Skip to main content

Apoptosis by Zinc Deficiency

  • Chapter
Zinc Finger Proteins

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Zinc is an essential trace element for all forms of life. Zinc deficiency affects many systems because of the many roles it encompasses, such as in metabolism (including the activity of more than 300 enzymes), the structure of many proteins and control of genetic expression. Homeostatic regulation of this trace metal is extremely crucial, with zinc status affecting basic processes of cell division, growth, differentiation and apoptosis. The role of zinc in the regulation of apoptosis is not fully understood. The present review describes the current literature surrounding zinc deprivation and the induction of apoptotic cell death, and attempts to dissect the various molecular mechanisms involved in the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Golstein P, Ojcius DM, Young JD. Cell death mechanisms and the immune system. Immunol Rev 1991; 121:29–65.

    Article  PubMed  CAS  Google Scholar 

  2. Orrenius S, McCabe Jr MJ, Nicotera P. Ca(2+)-dependent mechanisms of cytotoxicity and programmed cell death. Toxicol Lett 1992; 64–65(Spec No):357–364.

    Article  PubMed  Google Scholar 

  3. Bertholf RL. Zinc. In: Seiler HG, Sigel H, eds. Handbook on toxicity of inorganic compounds. New York: New York Dekker, 1988:788–800.

    Google Scholar 

  4. Chesters JK. In: Mills CF, ed. Zinc in human biology. London: Springer-Verlag, 1989:109–118.

    Google Scholar 

  5. Elmes ME. Apoptosis in the small intestine of zinc-deficient and fasted rats. J Pathol 1977; 123(4):219–223.

    Article  PubMed  CAS  Google Scholar 

  6. Yeiser EC, Vanlandingham JW, Levenson CW. Moderate zinc deficiency increases cell death after brain injury in the rat. Nutr Neurosci 2002; 5(5):345–352.

    Article  PubMed  CAS  Google Scholar 

  7. Fraker PJ, Telford WG. A reappraisal of the role of zinc in life and death decisions of cells. Proc Soc Exp Biol Med 1997; 215(3):229–236.

    PubMed  CAS  Google Scholar 

  8. Truong-Tran AQ, Carter J, Ruffin RE et al. The role of zinc in caspase activation and apoptotic cell death. Biometals 2001; 14(3–4):315–330.

    Article  PubMed  CAS  Google Scholar 

  9. Kruse-Jarres JD. The significance of zinc for humoral and cellular immunity. J Trace Elem Electrolytes Health Dis 1989; 3(1):1–8.

    PubMed  CAS  Google Scholar 

  10. Cunningham-Rundles S, Bockman RS, Lin A et al. Physiological and pharmacological effects of zinc on immune response. Ann N Y Acad Sci 1990; 587:113–122.

    PubMed  CAS  Google Scholar 

  11. Wellinghausen N, Kirchner H, Rink L. The immunobiology of zinc. Immunol Today 1997; 18(11):519–521.

    Article  PubMed  CAS  Google Scholar 

  12. Dardenne M. Zinc and immune function. Eur J Clin Nutr 2002; 56(Suppl 3):S20–23.

    Article  PubMed  CAS  Google Scholar 

  13. Baum MK, Shor-Posner G, Campa A. Zinc status in human immunodeficiency virus infection. J Nutr 2000; 130(5S Suppl):1421S–1423S.

    PubMed  CAS  Google Scholar 

  14. Neldner KH, Hambidge KM, Walravens PA. Acrodermatitis enteropathica. Int J Dermatol 1978; 17(5):380–387.

    PubMed  CAS  Google Scholar 

  15. Hanna LA, Peters JM, Wiley LM et al. Enhancing effect of maternal zinc deficiency and 137Cs gamma-irradiation on the frequency of fetal malformations in mice. Teratog Carcinog Mutagen 1997; 17(3):127–137.

    Article  PubMed  CAS  Google Scholar 

  16. Peters JM, Wiley LM, Zidenberg-Cherr S et al. Influence of short-term maternal zinc deficiency on the in vitro development of preimplantation mouse embryos. Proc Soc Exp Biol Med 1991; 198(1):561–568.

    PubMed  CAS  Google Scholar 

  17. Hurley LS, Shrader RE. Abnormal development of preimplantation rat eggs after three days of maternal dietary zinc deficiency. Nature 1975; 254(5499):427–429.

    Article  PubMed  CAS  Google Scholar 

  18. Thornberry NA, Lazebnik Y. Caspases: Enemies within. Science 1998; 281(5381):1312–1316.

    Article  PubMed  CAS  Google Scholar 

  19. Fischer U, Janicke RU, Schulze-Osthoff K. Many cuts to ruin: A comprehensive update of caspase substrates. Cell Death Differ 2003; 10(1):76–100.

    Article  PubMed  CAS  Google Scholar 

  20. Coultas L, Strasser A. The role of the Bcl-2 protein family in cancer. Semin Cancer Biol 2003; 13(2):115–123.

    Article  PubMed  CAS  Google Scholar 

  21. Vayssiere JL, Petit PX, Risler Y et al. Commitment to apoptosis is associated with changes in mitochondrial biogenesis and activity in cell lines conditionally immortalized with simian virus 40. Proc Natl Acad Sci USA 1994; 91(24):11752–11756.

    Article  PubMed  CAS  Google Scholar 

  22. Zamzami N, Marchetti P, Castedo M et al. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 1995; 182(2):367–377.

    Article  PubMed  CAS  Google Scholar 

  23. Jiang X, Wang X. Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1. J Biol Chem 2000; 275(40):31199–31203.

    Article  PubMed  CAS  Google Scholar 

  24. Susin SA, Lorenzo HK, Zamzami N et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999; 397(6718):441–446.

    Article  PubMed  CAS  Google Scholar 

  25. Janicke RU, Ng P, Sprengart ML et al. Caspase-3 is required for alpha-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis. J Biol Chem 1998; 273(25):15540–15545.

    Article  PubMed  CAS  Google Scholar 

  26. Peter ME, Krammer PH. The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 2003; 10(1):26–35.

    Article  PubMed  CAS  Google Scholar 

  27. Fraker PJ, Haas SM, Luecke RW. Effect of zinc deficiency on the immune response of the young adult A/J mouse. J Nutr 1977; 107(10):1889–1895.

    PubMed  CAS  Google Scholar 

  28. Martin SJ, Mazdai G, Strain JJ et al. Programmed cell death (apoptosis) in lymphoid and myeloid cell lines during zinc deficiency. Clin Exp Immunol 1991; 83(2):338–343.

    Article  PubMed  CAS  Google Scholar 

  29. Migliorati G, Nicoletti I, Pagliacci MC et al. Interleukin-2 induces apoptosis in mouse thymocytes. Cell Immunol 1993; 146(1):52–61.

    Article  PubMed  CAS  Google Scholar 

  30. Kuo IC, Seitz B, LaBree L et al. Can zinc prevent apoptosis of anterior keratocytes after superficial keratectomy? Cornea 1997; 16(5):550–555.

    Article  PubMed  CAS  Google Scholar 

  31. Marini M, Musiani D. Micromolar zinc affects endonucleolytic activity in hydrogen peroxide-mediated apoptosis. Exp Cell Res 1998; 239(2):393–398.

    Article  PubMed  CAS  Google Scholar 

  32. Maclean KH, Cleveland JL, Porter JB. Cellular zinc content is a major determinant of iron chelator-induced apoptosis of thymocytes. Blood 2001; 98(13):3831–3839.

    Article  PubMed  CAS  Google Scholar 

  33. Cohen GM, Sun XM, Snowden RT et al. Key morphological features of apoptosis may occur in the absence of internucleosomal DNA fragmentation. Biochem J 1992; 286(Pt 2):331–334.

    PubMed  CAS  Google Scholar 

  34. Fukamachi Y, Karasaki Y, Sugiura T et al. Zinc suppresses apoptosis of U937 cells induced by hydrogen peroxide through an increase of the Bcl-2/Bax ratio. Biochem Biophys Res Commun 1998; 246(2):364–369.

    Article  PubMed  CAS  Google Scholar 

  35. Trubiani O, Antonucci A, Palka G et al. Programmed cell death of peripheral myeloid precursor cells in Down patients: Effect of zinc therapy. Ultrastruct Pathol 1996; 20(5):457–462.

    PubMed  CAS  Google Scholar 

  36. Ning ZQ, Norton JD, Li J et al. Distinct mechanisms for rescue from apoptosis in Ramos human B cells by signalling through CD40 and interleukin-4 receptor: Role for inhibition of an early response gene, Berg36. Biochem Soc Trans 1997; 25(2):306S.

    PubMed  CAS  Google Scholar 

  37. Jiang S, Chow SC, McCabe MJ et al. Lack of Ca2+ involvement in thymocyte apoptosis induced by chelation of intracellular Zn2+. Lab Invest 1995; 73(1):111–117.

    PubMed  CAS  Google Scholar 

  38. Telford WG, Fraker PJ. Preferential induction of apoptosis in mouse CD4+CD8+ alpha beta TCRloCD3 epsilon lo thymocytes by zinc. J Cell Physiol 1995; 164(2):259–270.

    Article  PubMed  CAS  Google Scholar 

  39. Mathieu J, Ferlat S, Ballester B et al. Radiation-induced apoptosis in thymocytes: Inhibition by diethyldithiocarbamate and zinc. Radiat Res 1996; 146(6):652–659.

    Article  PubMed  CAS  Google Scholar 

  40. Truong-Tran AQ, Ruffin RE, Foster PS et al. Altered zinc homeostasis and caspase-3 activity in murine allergic airway inflammation. Am J Respir Cell Mol Biol 2002; 27(3):286–296.

    PubMed  CAS  Google Scholar 

  41. King LE, Fraker PJ. Zinc deficiency in mice alters myelopoiesis and hematopoiesis. J Nutr 2002; 132(11):3301–3307.

    PubMed  CAS  Google Scholar 

  42. Paramanantham R, Sit KH, Bay BH. Adding Zn2+ induces DNA fragmentation and cell condensation in cultured human Chang liver cells. Biol Trace Elem Res 1997; 58(1–2):135–147.

    Article  PubMed  CAS  Google Scholar 

  43. Hamatake M, Iguchi K, Hirano K et al. Zinc induces mixed types of cell death, necrosis, and apoptosis, in molt-4 cells. J Biochem (Tokyo) 2000; 128(6):933–939.

    PubMed  CAS  Google Scholar 

  44. Bettger WJ, O’Dell BL. A critical physiological role of zinc in the structure and function of biomembranes. Life Sci 1981; 28(13):1425–1438.

    Article  PubMed  CAS  Google Scholar 

  45. Zalewski PD, Forbes IJ, Betts WH. Correlation of apoptosis with change in intracellular labile Zn(II) using zinquin [(2-methyl-8-p-toluenesulphonamido-6-quinolyloxy)acetic acid], a new specific fluorescent probe for Zn(II). Biochem J 1993; 296(Pt 2):403–408.

    PubMed  CAS  Google Scholar 

  46. Lazebnik YA, Cole S, Cooke CA et al. Nuclear events of apoptosis in vitro in cell-free mitotic extracts: A model system for analysis of the active phase of apoptosis. J Cell Biol 1993; 123(1):7–22.

    Article  PubMed  CAS  Google Scholar 

  47. Jankowski-Hennig MA, Clegg MS, Daston GP et al. Zinc-deficient rat embryos have increased caspase 3-like activity and apoptosis. Biochem Biophys Res Commun 2000; 271(1):250–256.

    Article  PubMed  CAS  Google Scholar 

  48. Chimienti F, Seve M, Richard S et al. Role of cellular zinc in programmed cell death: Temporal relationship between zinc depletion, activation of caspases, and cleavage of Sp family transcription factors. Biochem Pharmacol 2001; 62(1):51–62.

    Article  PubMed  CAS  Google Scholar 

  49. Kolenko VM, Uzzo RG, Dulin N et al. Mechanism of apoptosis induced by zinc deficiency in peripheral blood T lymphocytes. Apoptosis 2001; 6(6):419–429.

    Article  PubMed  CAS  Google Scholar 

  50. Chai F, Truong-Tran AQ, Evdokiou A et al. Intracellular zinc depletion induces caspase activation and p21 Waf1/Cip1 cleavage in human epithelial cell lines. J Infect Dis 2000; 182(Suppl 1):S85–92.

    Article  PubMed  CAS  Google Scholar 

  51. Zheng TS, Hunot S, Kuida K et al. Caspase knockouts: Matters of life and death. Cell Death Differ 1999; 6(11):1043–1053.

    Article  PubMed  CAS  Google Scholar 

  52. Ahn YH, Koh JY, Hong SH. Protein synthesis-dependent but Bcl-2-independent cytochrome C release in zinc depletion-induced neuronal apoptosis. J Neurosci Res 2000; 61(5):508–514.

    Article  PubMed  CAS  Google Scholar 

  53. Fanzo JC, Reaves SK, Cui L et al. Zinc status affects p53, gadd45, and c-fos expression and caspase-3 activity in human bronchial epithelial cells. Am J Physiol Cell Physiol 2001; 281(3):C751–757.

    PubMed  CAS  Google Scholar 

  54. Vousden KH, Lu X. Live or let die: The cell’s response to p53. Nat Rev Cancer 2002; 2(8):594–604.

    Article  PubMed  CAS  Google Scholar 

  55. Momand J, Zambetti GP, Olson DC et al. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992; 69(7):1237–1245.

    Article  PubMed  CAS  Google Scholar 

  56. Fuchs SY, Adler V, Buschmann T et al. JNK targets p53 ubiquitination and degradation in nonstressed cells. Genes Dev 1998; 12(17):2658–2663.

    PubMed  CAS  Google Scholar 

  57. Banin S, Moyal L, Shieh S et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 1998; 281(5383):1674–1677.

    Article  PubMed  CAS  Google Scholar 

  58. Canman CE, Lim DS, Cimprich KA et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 1998; 281(5383):1677–1679.

    Article  PubMed  CAS  Google Scholar 

  59. Maya R, Balass M, Kim ST et al. ATM-dependent phosphorylation of Mdm2 on serine 395: Role in p53 activation by DNA damage. Genes Dev 2001; 15(9):1067–1077.

    Article  PubMed  CAS  Google Scholar 

  60. Pomerantz J, Schreiber-Agus N, Liegeois NJ et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 1998; 92(6):713–723.

    Article  PubMed  CAS  Google Scholar 

  61. Weber JD, Taylor LJ, Roussel MF et al. Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol 1999; 1(1):20–26.

    Article  PubMed  CAS  Google Scholar 

  62. Levkau B, Koyama H, Raines EW et al. Cleavage of p21Cip1/Waf1 and p27Kip1 mediates apoptosis in endothelial cells through activation of Cdk2: Role of a caspase cascade. Mol Cell 1998; 1(4):553–563.

    Article  PubMed  CAS  Google Scholar 

  63. Kihara C, Seki T, Furukawa Y et al. Mutations in zinc-binding domains of p53 as a prognostic marker of esophageal-cancer patients. Jpn J Cancer Res 2000; 91(2):190–198.

    PubMed  CAS  Google Scholar 

  64. Geyer RK, Yu ZK, Maki CG. The MDM2 RING-finger domain is required to promote p53 nuclear export. Nat Cell Biol 2000; 2(9):569–573.

    Article  PubMed  CAS  Google Scholar 

  65. Ghosh M, Huang K, Berberich SJ. Overexpression of Mdm2 and MdmX fusion proteins alters p53 mediated transactivation, ubiquitination, and degradation. Biochemistry 2003; 42(8):2291–2299.

    Article  PubMed  CAS  Google Scholar 

  66. Zachos G, Spandidos DA. Transcriptional regulation of the c-H-ras1 gene by the P53 protein is implicated in the development of human endometrial and ovarian tumours. Oncogene 1998; 16(23):3013–3017.

    Article  PubMed  CAS  Google Scholar 

  67. Prasad AS, Beck FW, Doerr TD et al. Nutritional and zinc status of head and neck cancer patients: An interpretive review. J Am Coll Nutr 1998; 17(5):409–418.

    PubMed  CAS  Google Scholar 

  68. Doerr TD, Marks SC, Shamsa FH et al. Effects of zinc and nutritional status on clinical outcomes in head and neck cancer. Nutrition 1998; 14(6):489–495.

    Article  PubMed  CAS  Google Scholar 

  69. Prasad AS. Effects of zinc deficiency on Th1 and Th2 cytokine shifts. J Infect Dis 2000; 182(Suppl 1):S62–68.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Landes Bioscience/Eurekah.com and Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Maclean, K.H. (2005). Apoptosis by Zinc Deficiency. In: Iuchi, S., Kuldell, N. (eds) Zinc Finger Proteins. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27421-9_36

Download citation

Publish with us

Policies and ethics