Skip to main content

Role of GATA Factors in Development

  • Chapter
  • 2138 Accesses

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Members of the GATA transcription factor family are found throughout eukaryotes, including plants, fungi, invertebrates and vertebrates. In this review, we discuss some of the roles of GATA factors during vertebrate and invertebrate development. We place particular emphasis on their function in hematopoiesis, in heart and in endoderm development, phenomena in which several different organisms have shown striking molecular and developmental similarities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Martin DI, Orkin SH. Transcriptional activation and DNA binding by the erythroid factor GF-1/NF-E1/Eryf 1. Genes Dev 1990; 4(11):1886–1898.

    PubMed  CAS  Google Scholar 

  2. Merika M, Orkin SH. DNA-binding specificity of GATA family transcription factors. Mol Cell Biol 1993; 13(7):3999–4010.

    PubMed  CAS  Google Scholar 

  3. Lowry JA, Atchley WR. Molecular evolution of the GATA family of transcription factors: conservation within the DNA-binding domain. J Mol Evol 2000; 50(2):103–115.

    PubMed  CAS  Google Scholar 

  4. Scazzocchio C. The fungal GATA factors. Curr Opin Microbiol 2000; 3(2):126–131.

    Article  PubMed  CAS  Google Scholar 

  5. Patient RK, McGhee JD. The GATA family (vertebrates and invertebrates). Curr Opin Genet Dev 2002; 12(4):416–422.

    Article  PubMed  CAS  Google Scholar 

  6. Tong Q, Dalgin G, Xu H et al. Function of GATA transcription factors in preadipocyte-adipocyte transition. Science 2000; 290(5489):134–138.

    Article  PubMed  CAS  Google Scholar 

  7. Tevosian SG, Albrecht KH, Crispino JD et al. Gonadal differentiation, sex determination and normal Sry expression in mice require direct interaction between transcription partners GATA4 and FOG2. Development 2002; 129(19):4627–4634.

    PubMed  CAS  Google Scholar 

  8. Xu RH, Kim J, Taira M et al. Differential regulation of neurogenesis by the two Xenopus GATA-1 genes. Mol Cell Biol 1997; 17(1):436–443.

    PubMed  CAS  Google Scholar 

  9. Nardelli J, Thiesson D, Fujiwara Y et al. Expression and genetic interaction of transcription factors GATA-2 and GATA-3 during development of the mouse central nervous system. Dev Biol 1999; 210(2):305–321.

    Article  PubMed  CAS  Google Scholar 

  10. Ramain P, Heitzler P, Haenlin M et al. pannier, a negative regulator of achaete and scute in Drosophila, encodes a zinc finger protein with homology to the vertebrate transcription factor GATA-1. Development 1993; 119(4):1277–1291.

    PubMed  CAS  Google Scholar 

  11. Calleja M, Herranz H, Estella C et al. Generation of medial and lateral dorsal body domains by the pannier gene of Drosophila. Development 2000;127(18):3971–3980.

    PubMed  CAS  Google Scholar 

  12. Herranz H, Morata G. The functions of pannier during Drosophila embryogenesis. Development 2001; 128(23):4837–4846.

    PubMed  CAS  Google Scholar 

  13. Koh K, Peyrot SM, Wood CG et al. Cell fates and fusion in the C. elegans vulval primordium are regulated by the EGL-18 and ELT-6 GATA factors-apparent direct targets of the LIN-39 Hox protein. Development 2002; 129(22):5171–5180.

    PubMed  CAS  Google Scholar 

  14. Page BD, Zhang W, Steward K et al. ELT-1, a GATA-like transcription factor, is required for epidermal cell fates in Caenorhabditis elegans embryos. Genes Dev 1997; 11(13):1651–1661.

    PubMed  CAS  Google Scholar 

  15. Tsai SF, Martin DI, Zon LI et al. Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature 1989; 339(6224):446–451.

    Article  PubMed  CAS  Google Scholar 

  16. Evans T, Felsenfeld G. The erythroid-specific transcription factor Eryf1: a new finger protein. Cell 1989; 58(5):877–885.

    Article  PubMed  CAS  Google Scholar 

  17. Orkin SH, Zon LI. Hematopoiesis and stem cells: plasticity versus developmental heterogeneity. Nat Immunol 2002; 3(4):323–328.

    Article  PubMed  CAS  Google Scholar 

  18. Leonard M, Brice M, Engel JD et al. Dynamics of GATA transcription factor expression during erythroid differentiation. Blood 1993; 82(4):1071–1079.

    PubMed  CAS  Google Scholar 

  19. Jippo T, Mizuno H, Xu Z et al. Abundant expression of transcription factor GATA-2 in proliferating but not in differentiated mast cells in tissues of mice: demonstration by in situ hybridization. Blood 1996; 87(3):993–998.

    PubMed  CAS  Google Scholar 

  20. Harigae H, Takahashi S, Suwabe N et al. Differential roles of GATA-1 and GATA-2 in growth and differentiation of mast cells. Genes Cells 1998; 3(1):39–50.

    Article  PubMed  CAS  Google Scholar 

  21. Minegishi N, Ohta J, Yamagiwa H et al. The mouse GATA-2 gene is expressed in the para-aortic splanchnopleura and aorta-gonads and mesonephros region. Blood 1999; 93(12):4196–4207.

    PubMed  CAS  Google Scholar 

  22. Tsai FY, Keller G, Kuo FC et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 1994; 371(6494):221–226.

    Article  PubMed  CAS  Google Scholar 

  23. Tsai FY, Orkin SH. Transcription factor GATA-2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation. Blood 1997; 89(10):3636–3643.

    PubMed  CAS  Google Scholar 

  24. Gottgens B, Nastos A, Kinston S et al. Establishing the transcriptional programme for blood: the SCL stem cell enhancer is regulated by a multiprotein complex containing Ets and GATA factors. EMBO J 2002; 21(12):3039–3050.

    Article  PubMed  CAS  Google Scholar 

  25. Kelley C, Yee K, Harland R et al. Ventral expression of GATA-1 and GATA-2 in the Xenopus embryo defines induction of hematopoietic mesoderm. Dev Biol 1994; 165(1):193–205.

    Article  PubMed  CAS  Google Scholar 

  26. Walmsley ME, Guille MJ, Bertwistle D et al. Negative control of Xenopus GATA-2 by activin and noggin with eventual expression in precursors of the ventral blood islands. Development 1994; 120(9):2519–2529.

    PubMed  CAS  Google Scholar 

  27. Detrich HW, 3rd, Kieran MW, Chan FY et al. Intraembryonic hematopoietic cell migration during vertebrate development. Proc Natl Acad Sci USA 1995;92(23):10713–10717.

    Article  PubMed  CAS  Google Scholar 

  28. Kitajima K, Masuhara M, Era T et al. GATA-2 and GATA-2/ER display opposing activities in the development and differentiation of blood progenitors. EMBO J 2002; 21(12):3060–3069.

    Article  PubMed  CAS  Google Scholar 

  29. Persons DA, Allay JA, Allay ER et al. Enforced expression of the GATA-2 transcription factor blocks normal hematopoiesis. Blood 1999; 93(2):488–499.

    PubMed  CAS  Google Scholar 

  30. Kumano K, Chiba S, Shimizu K et al. Notch 1 inhibits differentiation of hematopoietic cells by sustaining GATA-2 expression. Blood 2001; 98(12):3283–3289.

    Article  PubMed  CAS  Google Scholar 

  31. Pevny L, Simon MC, Robertson E et al. Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 1991; 349(6306):257–260.

    Article  PubMed  CAS  Google Scholar 

  32. Fujiwara Y, Browne CP, Cunniff K et al. Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc Natl Acad Sci USA 1996; 93(22):12355–12358.

    Article  PubMed  CAS  Google Scholar 

  33. Takahashi S, Komeno T, Suwabe N et al. Role of GATA-1 in proliferation and differentiation of definitive erythroid and megakaryocytic cells in vivo. Blood 1998; 92(2):434–442.

    PubMed  CAS  Google Scholar 

  34. Lyons SE, Lawson ND, Lei L et al. A nonsense mutation in zebrafish gata1 causes the bloodless phenotype in vlad tepes. Proc Natl Acad Sci USA 2002; 99(8):5454–5459.

    Article  PubMed  CAS  Google Scholar 

  35. Shivdasani RA, Fujiwara Y, McDevitt MA et al. A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO J 1997; 16(13):3965–3973.

    Article  PubMed  CAS  Google Scholar 

  36. Vyas P, Ault K, Jackson CW et al. Consequences of GATA-1 deficiency in megakaryocytes and platelets. Blood 1999; 93(9):2867–2875.

    PubMed  CAS  Google Scholar 

  37. Tsang AP, Visvader JE, Turner CA et al. FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Cell 1997; 90(1):109–119.

    Article  PubMed  CAS  Google Scholar 

  38. Haenlin M, Cubadda Y, Blondeau F et al. Transcriptional activity of pannier is regulated negatively by heterodimerization of the GATA DNA-binding domain with a cofactor encoded by the u-shaped gene of Drosophila. Genes Dev 1997; 11(22):3096–3108.

    PubMed  CAS  Google Scholar 

  39. Cubadda Y, Heitzler P, Ray RP et al. u-shaped encodes a zinc finger protein that regulates the proneural genes achaete and scute during the formation of bristles in Drosophila. Genes Dev 1997; 11(22):3083–3095.

    PubMed  CAS  Google Scholar 

  40. Lu JR, McKinsey TA, Xu H et al. FOG-2, a heart-and brain-enriched cofactor for GATA transcription factors. Mol Cell Biol 1999; 19(6):4495–4502.

    PubMed  CAS  Google Scholar 

  41. Svensson EC, Tufts RL, Polk CE et al. Molecular cloning of FOG-2: a modulator of transcription factor GATA-4 in cardiomyocytes. Proc Natl Acad Sci USA 1999; 96(3):956–961.

    Article  PubMed  CAS  Google Scholar 

  42. Tevosian SG, Deconinck AE, Cantor AB et al. FOG-2: A novel GATA-family cofactor related to multitype zinc-finger proteins Friend of GATA-1 and U-shaped. Proc Natl Acad Sci USA 1999; 96(3):950–955.

    Article  PubMed  CAS  Google Scholar 

  43. Deconinck AE, Mead PE, Tevosian SG et al. FOG acts as a repressor of red blood cell development in Xenopus. Development 2000; 127(10):2031–2040.

    PubMed  CAS  Google Scholar 

  44. Crispino JD, Lodish MB, MacKay JP et al. Use of altered specificity mutants to probe a specific protein-protein interaction in differentiation: the GATA-1:FOG complex. Mol Cell Feb 1999; 3(2):219–228.

    Article  CAS  Google Scholar 

  45. Chang AN, Cantor AB, Fujiwara Y et al. GATA-factor dependence of the multitype zinc-finger protein FOG-1 for its essential role in megakaryopoiesis. Proc Natl Acad Sci USA 2002; 99(14):9237–9242.

    Article  PubMed  CAS  Google Scholar 

  46. Shimizu R, Takahashi S, Ohneda K et al. In vivo requirements for GATA-1 functional domains during primitive and definitive erythropoiesis. EMBO J 2001; 20(18):5250–5260.

    Article  PubMed  CAS  Google Scholar 

  47. Takahashi S, Shimizu R, Suwabe N et al. GATA factor transgenes under GATA-1 locus control rescue germline GATA-1 mutant deficiencies. Blood 2000;96(3):910–916.

    PubMed  CAS  Google Scholar 

  48. Vyas P, McDevitt MA, Cantor AB et al. Different sequence requirements for expression in erythroid and megakaryocytic cells within a regulatory element upstream of the GATA-1 gene. Development 1999; 126(12):2799–2811.

    PubMed  CAS  Google Scholar 

  49. Onodera K, Takahashi S, Nishimura S et al. GATA-1 transcription is controlled by distinct regulatory mechanisms during primitive and definitive erythropoiesis. Proc Natl Acad Sci USA 1997; 94(9):4487–4492.

    Article  PubMed  CAS  Google Scholar 

  50. Nishimura S, Takahashi S, Kuroha T et al. A GATA box in the GATA-1 gene hematopoietic enhancer is a critical element in the network of GATA factors and sites that regulate this gene. Mol Cell Biol 2000; 20(2):713–723.

    Article  PubMed  CAS  Google Scholar 

  51. McDevitt MA, Fujiwara Y, Shivdasani RA, Orkin SH. An upstream, DNase I hypersensitive region of the hematopoietic-expressed transcription factor GATA-1 gene confers developmental specificity in transgenic mice. Proc Natl Acad Sci USA 1997; 94(15):7976–7981.

    Article  PubMed  CAS  Google Scholar 

  52. Kobayashi M, Nishikawa K, Yamamoto M. Hematopoietic regulatory domain of gatal gene is positively regulated by GATA1 protein in zebrafish embryos. Development 2001; 128(12):2341–2350.

    PubMed  CAS  Google Scholar 

  53. Grass JA, Boyer ME, Pal S et al. GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain-wide chromatin remodeling. Proc Natl Acad Sci USA 2003; 100(15):8811–8816.

    Article  PubMed  CAS  Google Scholar 

  54. Weiss MJ, Keller G, Orkin SH. Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells. Genes Dev 1994; 8(10):1184–1197.

    PubMed  CAS  Google Scholar 

  55. Mead PE, Deconinck AE, Huber TL et al. Primitive erythropoiesis in the Xenopus embryo: the synergistic role of LMO-2, SCL and GATA-binding proteins. Development 2001; 128(12):2301–2308.

    PubMed  CAS  Google Scholar 

  56. Wadman IA, Osada H, Grutz GG et al. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J 1997; 16(11):3145–3157.

    Article  PubMed  CAS  Google Scholar 

  57. Visvader JE, Elefanty AG, Strasser A et al. GATA-1 but not SCL induces megakaryocytic differentiation in an early myeloid line. EMBO J 1992; 11(12):4557–4564.

    PubMed  CAS  Google Scholar 

  58. Zhang P, Behre G, Pan J et al. Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. Proc Natl Acad Sci USA 1999; 96(15):8705–8710.

    Article  PubMed  CAS  Google Scholar 

  59. Zhang P, Zhang X, Iwama A et al. PU.1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding. Blood 2000; 96(8):2641–2648.

    PubMed  CAS  Google Scholar 

  60. Rekhtman N, Radparvar F, Evans T et al. Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells. Genes Dev 1999; 13(11):1398–1411.

    PubMed  CAS  Google Scholar 

  61. Nerlov C, Querfurth E, Kulessa H et al. GATA-1 interacts with the myeloid PU.1 transcription factor and represses PU.1-dependent transcription. Blood 2000; 95(8):2543–2551.

    PubMed  CAS  Google Scholar 

  62. Querfurth E, Schuster M, Kulessa H et al. Antagonism between C/EBPbeta and FOG in eosinophil lineage commitment of multipotent hematopoietic progenitors. Genes Dev 2000; 14(19):2515–2525.

    Article  PubMed  CAS  Google Scholar 

  63. Kulessa H, Frampton J, Graf T. GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblasts. Genes Dev 1995; 9(10):1250–1262.

    PubMed  CAS  Google Scholar 

  64. Cantor AB, Orkin SH. Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene 2002; 21(21):3368–3376.

    Article  PubMed  CAS  Google Scholar 

  65. Ho IC, Vorhees P, Marin N et al. Human GATA-3: a lineage-restricted transcription factor that regulates the expression of the T cell receptor alpha gene. EMBO J 1991; 10(5):1187–1192.

    PubMed  CAS  Google Scholar 

  66. George KM, Leonard MW, Roth ME et al. Embryonic expression and cloning of the murine GATA-3 gene. Development 1994; 120(9):2673–2686.

    PubMed  CAS  Google Scholar 

  67. Lieuw KH, Li G, Zhou Y et al. Temporal and spatial control of murine GATA-3 transcription by promoter-proximal regulatory elements. Dev Biol 1997; 188(1):1–16.

    Article  PubMed  CAS  Google Scholar 

  68. Oosterwegel M, Timmerman J, Leiden J et al. Expression of GATA-3 during lymphocyte differentiation and mouse embryogenesis. Dev Immunol 1992; 3(1):1–11.

    PubMed  CAS  Google Scholar 

  69. Pandolfi PP, Sonati F, Rivi R et al. Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress. EMBO J 1995; 14(21):5209–5215.

    PubMed  CAS  Google Scholar 

  70. Ting CN, Olson MC, Barton KP et al. Transcription factor GATA-3 is required for development of the T-cell lineage. Nature 1996; 384(6608):474–478.

    Article  PubMed  CAS  Google Scholar 

  71. Hendriks RW, Nawijn MC, Engel JD et al. Expression of the transcription factor GATA-3 is required for the development of the earliest T cell progenitors and correlates with stages of cellular proliferation in the thymus. Eur J Immunol 1999; 29(6):1912–1918.

    Article  PubMed  CAS  Google Scholar 

  72. Hernandez-Hoyos G, Anderson MK, Wang C et al. GATA-3 expression is controlled by TCR signals and regulates CD4/CD8 differentiation. Immunity 2003; 19(1):83–94.

    Article  PubMed  CAS  Google Scholar 

  73. Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 1997; 89(4):587–596.

    Article  PubMed  CAS  Google Scholar 

  74. Zhang DH, Cohn L, Ray P et al. Transcription factor GATA-3 is differentially expressed in murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene. J Biol Chem 1997; 272(34):21597–21603.

    Article  PubMed  CAS  Google Scholar 

  75. Murphy KM, Reiner SL. The lineage decisions of helper T cells. Nat Rev Immunol 2002; 2(12):933–944.

    Article  PubMed  CAS  Google Scholar 

  76. Lee GR, Fields PE, Flavell RA. Regulation of IL-4 gene expression by distal regulatory elements and GATA-3 at the chromatin level. Immunity 2001; 14(4):447–459.

    Article  PubMed  CAS  Google Scholar 

  77. Ouyang W, Ranganath SH, Weindel K et al. Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity 1998; 9(5):745–755.

    Article  PubMed  CAS  Google Scholar 

  78. Usui T, Nishikomori R, Kitani A et al. GATA-3 suppresses Th1 development by downregulation of Stat4 and not through effects on IL-12Rbeta2 chain or T-bet. Immunity 2003; 18(3):415–428.

    Article  PubMed  CAS  Google Scholar 

  79. Lee HJ, Takemoto N, Kurata H et al. GATA-3 induces T helper cell type 2 (Th2) cytokine expression and chromatin remodeling in committed Th1 cells. J Exp Med 2000; 192(1):105–115.

    Article  PubMed  CAS  Google Scholar 

  80. Evans CJ, Banerjee U. Transcriptional regulation of hematopoiesis in Drosophila. Blood Cells Mol Dis 2003; 30(2):223–228.

    Article  PubMed  CAS  Google Scholar 

  81. Fossett N, Schulz RA. Functional conservation of hematopoietic factors in Drosophila and vertebrates. Differentiation 2001; 69(2–3):83–90.

    Article  PubMed  CAS  Google Scholar 

  82. Lebestky T, Chang T, Hartenstein V et al. Specification of Drosophila hematopoietic lineage by conserved transcription factors. Science 2000; 288(5463):146–149.

    Article  PubMed  CAS  Google Scholar 

  83. Tepass U, Fessler LI, Aziz A et al. Embryonic origin of hemocytes and their relationship to cell death in Drosophila. Development 1994; 120(7):1829–1837.

    PubMed  CAS  Google Scholar 

  84. Sam S, Leise W, Hoshizaki DK. The serpent gene is necessary for progression through the early stages of fat-body development. Mech Dev 1996; 60(2):197–205.

    Article  PubMed  CAS  Google Scholar 

  85. Rehorn KP, Thelen H, Michelson AM et al. A molecular aspect of hematopoiesis and endoderm development common to vertebrates and Drosophila. Development 1996; 122(12):4023–4031.

    PubMed  CAS  Google Scholar 

  86. Waltzer L, Bataillé L, Peyrefitte S et al. Two isoforms of Serpent containing either one or two GATA zinc fingers have different roles in Drosophila haematopoiesis. EMBO J 2002; 21(20):5477–5486.

    Article  PubMed  CAS  Google Scholar 

  87. Elagib KE, Racke FK, Mogass M et al. RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation. Blood 2003; 101(11):4333–4341.

    Article  PubMed  CAS  Google Scholar 

  88. Fossett N, Tevosian SG, Gajewski K et al. The Friend of GATA proteins U-shaped, FOG-1, and FOG-2 function as negative regulators of blod, heart, and eye development in Drosophila. Proc Natl Acad Sci USA 2001; 98(13):7342–7347.

    Article  PubMed  CAS  Google Scholar 

  89. Cripps RM, Olson EN. Control of cardiac development by an evolutionarily conserved transcriptional network. Dev Biol 2002; 246(1):14–28.

    Article  PubMed  CAS  Google Scholar 

  90. Gajewski K, Fossett N, Molkentin JD et al. The zinc finger proteins Pannier and GATA4 function as cardiogenic factors in Drosophila. Development 1999; 126(24):5679–5688.

    PubMed  CAS  Google Scholar 

  91. Azpiazu N, Frasch M. tinman and bagpipe: two homeo box genes that determine cell fates in the dorsal mesoderm of Drosophila. Genes Dev 1993; 7(7B):1325–1340.

    PubMed  CAS  Google Scholar 

  92. Klinedinst SL, Bodmer R. Gata factor Pannier is required to establish competence for heart progenitor formation. Development 2003; 130(13):3027–3038.

    Article  PubMed  CAS  Google Scholar 

  93. Lilly B, Zhao B, Ranganayakulu G et al. Requirement of MADS domain transcription factor D-MEF2 for muscle formation in Drosophila. Science 1995; 267(5198):688–693.

    Article  PubMed  CAS  Google Scholar 

  94. Ranganayakulu G, Zhao B, Dokidis A et al. A series of mutations in the D-MEF2 transcription factor reveal multiple functions in larval and adult myogenesis in Drosophila. Dev Biol 1995; 171(1):169–181.

    Article  PubMed  CAS  Google Scholar 

  95. Schultheiss TM, Xydas S, Lassar AB. Induction of avian cardiac myogenesis by anterior endoderm. Development 1995; 121(12):4203–4214.

    PubMed  CAS  Google Scholar 

  96. Schultheiss TM, Burch JB, Lassar AB. A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev 1997; 11(4):451–462.

    PubMed  CAS  Google Scholar 

  97. Grepin C, Dagnino L, Robitaille L et al. A hormone-encoding gene identifies a pathway for cardiac but not skeletal muscle gene transcription. Mol Cell Biol 1994; 14(5):3115–3129.

    PubMed  CAS  Google Scholar 

  98. Ip HS, Wilson DB, Heikinheimo M et al. The GATA-4 transcription factor transactivates the cardiac muscle-specific troponin C promoter-enhancer in nonmuscle cells. Mol Cell Biol 1994; 14(11):7517–7526.

    PubMed  CAS  Google Scholar 

  99. Lyons I, Parsons LM, Hartley L et al. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev 1995; 9(13):1654–1666.

    PubMed  CAS  Google Scholar 

  100. Molkentin JD, Kalvakolanu DV, Markham BE. Transcription factor GATA-4 regulates cardiac muscle-specific expression of the alpha-myosin heavy-chain gene. Mol Cell Biol 1994; 14(7):4947–4957.

    PubMed  CAS  Google Scholar 

  101. Harvey RP. NK-2 homeobox genes and heart development. Dev Biol 1996; 178(2):203–216.

    Article  PubMed  CAS  Google Scholar 

  102. Kuo CT, Morrisey EE, Anandappa R et al. GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev 1997; 11(8):1048–1060.

    PubMed  CAS  Google Scholar 

  103. Molkentin JD, Lin Q, Duncan SA et al. Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev 1997; 11(8):1061–1072.

    PubMed  CAS  Google Scholar 

  104. Molkentin JD, Tymitz KM, Richardson JA et al. Abnormalities of the genitourinary tract in female mice lacking GATA5. Mol Cell Biol 2000; 20(14):5256–5260.

    Article  PubMed  CAS  Google Scholar 

  105. Morrisey EE, Tang Z, Sigrist K et al. GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev 1998; 12(22):3579–3590.

    PubMed  CAS  Google Scholar 

  106. Koutsourakis M, Langeveld A, Patient R et al. The transcription factor GATA6 is essential for early extraembryonic development. Development 1999; 126(4):723–732.

    CAS  Google Scholar 

  107. Reiter JF, Alexander J, Rodaway A et al. Gata5 is required for the development of the heart and endoderm in zebrafish. Genes Dev 1999; 13(22):2983–2995.

    Article  PubMed  CAS  Google Scholar 

  108. Lee Y, Shioi T, Kasahara H et al. The cardiac tissue-restricted homeobox protein Csx/Nkx2.5 physically associates with the zinc finger protein GATA4 and cooperatively activates atrial natriuretic factor gene expression. Mol Cell Biol 1998; 18(6):3120–3129.

    PubMed  CAS  Google Scholar 

  109. Durocher D, Charron F, Warren R et al. The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors. EMBO J 1997; 16(18):5687–5696.

    Article  PubMed  CAS  Google Scholar 

  110. Charron F, Nemer M. GATA transcription factors and cardiac development. Semin Cell Dev Biol 1999; 10(1):85–91.

    Article  PubMed  CAS  Google Scholar 

  111. Maduro MF, Rothman JH. Making worm guts: the gene regulatory network of the Caenorhabditis elegans endoderm. Dev Biol 2002; 246(1):68–85.

    Article  PubMed  CAS  Google Scholar 

  112. Maduro MF, Meneghini MD, Bowerman B et al. Restriction of mesendoderm to a single blastomere by the combined action of SKN-1 and a GSK-3beta homolog is mediated by MED-1 and-2 in C. elegans. Mol Cell 2001; 7(3):475–485.

    Article  PubMed  CAS  Google Scholar 

  113. Zhu J, Hill RJ, Heid PJ et al. end-1 encodes an apparent GATA factor that specifies the endoderm precursor in Caenorhabditis elegans embryos. Genes Dev 1997; 11(21):2883–2896.

    PubMed  CAS  Google Scholar 

  114. Zhu J, Fukushige T, McGhee JD et al. Reprogramming of early embryonic blastomeres into endodermal progenitors by a Caenorhabditis elegans GATA factor. Genes Dev 1998; 12(24):3809–3814.

    PubMed  CAS  Google Scholar 

  115. Fukushige T, Hawkins MG, McGhee JD. The GATA-factor elt-2 is essential for formation of the Caenorhabditis elegans intestine. Dev Biol 1998; 198(2):286–302.

    PubMed  CAS  Google Scholar 

  116. Fukushige T, Hendzel MJ, Bazett-Jones DP et al. Direct visualization of the elt-2 gut-specific GATA factor binding to a target promoter inside the living Caenorhabditis elegans embryo. Proc Natl Acad Sci USA 1999; 96(21):11883–11888.

    Article  PubMed  CAS  Google Scholar 

  117. Britton C, McKerrow JH, Johnstone IL. Regulation of the Caenorhabditis elegans gut cysteine protease gene cpr-1: requirement for GATA motifs. J Mol Biol 1998; 283(1):15–27.

    Article  PubMed  CAS  Google Scholar 

  118. Hawkins MG, McGhee JD. elt-2, a second GATA factor from the nematode Caenorhabditis elegans. J Biol Chem 1995; 270(24):14666–14671.

    Article  PubMed  CAS  Google Scholar 

  119. Moilanen LH, Fukushige T, Freedman JH. Regulation of metallothionein gene transcription. Identification of upstream regulatory elements and transcription factors responsible for cell-specific expression of the metallothionein genes from Caenorhabditis elegans. J Biol Chem 1999; 274(42):29655–29665.

    Article  PubMed  CAS  Google Scholar 

  120. Reuter R. The gene serpent has homeotic properties and specifies endoderm versus ectoderm within the Drosophila gut. Development 1994; 120(5):1123–1135.

    PubMed  CAS  Google Scholar 

  121. Lin WH, Huang LH, Yeh JY et al. Expression of a Drosophila GATA transcription factor in multiple tissues in the developing embryos. Identification of homozygous lethal mutants with P-element insertion at the promoter region. J Biol Chem 1995; 270(42):25150–25158.

    Article  PubMed  CAS  Google Scholar 

  122. Davidson EH, Rast JP, Oliveri P et al. A genomic regulatory network for development. Science 2002; 295(5560):1669–1678.

    Article  PubMed  CAS  Google Scholar 

  123. Arceci RJ, King AA, Simon MC et al. Mouse GATA-4: a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart. Mol Cell Biol 1993; 13(4):2235–2246.

    PubMed  CAS  Google Scholar 

  124. Laverriere AC, MacNeill C, Mueller C et al. GATA-4/5/6, a subfamily of three transcription factors transcribed in developing heart and gut. J Biol Chem 1994; 269(37):23177–23184.

    PubMed  CAS  Google Scholar 

  125. Morrisey EE, Ip HS, Lu MM et al. GATA-6: a zinc finger transcription factor that is expressed in multiple cell lineages derived from lateral mesoderm. Dev Biol 1996; 177(1):309–322.

    Article  PubMed  CAS  Google Scholar 

  126. Morrisey EE, Ip HS, Tang Z et al. GATA-5: a transcriptional activator expressed in a novel temporally and spatially-restricted pattern during embryonic development. Dev Biol 1997; 183(1):21–36.

    Article  PubMed  CAS  Google Scholar 

  127. Jiang Y, Evans T. The Xenopus GATA-4/5/6 genes are associated with cardiac specification and can regulate cardiac-specific transcription during embryogenesis. Dev Biol 1996; 174(2):258–270.

    Article  PubMed  CAS  Google Scholar 

  128. Gove C, Walmsley M, Nijjar S et al. Over-expression of GATA-6 in Xenopus embryos blocks differentiation of heart precursors. EMBO J 1997; 16(2):355–368.

    Article  PubMed  CAS  Google Scholar 

  129. Huggon IC, Davies A, Gove C et al. Molecular cloning of human GATA-6 DNA binding protein: high levels of expression in heart and gut. Biochim Biophys Acta 1997; 1353(2):98–102.

    PubMed  CAS  Google Scholar 

  130. Suzuki E, Evans T, Lowry J et al. The human GATA-6 gene: structure, chromosomal location, and regulation of expression by tissue-specific and mitogen-responsive signals. Genomics 1996; 38(3):283–290.

    Article  PubMed  CAS  Google Scholar 

  131. Tamura S, Wang XH, Maeda M et al. Gastric DNA-binding proteins recognize upstream sequence motifs of parietal cell-specific genes. Proc Natl Acad Sci USA 1993; 90(22):10876–10880.

    Article  PubMed  CAS  Google Scholar 

  132. Liu C, Glasser SW, Wan H et al. GATA-6 and thyroid transcription factor-1 directly interact and regulate surfactant protein-C gene expression. J Biol Chem 2002; 277(6):4519–4525.

    Article  PubMed  CAS  Google Scholar 

  133. Shaw-White JR, Bruno MD, Whitsett JA. GATA-6 activates transcription of thyroid transcription factor-1. J Biol Chem 1999; 274(5):2658–2664.

    Article  PubMed  CAS  Google Scholar 

  134. Bruno MD, Korfhagen TR, Liu C et al. GATA-6 activates transcription of surfactant protein A. J Biol Chem 2000; 275(2):1043–1049.

    Article  PubMed  CAS  Google Scholar 

  135. Gao X, Sedgwick T, Shi YB et al. Distinct functions are implicated for the GATA-4,-5, and-6 transcription factors in the regulation of intestine epithelial cell differentiation. Mol Cell Biol 1998; 18(5):2901–2911.

    PubMed  CAS  Google Scholar 

  136. Maeda M, Kubo K, Nishi T et al. Roles of gastric GATA DNA-binding proteins. J Exp Biol 1996; 199 (Pt 3):513–520.

    PubMed  CAS  Google Scholar 

  137. Cirillo LA, Lin FR, Cuesta I et al. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell 2002; 9(2):279–289.

    Article  PubMed  CAS  Google Scholar 

  138. Bossard P, Zaret KS. GATA transcription factors as potentiators of gut endoderm differentiation. Development 1998; 125(24):4909–4917.

    PubMed  CAS  Google Scholar 

  139. Weber H, Symes CE, Walmsley ME et al. A role for GATA5 in Xenopus endoderm specification. Development 2000; 127(20):4345–4360.

    PubMed  CAS  Google Scholar 

  140. Kelley C, Blumberg H, Zon LI et al. GATA-4 is a novel transcription factor expressed in endocardium of the developing heart. Development 1993; 118(3):817–827.

    PubMed  CAS  Google Scholar 

  141. Fujikura J, Yamato E, Yonemura S et al. Differentiation of embryonic stem cells is induced by GATA factors. Genes Dev 2002; 16(7):784–789.

    Article  PubMed  CAS  Google Scholar 

  142. Narita N, Bielinska M, Wilson DB. Wild-type endoderm abrogates the ventral developmental defects associated with GATA-4 deficiency in the mouse. Dev Biol 1997; 189(2):270–274.

    Article  PubMed  CAS  Google Scholar 

  143. Soudais C, Bielinska M, Heikinheimo M et al. Targeted mutagenesis of the transcription factor GATA-4 gene in mouse embryonic stem cells disrupts visceral endoderm differentiation in vitro. Development 1995; 121(11):3877–3888.

    PubMed  CAS  Google Scholar 

  144. Jacobsen CM, Narita N, Bielinska M et al. Genetic mosaic analysis reveals that GATA-4 is required for proper differentiation of mouse gastric epithelium. Dev Biol 2002; 241(1):34–46.

    Article  PubMed  CAS  Google Scholar 

  145. Keijzer R, van Tuyl M, Meijers C et al. The transcription factor GATA6 is essential for branching morphogenesis and epithelial cell differentiation during fetal pulmonary development. Development 2001; 128(4):503–511.

    PubMed  CAS  Google Scholar 

  146. Yang H, Lu MM, Zhang L et al. GATA6 regulates differentiation of distal lung epithelium. Development 2002; 129(9):2233–2246.

    PubMed  CAS  Google Scholar 

  147. Reiter JF, Kikuchi Y, Stainier DY. Multiple roles for Gata5 in zebrafish endoderm formation. Development 2001; 128(1):125–135.

    PubMed  CAS  Google Scholar 

  148. Rodaway A, Takeda H, Koshida S et al. Induction of the mesendoderm in the zebrafish germ ring by yolk cell-derived TGF-beta family signals and discrimination of mesoderm and endoderm by FGF. Development 1999; 126(14):3067–3078.

    PubMed  CAS  Google Scholar 

  149. Stainier DY. A glimpse into the molecular entrails of endoderm formation. Genes Dev 2002; 16(8):893–907.

    Article  PubMed  CAS  Google Scholar 

  150. Angelotti T, Krishna G, Scott J et al. Nodular invasive tracheobronchitis due to Aspergillus in a patient with systemic lupus erythematosus. Lupus 2002; 11(5):325–328.

    Article  PubMed  CAS  Google Scholar 

  151. Moi P, Loudianos G, Lavinha J et al. Delta-thalassemia due to a mutation in an erythroid-specific binding protein sequence 3′ to the delta-globin gene. Blood 1992; 79(2):512–516.

    PubMed  CAS  Google Scholar 

  152. Matsuda M, Sakamoto N, Fukumaki Y. Delta-thalassemia caused by disruption of the site for an erythroid-specific transcription factor, GATA-1, in the delta-globin gene promoter. Blood 1992; 80(5):1347–1351.

    PubMed  CAS  Google Scholar 

  153. Ludlow LB, Schick BP, Budarf ML et al. Identification of a mutation in a GATA binding site of the platelet glycoprotein Ibbeta promoter resulting in the Bernard-Soulier syndrome. J Biol Chem 1996; 271(36):22076–22080.

    Article  PubMed  CAS  Google Scholar 

  154. Manco L, Ribeiro ML, Maximo V et al. A new PKLR gene mutation in the R-type promoter region affects the gene transcription causing pyruvate kinase deficiency. Br J Haematol 2000; 110(4):993–997.

    Article  PubMed  CAS  Google Scholar 

  155. Solis C, Aizencang GI, Astrin KH et al. Uroporphyrinogen III synthase erythroid promoter mutations in adjacent GATA1 and CP2 elements cause congenital erythropoietic porphyria. J Clin Invest 2001; 107(6):753–762.

    Article  PubMed  CAS  Google Scholar 

  156. Tournamille C, Colin Y, Cartron JP et al. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat Genet 1995; 10(2):224–228.

    Article  PubMed  CAS  Google Scholar 

  157. Parasol N, Reid M, Rios M et al. A novel mutation in the coding sequence of the FY*B allele of the Duffy chemokine receptor gene is associated with an altered erythrocyte phenotype. Blood 1998; 92(7):2237–2243.

    PubMed  CAS  Google Scholar 

  158. Pehlivan T, Pober BR, Brueckner M et al. GATA4 haploinsufficiency in patients with interstitial deletion of chromosome region 8p23.1 and congenital heart disease. Am J Med Genet 1999; 83(3):201–206.

    Article  PubMed  CAS  Google Scholar 

  159. Garg V, Kathiriya IS, Barnes R et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 2003; 424(6947):443–447.

    Article  PubMed  CAS  Google Scholar 

  160. Mehaffey MG, Newton AL, Gandhi MJ et al. X-linked thrombocytopenia caused by a novel mutation of GATA-1. Blood 2001; 98(9):2681–2688.

    Article  PubMed  CAS  Google Scholar 

  161. Nichols KE, Crispino JD, Poncz M et al. Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1. Nat Genet 2000; 24(3):266–270.

    Article  PubMed  CAS  Google Scholar 

  162. Freson K, Devriendt K, Matthijs G et al. Platelet characteristics in patients with X-linked macrothrombocytopenia because of a novel GATA1 mutation. Blood 2001; 98(1):85–92.

    Article  PubMed  CAS  Google Scholar 

  163. Freson K, Matthijs G, Thys C et al. Different substitutions at residue D218 of the X-linked transcription factor GATA1 lead to altered clinical severity of macrothrombocytopenia and anemia and are associated with variable skewed X inactivation. Hum Mol Genet 2002; 11(2):147–152.

    Article  PubMed  CAS  Google Scholar 

  164. Yu C, Niakan KK, Matsushita M et al. X-linked thrombocytopenia with thalassemia from a mutation in the amino finger of GATA-1 affecting DNA binding rather than FOG-1 interaction. Blood 2002;100(6):2040–2045.

    Article  PubMed  CAS  Google Scholar 

  165. Van Esch H, Devriendt K. Transcription factor GATA3 and the human HDR syndrome. Cell Mol Life Sci 2001; 58(9):1296–1300.

    Article  PubMed  Google Scholar 

  166. Momeni P, Glockner G, Schmidt O et al. Mutations in a new gene, encoding a zinc-finger protein, cause tricho-rhino-phalangeal syndrome type I. Nat Genet 2000; 24(1):71–74.

    Article  PubMed  CAS  Google Scholar 

  167. Ludecke HJ, Schaper J, Meinecke P et al. Genotypic and phenotypic spectrum in tricho-rhino-phalangeal syndrome types I and III. Am J Hum Genet 2001; 68(1):81–91.

    Article  PubMed  CAS  Google Scholar 

  168. Malik TH, Von Stechow D, Bronson RT et al. Deletion of the GATA domain of TRPS1 causes an absence of facial hair and provides new insights into the bone disorder in inherited tricho-rhino-phalangeal syndromes. Mol Cell Biol 2002; 22(24):8592–8600.

    Article  PubMed  CAS  Google Scholar 

  169. Wieser R, Volz A, Vinatzer U et al. Transcription factor GATA-2 gene is located near 3q21 breakpoints in myeloid leukemia. Biochem Biophys Res Commun. 2000; 273(1):239–245.

    Article  PubMed  CAS  Google Scholar 

  170. Wechsler J, Greene M, McDevitt M et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet 2002; 32(1):148–152.

    Article  PubMed  CAS  Google Scholar 

  171. Groet J, McElwaine S, Spinelli M et al. Acquired mutations in GATA1 in neonates with Down’s syndrome with transient myeloid disorder. Lancet 2003; 361(9369):1617–1620.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Haenlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Landes Bioscience/Eurekah.com and Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Haenlin, M., Waltzer, L. (2005). Role of GATA Factors in Development. In: Iuchi, S., Kuldell, N. (eds) Zinc Finger Proteins. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27421-9_30

Download citation

Publish with us

Policies and ethics