Skip to main content

The Zip Family of Zinc Transporters

  • Chapter

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

The ZIP family of transporters plays important roles in supplying zinc to metalloproteins. These transporters are found in organisms at all phylogenetic levels including bacteria, fungi, plants, insects, and mammals. They have many conserved sequence elements and most have eight likely transmembrane domains with similar predicted topologies. Intracellular zinc homeostasis is facilitated by both transcriptional and post-transcriptional control mechanisms that regulate ZIP transporter activity. These systems work in concert to provide a constant supply of zinc in the face of changing extracellular levels and limit overaccumulation of this potentially toxic metal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gaither LA, Eide DJ. Eukaryotic zinc transporters and their regulation. Biometals 2001; 14(3–4):251–270.

    Article  PubMed  CAS  Google Scholar 

  2. Guerinot ML. The ZIP family of metal transporters. Biochim Biophys Acta 2000; 1465:190–198.

    Article  PubMed  CAS  Google Scholar 

  3. Eng BH, Guerinot ML, Eide D et al. Sequence analyses and phylogenetic characterization of the ZIP family of metal ion transport proteins. J Memb Biol 1998; 166:1–7.

    Article  CAS  Google Scholar 

  4. Zhao H, Eide D. The ZRT2 gene encodes the low affinity zinc transporter in Saccharomyces cerevisiae. J Biol Chem 1996; 271(38):23203–23210.

    Article  PubMed  CAS  Google Scholar 

  5. Zhao H, Eide D. The yeast ZRT1 gene encodes the zinc transporter of a high affinity uptake system induced by zinc limitation. Proc Natl Acad Sci USA 1996; 93:2454–2458.

    Article  PubMed  CAS  Google Scholar 

  6. Eide D, Broderius M, Fett J et al. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci USA 1996; 93:5624–5628.

    Article  PubMed  CAS  Google Scholar 

  7. Vert G, Grotz N, Dedaldechamp F et al. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 2002; 14(6):1223–1233.

    Article  PubMed  CAS  Google Scholar 

  8. Grass G, Wong MD, Rosen BP et al. ZupT is a Zn(II) uptake system in Escherichia coli. J Bacteriol 2002; 184(3):864–866.

    Article  PubMed  CAS  Google Scholar 

  9. Grotz N, Fox T, Connolly E et al. Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci USA 1998; 95(12):7220–7224.

    Article  PubMed  CAS  Google Scholar 

  10. Vert G, Briat JF, Curie C. Arabidopsis IRT2 gene encodes a root-periphery iron transporter. Plant J 2001; 26(2):181–189.

    Article  PubMed  CAS  Google Scholar 

  11. Pence NS, Larsen PB, Ebbs SD et al. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci USA 2000; 97(9):4956–4960.

    Article  PubMed  CAS  Google Scholar 

  12. Lasswell J, Rogg LE, Nelson DC et al. Cloning and characterization of IAR1, a gene required for auxin conjugate sensitivity in Arabidopsis. Plant Cell 2000; 12(12):2395–2408.

    Article  PubMed  CAS  Google Scholar 

  13. MacDiarmid CW, Gaither LA, Eide D. Zinc transporters that regulate vacuolar zinc storage in Saccharomyces cerevisiae. EMBO J 2000; 19(12):2845–2855.

    Article  PubMed  CAS  Google Scholar 

  14. Lin S-J, Culotta VC. Suppression of oxidative damage by Saccharomyces cerevisiae ATX2, which encodes a manganese-trafficking protein that localizes to Golgi-like vesicles. Mol Cell Biol 1996; 16:6303–6312.

    PubMed  CAS  Google Scholar 

  15. Gaither LA, Eide DJ. Functional expression of the human hZIP2 zinc transporter. J Biol Chem 2000; 275(8):5560–5564.

    Article  PubMed  CAS  Google Scholar 

  16. Gaither LA, Eide DJ. The human ZIP1 transporter mediates zinc uptake in human K562 erythroleukemia cells. J Biol Chem 2001; 276(25):22258–22264.

    Article  PubMed  CAS  Google Scholar 

  17. Outten CE, O’Halloran TV. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 2001; 292(5526):2488–2492.

    Article  PubMed  CAS  Google Scholar 

  18. Gitan RS, Eide DJ. Zinc-regulated ubiquitin conjugation signals endocytosis of the yeast ZRT1 zinc transporter. Biochem J 2000; 346:329–336.

    Article  PubMed  CAS  Google Scholar 

  19. Gitan RS, Luo H, Rodgers J et al. Zinc-induced inactivation of the yeast ZRT1 zinc transporter occurs through endocytosis and vacuolar degradation. J Biol Chem 1998; 273:28617–28624.

    Article  PubMed  CAS  Google Scholar 

  20. Gitan RS, Shababi M, Kramer M et al. A cytosolic domain of the yeast Zrt1 zinc transporter is require for its post-translational inactivation in response to zinc and cadmium. J Biol Chem 2003; in press.

    Google Scholar 

  21. Rogers EE, Eide DJ, Guerinot ML. Altered selectivity in an Arabidopsis metal transporter. Proc Natl Acad Sci USA 2000; 97(22):12356–12360.

    Article  PubMed  CAS  Google Scholar 

  22. Taylor KM. LIV-1 breast cancer protein belongs to a new family of histidine-rich membrane proteins with potential to control intracellular zinc homeostasis. Life 2000; 49:249–253.

    PubMed  CAS  Google Scholar 

  23. Lasat MM, Pence NS, Garvin DF et al. Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. J Exp Bot 2000; 51(342):71–79.

    Article  PubMed  CAS  Google Scholar 

  24. Lioumi M, Ferguson CA, Sharpe PT et al. Isolation and characterization of human and mouse ZIRTL, a member of the IRT1 family of transporters, mapping within the epidermal differentiation complex. Genomics 1999; 62:272–280.

    Article  PubMed  CAS  Google Scholar 

  25. Milon B, Dhermy D, Pountney D et al. Differential subcellular localization of hZip1 in adherent and nonadherent cells. FEBS Lett 2001; 507(3):241–246.

    Article  PubMed  CAS  Google Scholar 

  26. Yamaguchi S. Subtraction cloning of growth arrest inducible genes in normal human epithelial cells. Kokubyo Gakkai Zasshi 1995; 62:78–93.

    PubMed  CAS  Google Scholar 

  27. Cao J, Bobo JA, Liuzzi JP et al. Effects of intracellular zinc depletion on metallothionein and ZIP2 transporter expression and apoptosis. J Leuk Biol 2001; 70(4):559–566.

    CAS  Google Scholar 

  28. Wang K, Pugh EW, Griffen S et al. Homozygosity mapping places the acrodermatitis enteropathica gene on chromosomal region 8q24.3. Am J Hum Genet 2001; 68(4):1055–1060.

    Article  PubMed  CAS  Google Scholar 

  29. Wang K, Zhou B, Kuo YM et al. A novel member of a zinc transporter family is defective in acrodermatitis enteropathica. Am J Hum Genet 2002; 71(1):66–73.

    Article  PubMed  CAS  Google Scholar 

  30. Kury S, Dreno B, Bezieau S et al. Identification of SLC39A4, a gene involved in acrodermatitis enteropathica. Nature Genet 2002; 31(3):239–240.

    Article  PubMed  CAS  Google Scholar 

  31. Zhao H, Eide DJ. Zap1p, a metalloregulatory protein involved in zinc-responsive transcriptional regulation in Saccharomyces cerevisiae. Mol Cell Biol 1997; 17(9):5044–5052.

    PubMed  CAS  Google Scholar 

  32. Gomes DS, Fragoso LC, Riger CJ et al. Regulation of cadmium uptake by Saccharomyces cerevisiae. Biochim Biophys Acta 2002; 1573(1):21–25.

    PubMed  CAS  Google Scholar 

  33. Hicke L. Ubiquitin-dependent internalization and down-regulation of plasma membrane proteins. FASEB J 1997; 11:1215–1226.

    PubMed  CAS  Google Scholar 

  34. Costello LC, Liu Y, Zou J et al. Evidence for a zinc uptake transporter in human prostate cancer cells which is regulated by prolactin and testosterone. J Biol Chem 1999; 274:17499–17504.

    Article  PubMed  CAS  Google Scholar 

  35. Cousins RJ, Blanchard RK, Popp MP et al. A global view of the selectivity of zinc deprivation and excess on genes expressed on genes expressed in human THP-1 mononuclear cells. Proc Natl Acad Sci USA 2003; 100:6952–6957.

    Article  PubMed  CAS  Google Scholar 

  36. Connolly EL, Fett JP, Guerinot ML. Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 2002; 14(6):1347–1357.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Landes Bioscience/Eurekah.com and Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Eide, D.J. (2005). The Zip Family of Zinc Transporters. In: Iuchi, S., Kuldell, N. (eds) Zinc Finger Proteins. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27421-9_35

Download citation

Publish with us

Policies and ethics