Skip to main content

The Role of WT1 in Development and Disease

  • Chapter
Zinc Finger Proteins

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 2134 Accesses

Abstract

Wilms tumor suppressor gene product WT1 is a Cys2His2 (C2H2) zinc finger protein, one of the largest protein families in higher eukaryotes. Since the cloning of WT1 in 1990, we have learned a great deal about the functions of WT1. Now, even greater molecular details of WT1 are beginning to emerge with a possibility of the unexpected role of WT1 in the post-transcriptional processes. This chapter does not include all aspects of WT1, but is intended to focus on and highlight the biological function of WT1 (for detailed reviews see refs. 1-4). The chapter consists largely of two parts, the biochemical characterization of WT1 and the genetics of WT1 in both the human and the mouse, and ends with future perspectives on WT1 research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reddy JC, Licht JD. The WT1 Wilms’ tumor suppressor gene: how much do we really know? Biochim Biophys Acta 1996; 1287(1):1–28.

    PubMed  Google Scholar 

  2. Little M, Holmes G, Walsh P. WT 1: what has the last decade told us? Bioessays 1999; 21(3):191–202.

    Article  PubMed  CAS  Google Scholar 

  3. Lee SB, Haber DA. Wilms tumor and the WT1 gene. Exp Cell Res 2001; 264(1):74–99.

    Article  PubMed  CAS  Google Scholar 

  4. Wagner KD, Wagner N, Schedl A. The complex life of WT1. J Cell Sci 2003; 116 (Pt 9):1653–1658.

    Article  PubMed  CAS  Google Scholar 

  5. Call KM, Glaser T, Ito CY et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 1990; 60(3):509–520.

    Article  PubMed  CAS  Google Scholar 

  6. Gessler M, Poustka A, Cavenee W et al. Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature 1990; 343(6260):774–778.

    Article  PubMed  CAS  Google Scholar 

  7. Haber DA, Sohn RL, Buckler AJ et al. Alternative splicing and genomic structure of the Wilms tumor gene WT1. Proc. Natl Acad Sci U S A 1991; 88(21):9618–9622.

    Article  PubMed  CAS  Google Scholar 

  8. Barbaux S, Niaudet P, Gubler MC et al. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet 1997; 17(4):467–470.

    Article  PubMed  CAS  Google Scholar 

  9. Kent J, Coriat AM, Sharpe PT et al. The evolution of WT1 sequence and expression pattern in the vertebrates. Oncogene 1995; 11(9):1781–1792.

    PubMed  CAS  Google Scholar 

  10. Schedl A, Hastie N. Multiple roles for the Wilms’ tumour suppressor gene, WT1 in genitourinary development. Mol Cell Endocrinol 1998; 140(1–2):65–69.

    Article  PubMed  CAS  Google Scholar 

  11. Natoli TA, McDonald A, Alberta JA et al. A mammal-specific exon of WT1 is not required for development or fertility. Mol Cell Biol 2002; 22(12):4433–4438.

    Article  PubMed  CAS  Google Scholar 

  12. Miles CG, Slight J, Spraggon L et al. Mice lacking the 68-amino-acid, mammal-specific N-terminal extension of WT1 develop normally and are fertile. Mol Cell Biol 2003; 23(7):2608–2613.

    Article  PubMed  CAS  Google Scholar 

  13. Davies RC, Bratt E, Hastie ND. Did nucleotides or amino acids drive evolutionary conservation of the WT 1 +/-KTS alternative splice? Hum Mol Genet 2000; 9(8):1177–1183.

    Article  PubMed  CAS  Google Scholar 

  14. Richard DJ, Schumacher V, Royer-Pokora B et al. Par4 is a coactivator for a splice isoform-specific transcriptional activation domain in WT1. Genes Dev 2001; 15(3):328–339.

    Article  PubMed  CAS  Google Scholar 

  15. Johnstone RW, See RH, Sells SF et al. A novel repressor, par-4, modulates transcription and growth suppression functions of the Wilms’ tumor suppressor WT1. Mol Cell Biol 1996; 16(12):6945–6956.

    PubMed  CAS  Google Scholar 

  16. Moffett P, Bruening W, Nakagama H et al. Antagonism of WT1 activity by protein self-association. Proc Natl Acad Sci U S A 1995; 92(24):11105–11109.

    Article  PubMed  CAS  Google Scholar 

  17. Kennedy D, Ramsdale T, Mattick J et al. An RNA recognition motif in Wilms’ tumour protein (WT1) revealed by structural modelling. Nat Genet 1996; 12(3):329–331.

    Article  PubMed  CAS  Google Scholar 

  18. Bruening W, Moffett P, Chia S et al. Identification of nuclear localization signals within the zinc fingers of the WT1 tumor suppressor gene product. FEBS Lett 1996; 393(1):41–47.

    Article  PubMed  CAS  Google Scholar 

  19. Rauscher FJ, 3rd, Morris JF, Tournay OE et al. Binding of the Wilms’ tumor locus zinc finger protein to the EGR-1 consensus sequence. Science 1990; 250(4985):1259–1262.

    Article  PubMed  CAS  Google Scholar 

  20. Nakagama H, Heinrich G, Pelletier J et al. Sequence and structural requirements for high-affinity DNA binding by the WT1 gene product. Mol Cell Biol 1995; 15(3):1489–1498.

    PubMed  CAS  Google Scholar 

  21. Wang ZY, Qiu QQ, Enger KT et al. A second transcriptionally active DNA-binding site for the Wilms tumor gene product, WT1. Proc Natl Acad Sci U S A 1993; 90(19):8896–8900.

    Article  PubMed  CAS  Google Scholar 

  22. Pavletich NP, Pabo CO. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 1991; 252(5007):809–817.

    Article  PubMed  CAS  Google Scholar 

  23. Laity JH, Dyson HJ, Wright PE. Molecular basis for modulation of biological function by alternate splicing of the Wilms’ tumor suppressor protein. Proc Natl Acad Sci USA 2000; 97(22):11932–11935.

    Article  PubMed  CAS  Google Scholar 

  24. Wang ZY, Qiu QQ, Deuel TF. The Wilms’ tumor gene product WT1 activates or suppresses transcription through separate functional domains. J Biol Chem 1993; 268(13):9172–9175.

    PubMed  CAS  Google Scholar 

  25. Reddy JC, Hosono S, Licht JD. The transcriptional effect of WT1 is modulated by choice of expression vector. J Biol Chem 1995; 270(50):29976–29982.

    Article  PubMed  CAS  Google Scholar 

  26. Maheswaran S, Park S, Bernard A et al. Physical and functional interaction between WT1 and p53 proteins. Proc Natl Acad Sci U S A 1993; 90(11):5100–5104.

    Article  PubMed  CAS  Google Scholar 

  27. Scharnhorst V, Dekker P, van der Eb AJ et al. Physical interaction between Wilms tumor 1 and p73 proteins modulates their functions. J Biol Chem 2000; 275(14):10202–10211.

    Article  PubMed  CAS  Google Scholar 

  28. Wang W, Lee SB, Palmer R et al. DA. A functional interaction with CBP contributes to transcriptional activation by the Wilms tumor suppressor WT1. J Biol Chem 2001; 276(20):16810–16816.

    Article  PubMed  CAS  Google Scholar 

  29. Dallas PB, Yaciuk P, Moran E. Characterization of monoclonal antibodies raised against p300: both p300 and CBP are present in intracellular TBP complexes. J Virol 1997; 71(2):1726–1731.

    PubMed  CAS  Google Scholar 

  30. Nachtigal MW, Hirokawa Y, Enyeart-VanHouten DL et al. Wilms’ tumor 1 and Dax-1 modulate the orphan nuclear receptor SF-1 in sex-specific gene expression. Cell 1998; 93(3):445–454.

    Article  PubMed  CAS  Google Scholar 

  31. Du X, Hublitz P, Gunther T et al. The LIM-only coactivator FHL2 modulates WT1 transcriptional activity during gonadal differentiation. Biochim Biophys Acta 2002; 1577(1):93–101.

    PubMed  CAS  Google Scholar 

  32. Bannister AJ, Kouzarides T. The CBP co-activator is a histone acetyltransferase. Nature 1996; 384(6610):641–643.

    Article  PubMed  CAS  Google Scholar 

  33. Larsson SH, Charlieu JP, Miyagawa K et al. Subnuclear localization of WT1 in splicing or transcription factor domains is regulated by alternative splicing. Cell 1995; 81(3):391–401.

    Article  PubMed  CAS  Google Scholar 

  34. Englert C, Vidal M, Maheswaran S et al. Truncated WT1 mutants alter the subnuclear localization of the wild-type protein. Proc Natl Acad Sci U S A 1995; 92(26):11960–11964.

    Article  PubMed  CAS  Google Scholar 

  35. Hammes A, Guo JK, Lutsch G et al. Two splice variants of the Wilms’ tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 10 2001; 106(3):319–329.

    Article  PubMed  CAS  Google Scholar 

  36. Davies RC, Calvio C, Bratt E et al. WT1 interacts with the splicing factor U2AF65 in an isoform-dependent manner and can be incorporated into spliceosomes Oct 15 1998; 12(20):3217–3225.

    CAS  Google Scholar 

  37. Little NA, Hastie ND, Davies RC. Identification of WTAP, a novel Wilms’ tumour 1-associating protein. Hum Mol Genet 2000; 9(15):2231–2239.

    PubMed  CAS  Google Scholar 

  38. Granadino B, Campuzano S, Sanchez L. The Drosophila melanogaster fl(2)d gene is needed for the female-specific splicing of Sex-lethal RNA. Embo J 1990; 9(8):2597–2602.

    PubMed  CAS  Google Scholar 

  39. Zhou Z, Licklider LJ, Gygi SP et al. Comprehensive proteomic analysis of the human spliceosome. Nature 2002; 419(6903):182–185.

    Article  PubMed  CAS  Google Scholar 

  40. Caricasole A, Duarte A, Larsson SH et al. RNA binding by the Wilms tumor suppressor zinc finger proteins. Proc Natl Acad Sci U S A 1996; 93(15):7562–7566.

    Article  PubMed  CAS  Google Scholar 

  41. Bardeesy N, Pelletier J. Overlapping RNA and DNA binding domains of the wt1 tumor suppressor gene product. Nucleic Acids Res 1998; 26(7):1784–1792.

    Article  PubMed  CAS  Google Scholar 

  42. Ladomery M, Sommerville J, Woolner S et al. Expression in Xenopus oocytes shows that WT1 binds transcripts in vivo, with a central role for zinc finger one. J Cell Sci 2003; 116 (Pt 8):1539–1549.

    Article  PubMed  CAS  Google Scholar 

  43. Ladomery MR, Slight J, Mc Ghee S et al. Presence of WT1, the Wilm’s tumor suppressor gene product, in nuclear poly(A)(+) ribonucleoprotein. J Biol Chem 1999; 274(51):36520–36526.

    Article  PubMed  CAS  Google Scholar 

  44. Engelke DR, Ng SY, Shastry BS et al. Specific interaction of a purified transcription factor with an internal control region of 5S RNA genes. Cell 1980; 19(3):717–728.

    Article  PubMed  CAS  Google Scholar 

  45. Honda BM, Roeder RG. Association of a 5S gene transcription factor with 5S RNA and altered levels of the factor during cell differentiation. Cell 1980; 22(1 Pt 1):119–126.

    Article  PubMed  CAS  Google Scholar 

  46. Pritchard-Jones K, Fleming S, Davidson D et al. The candidate Wilms’ tumour gene is involved in genitourinary development. Nature 1990; 346(6280):194–197.

    Article  PubMed  CAS  Google Scholar 

  47. Pelletier J, Schalling M, Buckler AJ et al. Expression of the Wilms’ tumor gene WT1 in the murine urogenital system. Genes Dev 1991; 5(8):1345–1356.

    PubMed  CAS  Google Scholar 

  48. Armstrong JF, Pritchard-Jones K, Bickmore WA et al. The expression of the Wilms’ tumour gene, WT1, in the developing mammalian embryo. Mech Dev 1993; 40(1–2):85–97.

    Article  PubMed  CAS  Google Scholar 

  49. Moore AW, Schedl A, McInnes L et al. YAC transgenic analysis reveals Wilms’ tumour 1 gene activity in the proliferating coelomic epithelium, developing diaphragm and limb. Mech 1998; 79(1–2):169–184.

    CAS  Google Scholar 

  50. Baird PN, Simmons PJ. Expression of the Wilms’ tumor gene (WT1) in normal hemopoiesis. Exp Hematol 1997; 25(4):312–320.

    PubMed  CAS  Google Scholar 

  51. Riccardi VM, Sujansky E, Smith AC et al. Chromosomal imbalance in the Aniridia-Wilms’ tumor association: 11p interstitial deletion. Pediatrics 1978; 61(4):604–610.

    PubMed  CAS  Google Scholar 

  52. Francke U, Holmes LB, Atkins L et al. Aniridia-Wilms’ tumor association: evidence for specific deletion of 11p13. Cytogenet Cell Genet 1979; 24(3):185–192.

    PubMed  CAS  Google Scholar 

  53. Hastie ND. The genetics of Wilms’ tumor-a case of disrupted development. Annu Rev Genet 1994; 28:523–558.

    PubMed  CAS  Google Scholar 

  54. Baird PN, Groves N, Haber DA et al. Identification of mutations in the WT1 gene in tumours from patients with the WAGR syndrome. Oncogene 1992; 7(11):2141–2149.

    PubMed  CAS  Google Scholar 

  55. Brown KW, Watson JE, Poirier V et al. Inactivation of the remaining allele of the WT1 gene in a Wilms’ tumour from a WAGR patient. Oncogene 1992; 7(4):763–768.

    PubMed  CAS  Google Scholar 

  56. Pelletier J, Bruening W, Kashtan CE et al. Germline mutations in the Wilms’ tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome. Cell 1991; 67(2):437–447.

    Article  PubMed  CAS  Google Scholar 

  57. Koziell A, Charmandari E, Hindmarsh PC et al. Frasier syndrome, part of the Denys Drash continuum or simply a WT1 gene associated disorder of intersex and nephropathy? Clin Endocrinol (Oxf) 2002; 52(4):519–524.

    Article  Google Scholar 

  58. Park S, Schalling M, Bernard A et al. The Wilms tumour gene WT1 is expressed in murine mesoderm-derived tissues and mutated in a human mesothelioma. Nat Genet 1993; 4(4):415–420.

    Article  PubMed  CAS  Google Scholar 

  59. King-Underwood L, Renshaw J, Pritchard-Jones K. Mutations in the Wilms’ tumor gene WT1 in leukemias. Blood 1996; 87(6):2171–2179.

    PubMed  CAS  Google Scholar 

  60. Miyagawa K, Hayashi Y, Fukuda T et al. Mutations of the WT1 gene in childhood nonlymphoid hematological malignancies. Genes Chromosomes Cancer 1999; 25(2):176–183.

    Article  PubMed  CAS  Google Scholar 

  61. King-Underwood L, Pritchard-Jones K. Wilms’ tumor (WT1) gene mutations occur mainly in acute myeloid leukemia and may confer drug resistance. Blood 1998; 91(8):2961–2968.

    PubMed  CAS  Google Scholar 

  62. Pritchard-Jones K, King-Underwood L. The Wilms tumour gene WT1 in leukaemia. Leuk Lymphoma 1997; 27(3–4):207–220.

    PubMed  CAS  Google Scholar 

  63. Algar E. A review of the Wilms’ tumor 1 gene (WT1) and its role in hematopoiesis and leukemia. J Hematother Stem Cell Res 2002; 11(4):589–599.

    Article  PubMed  CAS  Google Scholar 

  64. Bellantuono I, Gao L, Parry S et al. Two distinct HLA-A0201-presented epitopes of the Wilms tumor antigen 1 can function as targets for leukemia-reactive CTL. Blood 2002; 100(10):3835–3837.

    Article  PubMed  CAS  Google Scholar 

  65. Scheibenbogen C, Letsch A, Thiel E et al. CD8 T-cell responses to Wilms tumor gene product WT1 and proteinase 3 in patients with acute myeloid leukemia. Blood 2002; 100(6):2132–2137.

    Article  PubMed  CAS  Google Scholar 

  66. Ellisen LW, Carlesso N, Cheng T et al. The Wilms tumor suppressor WT1 directs stage-specific quiescence and differentiation of human hematopoietic progenitor cells. Embo J 2001; 20(8):1897–1909.

    Article  PubMed  CAS  Google Scholar 

  67. Maurer U, Brieger J, Weidmann E et al. The Wilms’ tumor gene is expressed in a subset of CD34+ progenitors and downregulated early in the course of differentiation in vitro. Exp Hematol 1997; 25(9):945–950.

    PubMed  CAS  Google Scholar 

  68. Ladanyi M, Gerald W. Fusion of the EWS and WT1 genes in the desmoplastic small round cell tumor. Cancer Res 1994; 54(11):2837–2840.

    PubMed  CAS  Google Scholar 

  69. Palmer RE, Lee SB, Wong JC et al. Induction of BAIAP3 by the EWS-WT1 chimeric fusion implicates regulated exocytosis in tumorigenesis. Cancer Cell 2002; 2(6):497–505.

    Article  PubMed  CAS  Google Scholar 

  70. Kim J, Lee K, Pelletier J. The desmoplastic small round cell tumor t(11;22) translocation produces EWS/WT1 isoforms with differing oncogenic properties. Oncogene 1998; 16(15):1973–1979.

    Article  PubMed  CAS  Google Scholar 

  71. Kreidberg JA, Sariola H, Loring JM et al. WT-1 is required for early kidney development. Cell 1993; 74(4):679–691.

    Article  PubMed  CAS  Google Scholar 

  72. Menke AL, Clarke AR, Leitch A et al. Genetic interactions between the Wilms’ tumor 1 gene and the p53 gene. Cancer Res 2002; 62(22):6615–6620.

    PubMed  CAS  Google Scholar 

  73. Guo JK, Menke AL, Gubler MC et al. WT1 is a key regulator of podocyte function: reduced expression levels cause crescentic glomerulonephritis and mesangial sclerosis. Hum Mol Genet 2002; 11(6):651–659.

    Article  PubMed  CAS  Google Scholar 

  74. Herzer U, Crocoll A, Barton D et al. The Wilms tumor suppressor gene wt1 is required for development of the spleen. Curr Biol 1999; 9(15):837–840.

    Article  PubMed  CAS  Google Scholar 

  75. Wagner KD, Wagner N, Vidal VP et al. The Wilms’ tumor gene Wt1 is required for normal development of the retina. Embo J 2002; 21(6):1398–1405.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean Bong Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Landes Bioscience/Eurekah.com and Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Lee, S.B., Li, H., Kim, HS. (2005). The Role of WT1 in Development and Disease. In: Iuchi, S., Kuldell, N. (eds) Zinc Finger Proteins. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27421-9_24

Download citation

Publish with us

Policies and ethics