Skip to main content

The Role of the Ikaros Gene Family in Lymphocyte Development

  • Chapter
Zinc Finger Proteins

Abstract

In many developmental systems, nuclear regulators have been implicated in coupling key events in gene expression with specific cell fate and lineage decisions. In the hemo-lymphoid system, the Ikaros gene family of zinc finger DNA binding factors controls lymphocyte specification and homeostasis from the hemopoietic stem cell (HSC) throughout development. The dependence of hemo-lymphoid differentiation on Ikaros DNA binding activity together with the presence of Ikaros proteins within higher order chromatin remodeling complexes supports the hypothesis that Ikaros plays a key role in the lineage-specific remodeling of chromatin. Association of Ikaros and its remodeling partners with the chromatin of key lineage-specific genes, and the dependence of these genes on Ikaros complexes for their expression supports this hypothesis and provides unique paradigms to study chromatin regulation of differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Georgopoulos K, Moore D, Derfler B. Ikaros an early lymphoid restricted transcription factor, a putative mediator for T cell commitment. Science 1992; 258:808–812.

    Article  PubMed  CAS  Google Scholar 

  2. Molnár Á, Georgopoulos K. The Ikaros gene encodes a family of functionally diverse zinc finger DNA binding proteins. Mol Cell Biol 1994; 14:785–794.

    Google Scholar 

  3. Hahm K, Ernst P, Lo K et al. The lymphoid transcription factor LyF-1 is encoded by specific, alternatively spliced mRNAs derived from the Ikaros gene. Mol Cell Biol 1994; 14(11):7111–7123.

    PubMed  CAS  Google Scholar 

  4. Morgan B, Sun L, Avitahl N et al. Aiolos, a lymphoid restricted transcription factor that interacts with Ikaros to regulate lymphocyte differentiation. EMBO J 1997; 16:2004–2013.

    Article  PubMed  CAS  Google Scholar 

  5. Kelley CM, Ikeda T, Koipally J et al. Helios, a novel dimerization partner of Ikaros expressed in the earliest hematopoietic progenitors. Curr Biol 1998; 8:508–515.

    Article  PubMed  CAS  Google Scholar 

  6. Hahm K, Cobb BS, McCarty AS et al. Helios, a T-cell restricted Ikaros family member that quantitatively associates with Ikaros at centromeric heterochromatin. Genes Dev 1998; 12:782–796.

    PubMed  CAS  Google Scholar 

  7. Honma Y, Kiyosawa H, Mori T et al. Eos: A novel member of the Ikaros gene family expressed predominantly in the developing nervous system. FEBS Lett 1999; 447(1):76–80.

    Article  PubMed  CAS  Google Scholar 

  8. Molnár Á, Wu P, Largespada D et al. The Ikaros gene encodes a family of lymphocyte restricted zinc finger DNA binding proteins, highly conserved in human and mouse. J Immunol 1996; 156:585–592.

    PubMed  Google Scholar 

  9. Haire RN, Miracle AL, Rast JP et al. Members of the Ikaros gene family are present in early representative vertebrates. J Immunol 2000; 165(1):306–312.

    PubMed  CAS  Google Scholar 

  10. Kaufmann C, Yoshida T, Perotti EA et al. A complex network of regulatory elements in Ikaros and their activity during hemo-lymphopoiesis. EMBO J 2003; 22(9):2211–2223.

    Article  PubMed  CAS  Google Scholar 

  11. Cobb BS, Morales-Alcelay S, Kleiger G et al. Targeting of Ikaros to pericentromeric heterochromatin by direct DNA binding. Genes Dev 2000; 14(17):2146–2160.

    Article  PubMed  CAS  Google Scholar 

  12. Perdomo J, Holmes M, Chong B et al. Eos and pegasus, two members of the Ikaros family of proteins with distinct DNA binding activities. J Biol Chem 2000; 275(49):38347–38354.

    Article  PubMed  CAS  Google Scholar 

  13. Momeni P, Glockner G, Schmidt O et al. Mutations in a new gene, encoding a zinc-finger protein, cause tricho-rhino-phalangeal syndrome type I. Nat Genet 2000; 24(1):71–74.

    Article  PubMed  CAS  Google Scholar 

  14. Malik TH, Shoichet SA, Latham P et al. Transcriptional repression and developmental functions of the atypical vertebrate GATA protein TRPS1. EMBO J 2001; 20(7):1715–1725.

    Article  PubMed  CAS  Google Scholar 

  15. Sun L, Liu A, Georgopoulos K. Zinc finger-mediated protein interactions modulate Ikaros activity, a molecular control of lymphocyte development. EMBO J 1996; 15:5358–5369.

    PubMed  CAS  Google Scholar 

  16. Klug CA, Morrison SJ, Masek M et al. Hematopoietic stem cells and lymphoid progenitors express different Ikaros isoforms, and Ikaros is localized to heterochromatin in immature lymphocytes. Proc Natl Acad Sci USA 1998; 95:657–662.

    Article  PubMed  CAS  Google Scholar 

  17. Akashi K, Traver D, Miyamoto T et al. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 2000; 404(6774):193–197.

    Article  PubMed  CAS  Google Scholar 

  18. Kim J, Sif S, Jones B et al. Ikaros DNA binding proteins direct formation of chromatin remodeling complexes in lymphocytes. Immunity 1999; 10:345–355.

    Article  PubMed  CAS  Google Scholar 

  19. O’Neill DW, Schoetz SS, Lopez RA et al. An ikaros-containing chromatin-remodeling complex in adult-type erythroid cells. Mol Cell Biol 2000; 20(20):7572–7582.

    Article  PubMed  CAS  Google Scholar 

  20. Koipally J, Renold A, Kim J et al. Repression by Ikaros and Aiolos is mediated through histone deacetylase complexes. EMBO J 1999; 18(11):3090–3100.

    Article  PubMed  CAS  Google Scholar 

  21. Koipally J, Georgopoulos K. Ikaros interactions with CtBP reveal a repression mechanism that is independent of histone deacetylase activity. J Biol Chem 2000; 275(26):19594–19602.

    Article  PubMed  CAS  Google Scholar 

  22. Wang J, Nichogiannopoulou A, Wu L et al. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity 1996; 5:537–549.

    Article  PubMed  CAS  Google Scholar 

  23. Georgopoulos K, Bigby M, Wang J-H et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell 1994; 79:143–156.

    Article  PubMed  CAS  Google Scholar 

  24. Nichogiannopoulou N, Trevisan M, Naben S et al. Defects in hemopoietic stem cell activity in Ikaros mutant mice. J Exp Med 1999; 190(9):1201–1214.

    Article  PubMed  CAS  Google Scholar 

  25. Avitahl N, Winandy S, Friedrich C et al. Ikaros sets thresholds for T cell activation and regulates chromosome propagation. Immunity 1999; 10:333–343.

    Article  PubMed  CAS  Google Scholar 

  26. Harker N, Naito T, Cortes M et al. The CD8alpha Gene Locus Is Regulated by the Ikaros Family of Proteins. Mol Cell 2002; 10(6):1403–1415.

    Article  PubMed  CAS  Google Scholar 

  27. Winandy S, Wu P, Georgopoulos K. A dominant mutation in the Ikaros gene leads to rapid development of leukemia and lymphoma. Cell 1995; 83:289–299.

    Article  PubMed  CAS  Google Scholar 

  28. Brown KE, Guest SS, Smale ST et al. Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 1997; 91:845–854.

    Article  PubMed  CAS  Google Scholar 

  29. Wang J-H, Avitahl N, Cariappa A et al. Aiolos regulates B cell activation and maturation to effector state. Immunity 1998; 9:543–553.

    Article  PubMed  CAS  Google Scholar 

  30. Cariappa A, Tang M, Parng C et al. The follicular versus marginal zone B lymphocyte cell fate decision is regulated by Aiolos, Btk, and CD21. Immunity 2001; 14(5):603–615.

    Article  PubMed  CAS  Google Scholar 

  31. Sun J, Matthias G, Mihatsch MJ et al. Lack of the transcriptional coactivator OBF-1 prevents the development of systemic lupus erythematosus-like phenotypes in Aiolos mutant mice. J Immunol 2003; 170:1699–1706.

    PubMed  CAS  Google Scholar 

  32. Cortes M, Georgopoulos K. Aiolos is required for the generation of high affinity bone marrow plasma cells responsible for long-term immunity. J Exp Med 2004; 199(2):209–219.

    Article  PubMed  CAS  Google Scholar 

  33. Chi TH, Wan M, Zhao K et al. Reciprocal regulation of CD4/CD8 expression by SWI/SNF-like BAF complexes. Nature 2002; 418(6894):195–199.

    Article  PubMed  CAS  Google Scholar 

  34. Trinh LA, Ferrini R, Cobb BS et al. Down-regulation of TDT transcription in CD4(+)CD8(+) thymocytes by Ikaros proteins in direct competition with an Ets activator. Genes Dev 2001; 15(14):1817–1832.

    Article  PubMed  CAS  Google Scholar 

  35. Sabbattini P, Lundgren M, Georgiou A et al. Binding of Ikaros to the lambda5 promoter silences transcription through a mechanism that does not require heterochromatin formation. EMBO J 2001; 20(11):2812–2822.

    Article  PubMed  CAS  Google Scholar 

  36. Gomez-del Arco P, Maki K, Georgopoulos K. Phosphorylation controls Ikaros’ ability to negatively regulate the G1-S transition. MCB 2004; 24(7):2797–2807.

    Article  PubMed  CAS  Google Scholar 

  37. Dovat S, Ronni T, Russell D et al. A common mechanism for mitotic inactivation of C2H2 zinc finger DNA-binding domains. Genes Dev 2002; 16(23):2985–2990.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katia Georgopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Landes Bioscience/Eurekah.com and Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Gómez-del Arco, P., Naito, T., Seavitt, J., Yoshida, T., Williams, C., Georgopoulos, K. (2005). The Role of the Ikaros Gene Family in Lymphocyte Development. In: Iuchi, S., Kuldell, N. (eds) Zinc Finger Proteins. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27421-9_27

Download citation

Publish with us

Policies and ethics