1992; 12(2):101–104.

    Article  PubMed  CAS  Google Scholar 

  23. Desjarlais, Berg JM. Redesigning the DNA-binding specificity of a zinc finger protein: A data base-guided approach. Proteins 1992; 13(3):272.

    Article  PubMed  CAS  Google Scholar 

  24. Nardelli J, Gibson TJ, Vesque C et al. Base sequence discrimination by zinc-finger DNA-binding domains. Nature 1991; 349(6305):175–178.

    Article  PubMed  CAS  Google Scholar 

  25. Nardelli J, Gibson T, Charnay P. Zinc finger-DNA recognition: Analysis of base specificity by site-directed mutagenesis. Nucleic Acids Res 1992; 20(16):4137–4144.

    Article  PubMed  CAS  Google Scholar 

  26. Desjarlais JR, Berg JM. Use of a zinc-finger consensus sequence framework and specificity rules to design specific DNA binding proteins. Proc Natl Acad Sci USA 1993; 90(6):2256–2260.

    Article  PubMed  CAS  Google Scholar 

  27. Rebar EJ, Pabo CO. Zinc finger phage: Affinity selection of fingers with new DNA-binding specificities. Science 1994; 263(5147):671–673.

    Article  PubMed  CAS  Google Scholar 

  28. Desjarlais JR, Berg JM. Length-encoded multiplex binding site determination: Application to zinc finger proteins. Proc Natl Acad Sci USA 1994; 91(23):11099–11103.

    Article  PubMed  CAS  Google Scholar 

  29. Choo Y, Klug A. Designing DNA-binding proteins on the surface of filamentous phage. Curr Opin Biotechnol 1995; 6(4):431–436.

    Article  PubMed  CAS  Google Scholar 

  30. Wu H, Yang WP, Barbas III CF. Building zinc fingers by selection: Toward a therapeutic application. Proc Natl Acad Sci USA 1995; 92(2):344–348.

    Article  PubMed  CAS  Google Scholar 

  31. Jamieson AC, Wang H, Kim SH. A zinc finger directory for high-affinity DNA recognition. Proc Natl Acad Sci USA 1996; 93(23):12834–12839.

    Article  PubMed  CAS  Google Scholar 

  32. Greisman HA, Pabo CO. A general strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites. Science 1997; 275(5300):657–661.

    Article  PubMed  CAS  Google Scholar 

  33. Isalan M, Choo Y. Engineering nucleic acid-binding proteins by phage display. Methods Mol Biol 2001; 148:417–429.

    PubMed  CAS  Google Scholar 

  34. Wolfe SA, Nekludova L, Pabo CO. DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct 2000; 29:183–212.

    Article  PubMed  CAS  Google Scholar 

  35. Kim CA, Berg JM. A 2.2 A resolution crystal structure of a designed zinc finger protein bound to DNA. Nat Struct Biol 1996; 3(11):940–945.

    Article  PubMed  CAS  Google Scholar 

  36. Elrod-Erickson M, Benson TE, Pabo CO. High-resolution structures of variant Zif268-DNA complexes: Implications for understanding zinc finger-DNA recognition. Structure 1998; 6(4):451–464.

    Article  PubMed  CAS  Google Scholar 

  37. Choo Y, Klug A. Physical basis of a protein-DNA recognition code. Curr Opin Struct Biol 1997; 7(1):117–125.

    Article  PubMed  CAS  Google Scholar 

  38. Segal DJ, Dreier B, Beerli RR et al. Toward controlling gene expression at will: Selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences. Proc Natl Acad Sci USA 1999; 96(6):2758–2763.

    Article  PubMed  CAS  Google Scholar 

  39. Dreier B, Beerli RR, Segal DJ et al. Development of zinc finger domains for recognition of the 5′-ANN-3′ family of DNA sequences and their use in the construction of artificial transcription factors. J Biol Chem 2001; 276(31):29466–29478.

    Article  PubMed  CAS  Google Scholar 

  40. Elrod-Erickson M, Rould MA, Nekludova L et al. Zif268 protein-DNA complex refined at 1.6 A: A model system for understanding zinc finger-DNA interactions. Structure 1996; 4(10):1171–1180.

    Article  PubMed  CAS  Google Scholar 

  41. Pavletich NP, Pabo CO. Crystal structure of a five-finger GLI-DNA complex: New perspectives on zinc fingers. Science 1993; 261(5129):1701–1707.

    Article  PubMed  CAS  Google Scholar 

  42. Fairall L, Schwabe JW, Chapman L et al. The crystal structure of a two zinc-finger peptide reveals an extension to the rules for zinc-finger/DNA recognition. Nature 1993; 366(6454):483–487.

    Article  PubMed  CAS  Google Scholar 

  43. Houbaviy HB, Usheva A, Shenk T et al. Cocrystal structure of YY1 bound to the adeno-associated virus P5 initiator. Proc Natl Acad Sci USA 1996; 93(24):13577–13582.

    Article  PubMed  CAS  Google Scholar 

  44. Kim CA, Berg JM. Serine at position 2 in the DNA recognition helix of a Cys2-His2 zinc finger peptide is not, in general, responsible for base recognition. J Mol Biol 1995; 252(1):1–5.

    Article  PubMed  CAS  Google Scholar 

  45. Corbi N, Perez M, Maione R et al. Synthesis of a new zinc finger peptide; comparison of its ‘code’ deduced and ‘CASTING’ derived binding sites. FEBS Lett 1997; 417(1):71–74.

    Article  PubMed  CAS  Google Scholar 

  46. Corbi N, Libri V, Fanciulli M et al. Binding properties of the artificial zinc fingers coding gene Sint1. Biochem Biophys Res Commun 1998; 253(3):686–692.

    Article  PubMed  CAS  Google Scholar 

  47. Corbi N, Libri V, Fanciulli M et al. The artificial zinc finger coding gene ‘Jazz’ binds the utrophin promoter and activates transcription. Gene Ther 2000; 7(12):1076–1083.

    Article  PubMed  CAS  Google Scholar 

  48. Choo Y, Sanchez-Garcia I, Klug A. In vivo repression by a site-specific DNA-binding protein designed against an oncogenic sequence. Nature 1994; 372(6507):642–645.

    Article  PubMed  CAS  Google Scholar 

  49. McNamara AR, Ford KG. A novel four zinc-finger protein targeted against p190(BcrAbl) fusion oncogene cDNA: Utilisation of zinc-finger recognition codes. Nucleic Acids Res 2000; 28(24):4865–4872.

    Article  PubMed  CAS  Google Scholar 

  50. Isalan M, Choo Y, Klug A. Synergy between adjacent zinc fingers in sequence-specific DNA recognition. Proc Natl Acad Sci USA 1997; 94(11):5617–5621.

    Article  PubMed  CAS  Google Scholar 

  51. Wolfe SA, Greisman HA, Ramm EI et al. Analysis of zinc fingers optimized via phage display: Evaluating the utility of a recognition code. J Mol Biol 1999; 285(5):1917–1934.

    Article  PubMed  CAS  Google Scholar 

  52. Pabo CO, Nekludova L. Geometric analysis and comparison of protein-DNA interfaces: Why is there no simple code for recognition? J Mol Biol 2000; 301(3):597–624.

    Article  PubMed  CAS  Google Scholar 

  53. Wolfe SA, Grant RA, Elrod-Erickson M et al. Beyond the “recognition code”: Structures of two Cys2His2 zinc finger/TATA box complexes. Structure (Camb) 2001; 9(8):717–23.

    Article  PubMed  CAS  Google Scholar 

  54. Sera T, Uranga C. Rational design of artificial zinc-finger proteins using a nondegenerate recognition code table. Biochemistry 2002; 41(22):7074–7081.

    Article  PubMed  CAS  Google Scholar 

  55. Choo Y, Isalan M. Advances in zinc finger engineering. Curr Opin Struct Biol 2000; 10(4):411–416.

    Article  PubMed  CAS  Google Scholar 

  56. Segal DJ, Barbas III CF. Design of novel sequence-specific DNA-binding proteins. Curr Opin Chem Biol 2000; 4(1):34–39.

    Article  PubMed  CAS  Google Scholar 

  57. Beerli RR, Barbas III CF. Engineering polydactyl zinc-finger transcription factors. Nat Biotechnol 2002; 20(2):135–141.

    Article  PubMed  CAS  Google Scholar 

  58. Dreier B, Segal DJ, Barbas III CF. Insights into the molecular recognition of the 5′-GNN-3′ family of DNA sequences by zinc finger domains. J Mol Biol 2000; 303(4):489–502.

    Article  PubMed  CAS  Google Scholar 

  59. Segal DJ. The use of zinc finger peptides to study the role of specific factor binding sites in the chromatin environment. Methods 2002; 26(1):76–83.

    Article  PubMed  CAS  Google Scholar 

  60. Segal DJ, Beerli RR, Blancafort P et al. Evaluation of a modular strategy for the construction of novel polydactyl zinc finger DNA-binding proteins. Biochemistry 2003; 42(7):2137–2148.

    Article  PubMed  CAS  Google Scholar 

  61. Beerli RR, Segal DJ, Dreier B et al. Toward controlling gene expression at will: Specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc Natl Acad Sci USA 1998; 95(25):14628–14633.

    Article  PubMed  CAS  Google Scholar 

  62. Jouvenot Y, Ginjala V, Zhang L et al. Targeted regulation of imprinted genes by synthetic zinc-finger transcription factors. Gene Ther 2003; 10(6):513–522.

    Article  PubMed  CAS  Google Scholar 

  63. Isalan M, Klug A, Choo Y. Comprehensive DNA recognition through concerted interactions from adjacent zinc fingers. Biochemistry 1998; 37(35):12026–12033.

    Article  PubMed  CAS  Google Scholar 

  64. Isalan M, Klug A, Choo Y. A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter. Nat Biotechnol 2001; 19(7):656–660.

    Article  PubMed  CAS  Google Scholar 

  65. Bartsevich VV, Juliano RL. Regulation of the MDR1 gene by transcriptional repressors selected using peptide combinatorial libraries. Mol Pharmacol 2000; 58(1):1–10.

    PubMed  CAS  Google Scholar 

  66. Joung JK, Ramm EI, Pabo CO. A bacterial two-hybrid selection system for studying protein-DNA and protein-protein interactions. Proc Natl Acad Sci USA 2000; 97(13):7382–7387.

    Article  PubMed  CAS  Google Scholar 

  67. Blancafort P, Magnenat L, Barbas CF. Scanning the human genome with combinatorial transcription factor libraries. Nat Biotechnol 2003; 21(3):269–274.

    Article  PubMed  CAS  Google Scholar 

  68. Imanishi M, Hori Y, Nagaoka M et al. Design of novel zinc finger proteins: Towards artificial control of specific gene expression. Eur J Pharm Sci 2001; 13(1):91–97.

    Article  PubMed  CAS  Google Scholar 

  69. Liu Q, Segal DJ, Ghiara JB et al. Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc Natl Acad Sci USA 1997; 94(11):5525–5530.

    Article  PubMed  CAS  Google Scholar 

  70. Kim JS, Pabo CO. Getting a handhold on DNA: Design of poly-zinc finger proteins with femtomolar dissociation constants. Proc Natl Acad Sci USA 1998; 95(6):2812–2817.

    Article  PubMed  CAS  Google Scholar 

  71. Kamiuchi T, Abe E, Imanishi M et al. Artificial nine zinc-finger peptide with 30 base pair binding sites. Biochemistry 1998; 37(39):13827–13834.

    Article  PubMed  CAS  Google Scholar 

  72. Nagaoka M, Sugiura Y. Artificial zinc finger peptides: Creation, DNA recognition, and gene regulation. J Inorg Biochem 2000; 82(1–4):57–63.

    Article  PubMed  CAS  Google Scholar 

  73. Imanishi M, Hori Y, Nagaoka M et al. DNA-bending finger: Artificial design of 6-zinc finger peptides with polyglycine linker and induction of DNA bending. Biochemistry 2000; 39(15):4383–4390.

    Article  PubMed  CAS  Google Scholar 

  74. Moore M, Klug A, Choo Y. Improved DNA binding specificity from polyzinc finger peptides by using strings of two-finger units. Proc Natl Acad Sci USA 2001; 98(4):1437–1441.

    Article  PubMed  CAS  Google Scholar 

  75. Nagaoka M, Kaji T, Imanishi M et al. Multiconnection of identical zinc finger: Implication for DNA binding affinity and unit modulation of the three zinc finger domain. Biochemistry 2001; 40(9):2932–2941.

    Article  PubMed  CAS  Google Scholar 

  76. Nagaoka M, Nomura W, Shiraishi Y et al. Significant effect of linker sequence on DNA recognition by multi-zinc finger protein. Biochem Biophys Res Commun 2001; 282(4):1001–1007.

    Article  PubMed  CAS  Google Scholar 

  77. Moore M, Choo Y, Klug A. Design of polyzinc finger peptides with structured linkers. Proc Natl Acad Sci USA 2001; 98(4):1432–1436.

    Article  PubMed  CAS  Google Scholar 

  78. Liu Q, Xia Z, Zhong X et al. Validated zinc finger protein designs for all 16 GNN DNA triplet targets. J Biol Chem 2002; 277(6):3850–3856.

    Article  PubMed  CAS  Google Scholar 

  79. Guan X, Stege J, Kim M et al. Heritable endogenous gene regulation in plants with designed polydactyl zinc finger transcription factors. Proc Natl Acad Sci USA 2002; 99(20):13296–13301.

    Article  PubMed  CAS  Google Scholar 

  80. Arora PS, Ansari AZ, Best TP et al. Design of artificial transcriptional activators with rigid poly-L-proline linkers. J Am Chem Soc 2002; 124(44):13067–13071.

    Article  PubMed  CAS  Google Scholar 

  81. Imanishi M, Sugiura Y. Artificial DNA-bending six-zinc finger peptides with different charged linkers: Distinct kinetic properties of DNA bindings. Biochemistry 2002; 41(4):1328–1334.

    Article  PubMed  CAS  Google Scholar 

  82. Nomura W, Nagaoka M, Shiraishi Y et al. Influence of TFIIIA-type linker at the N-or C-terminal of nine-zinc finger protein on DNA-binding site. Biochem Biophys Res Commun 2003; 300(1):87–92.

    Article  PubMed  CAS  Google Scholar 

  83. Pomerantz JL, Wolfe SA, Pabo CO. Structure-based design of a dimeric zinc finger protein. Biochemistry 1998; 37(4):965–970.

    Article  PubMed  CAS  Google Scholar 

  84. Wang BS, Pabo CO. Dimerization of zinc fingers mediated by peptides evolved in vitro from random sequences. Proc Natl Acad Sci USA 1999; 96(17):9568–9573.

    Article  PubMed  CAS  Google Scholar 

  85. Wolfe SA, Ramm EI, Pabo CO. Combining structure-based design with phage display to create new Cys(2)His(2) zinc finger dimers. Structure Fold Des 2000; 8(7):739–750.

    Article  PubMed  CAS  Google Scholar 

  86. Wang BS, Grant RA, Pabo CO. Selected peptide extension contacts hydrophobic patch on neighboring zinc finger and mediates dimerization on DNA. Nat Struct Biol 2001; 8(7):589–593.

    Article  PubMed  CAS  Google Scholar 

  87. Berg JM. Sp1 and the subfamily of zinc finger proteins with guanine-rich binding sites. Proc Natl Acad Sci USA 1992; 89(23):11109–11110.

    Article  PubMed  CAS  Google Scholar 

  88. Yaghmai R, Cutting GR. Optimized regulation of gene expression using artificial transcription factors. Mol Ther 2002; 5(6):685–694.

    Article  PubMed  CAS  Google Scholar 

  89. Segal DJ, Barbas III CF. Custom DNA-binding proteins come of age: Polydactyl zinc-finger proteins. Curr Opin Biotechnol 2001; 12(6):632–627.

    Article  PubMed  CAS  Google Scholar 

  90. Ansari AZ. Fingers reach for the genome. Nat Biotechnol 2003; 21(3):242–243.

    Article  PubMed  CAS  Google Scholar 

  91. Thoma C, Hasselblatt P, Kock J et al. Generation of stable mRNA fragments and translation of N-truncated proteins induced by antisense oligodeoxynucleotides. Mol Cell 2001; 8(4):865–872.

    Article  PubMed  CAS  Google Scholar 

  92. Hutvagner G, Zamore PD. RNAi: Nature abhors a double-strand. Curr Opin Genet Dev 2002; 12(2):225–232.

    Article  PubMed  CAS  Google Scholar 

  93. Harris S, Foord SM. Transgenic gene knock-outs: Functional genomics and therapeutic target selection. Pharmacogenomics 2000; 1(4):433–443.

    Article  PubMed  CAS  Google Scholar 

  94. Kang JS, Kim JS. Zinc finger proteins as designer transcription factors. J Biol Chem 2000; 275(12):8742–8748.

    Article  PubMed  CAS  Google Scholar 

  95. Zhang L, Spratt SK, Liu Q et al. Synthetic zinc finger transcription factor action at an endogenous chromosomal site. Activation of the human erythropoietin gene. J Biol Chem 2000; 275(43):33850–33860.

    Article  PubMed  CAS  Google Scholar 

  96. Liu PQ, Rebar EJ, Zhang L et al. Regulation of an endogenous locus using a panel of designed zinc finger proteins targeted to accessible chromatin regions. Activation of vascular endothelial growth factor A. J Biol Chem 2001; 276(14):11323–11334.

    Article  PubMed  CAS  Google Scholar 

  97. Ren D, Collingwood TN, Rebar EJ et al. PPARgamma knockdown by engineered transcription factors: Exogenous PPARgamma2 but not PPARgamma1 reactivates adipogenesis. Genes Dev 2002; 16(1):27–32.

    Article  PubMed  CAS  Google Scholar 

  98. Rebar EJ, Huang Y, Hickey R et al. Induction of angiogenesis in a mouse model using engineered transcription factors. Nat Med 2002; 8(12):1427–1432.

    Article  PubMed  CAS  Google Scholar 

  99. Papworth M, Moore M, Isalan M et al. Inhibition of herpes simplex virus 1 gene expression by designer zinc-finger transcription factors. Proc Natl Acad Sci USA 2003; 100(4):1621–1626.

    Article  PubMed  CAS  Google Scholar 

  100. Reynolds L, Ullman C, Moore M et al. Repression of the HIV-1 5′ LTR promoter and inhibition of HIV-1 replication by using engineered zinc-finger transcription factors. Proc Natl Acad Sci USA 2003; 100(4):1615–1620.

    Article  PubMed  CAS  Google Scholar 

  101. Falke D, Fisher M, Ye D et al. Design of artificial transcription factors to selectively regulate the pro-apoptotic bax gene. Nucleic Acids Res 2003; 31(3):e10.

    Article  PubMed  CAS  Google Scholar 

  102. Bae KH, Do KY, Shin HC et al. Human zinc fingers as building blocks in the construction of artificial transcription factors. Nat Biotechnol 2003; 21(3):275–280.

    Article  PubMed  CAS  Google Scholar 

  103. Friesen WJ, Darby MK. Specific RNA binding proteins constructed from zinc fingers. Nat Struct Biol 1998; 5(7):543–546.

    Article  PubMed  CAS  Google Scholar 

  104. Cheng AC, Calabro V, Frankel AD. Design of RNA-binding proteins and ligands. Curr Opin Struct Biol 2001; 11(4):478–484.

    Article  PubMed  CAS  Google Scholar 

  105. Cartegni L, Krainer AR. Correction of disease-associated exon skipping by synthetic exon-specific activators. Nat Struct Biol 2003; 10(2):120–125.

    Article  PubMed  CAS  Google Scholar 

  106. Friesen WJ, Darby MK. Phage display of RNA binding zinc fingers from transcription factor IIIA. J Biol Chem 1997; 272(17):10994–10997.

    Article  PubMed  CAS  Google Scholar 

  107. Frankel AD. Fitting peptides into the RNA world. Curr Opin Struct Biol 2000; 10(3):332–340.

    Article  PubMed  CAS  Google Scholar 

  108. McColl DJ, Honchell CD, Frankel AD. Structure-based design of an RNA-binding zinc finger. Proc Natl Acad Sci USA 1999; 96(17):9521–9526.

    Article  PubMed  CAS  Google Scholar 

  109. Friesen WJ, Darby MK. Specific RNA binding by a single C2H2 zinc finger. J Biol Chem 2001; 276(3):1968–1973.

    Article  PubMed  CAS  Google Scholar 

  110. Frommer WB, Beachy R. Plant biotechnology. A future for plant biotechnology? Naturally!. Curr Opin Plant Biol 2003; 6(2):147–149.

    Article  Google Scholar 

  111. Stege JT, Guan X, Ho T et al. Controlling gene expression in plants using synthetic zinc finger transcription factors. Plant J 2002; 32(6):1077–1086.

    Article  PubMed  CAS  Google Scholar 

  112. Sanchez JP, Ullman C, Moore M et al. Regulation of gene expression in Arabidopsis thaliana by artificial zinc finger chimeras. Plant Cell Physiol 2002; 43(12):1465–1472.

    Article  PubMed  CAS  Google Scholar 

  113. Segal DJ, Stege JT, Barbas CF. Zinc fingers and a green thumb: Manipulating gene expression in plants. Curr Opin Plant Biol 2003; 6(2):163–168.

    Article  PubMed  CAS  Google Scholar 

  114. Ordiz MI, Barbas III CF, Beachy RN. Regulation of transgene expression in plants with polydactyl zinc finger transcription factors. Proc Natl Acad Sci USA 2002; 99(20):13290–13295.

    Article  PubMed  CAS  Google Scholar 

  115. Falke D, Juliano RL. Selective gene regulation with designed transcription factors: Implications for therapy. Curr Opin Mol Ther 2003; 5(2):161–166.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Passananti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Landes Bioscience/Eurekah.com and Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Corbi, N., Libri, V., Passananti, C. (2005). Synthetic Zinc Finger Transcription Factors. In: Iuchi, S., Kuldell, N. (eds) Zinc Finger Proteins. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27421-9_9

Download citation

Publish with us

Policies and ethics