Skip to main content

The Superfamily of SCAN Domain Containing Zinc Finger Transcription Factors

  • Chapter

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

The SCAN domain is a highly conserved 84 residue motif that is found near the N-terminus of a subfamily of C2H2 zinc finger proteins. The SCAN domain, which is also known as the leucine rich region (LeR), functions as a protein interaction domain, mediating self-association or selective association with other proteins. Bioinformatic approaches were used to identify 71 SCAN domains in the human genome and to define the structures of the members in the human SCAN domain family. In addition to a single SCAN domain, the members of the family can have a variable number of zinc fingers (2–22), a KRAB domain, as well as a novel N-terminal motif. The genes encoding SCAN domains are clustered, often in tandem arrays, in both the human and mouse genomes and are capable of generating isoforms that may affect the function of family members. Twenty-three members of the mouse SCAN family appear to be orthologous with human family members, and human-specific cluster expansions were observed. Although the function of most of the family members is unknown, an overview of selected members of this group of transcription factors suggests that the SCAN domain family is involved in the regulation of growth factor gene expression, genes involved in lipid metabolism, as well as other genes involved in cell survival and differentiation. Analysis of the SCAN domain family using phylogenetic and comparative genomics approaches reveals that the SCAN family is vertebrate -specific. Remarkably, the SCAN domains in lower vertebrates are not associated with C2H2 zinc finger genes, but are contained in large retrovirus-like polyproteins. Collectively, these studies define a large family of transcriptional regulators that have rapidly expanded during recent evolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wolfe SA, Nekludova L, Pago CO. DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct 2000; 29:183–212.

    Article  PubMed  CAS  Google Scholar 

  2. Schwabe JW, Klug A. Zinc mining for protein domains. Nat Struct Biol 1994; 1:345–349.

    Article  PubMed  CAS  Google Scholar 

  3. Bellefroid EJ, Poncelet DA, Lecocq PJ et al. The evolutionarily conserved Krüppel-associated box domain defines a subfamily of eukaryotic multifingered proteins. Proc Natl Acad Sci USA 1991; 88:3608–3612.

    Article  PubMed  CAS  Google Scholar 

  4. Bardwell VJ, Treisman R. The POZ domain: A conserved protein-protein interaction motif. Genes Dev 1994; 8:1664–1677.

    PubMed  CAS  Google Scholar 

  5. Albagli O, Dhordain P, Deweindt C et al. The BTB/POZ domain: A new protein-protein interaction motif common to DNA-and actin-binding proteins. Cell Growth Differ 1995; 6:1193–1198.

    PubMed  CAS  Google Scholar 

  6. Williams AJ, Khachigian LM, Shows T et al. Isolation and characterization of a novel zinc-finger protein with transcriptional repressor activity. J Biol Chem 1995; 270:22143–22152.

    Article  PubMed  CAS  Google Scholar 

  7. Stone JR, Maki JL, Blacklow SC et al. The SCAN domain of ZNF174 is a dimer. J Biol Chem 2002; 277:5448–5452.

    Article  PubMed  CAS  Google Scholar 

  8. Sander TL, Stringer KL, Maki JL et al. The SCAN domain defines a large family of zinc finger transcription factors. Gene 2003; 310:29–38.

    Article  PubMed  CAS  Google Scholar 

  9. Pengue G, Calabrò V, Bartoli PC et al. Repression of transcriptional activity at a distance by the evolutionary conserved KRAB domain present in a subfamily of zinc finger proteins. Nucleic Acids Res 1994; 22:2908–2914.

    Article  PubMed  CAS  Google Scholar 

  10. Bertin J, Nir WJ, Fischer CM et al. Human CARD4 protein is a novel CED-4/Apaf-1 cell death family member that activates NF-kappaB. J Biol Chem 1999; 274:12955–12958.

    Article  PubMed  CAS  Google Scholar 

  11. Schuster JM, Nelson PS. 2000. Toll receptors: An expanding role in our understanding of human disease. J Leukoc Biol 2000; 67:767–73.

    PubMed  CAS  Google Scholar 

  12. Williams AJ, Blacklow SC, Collins T. The zinc finger-associated SCAN box is a conserved oligomerization domain. Mol Cell Biol 1999; 19:8526–8535.

    PubMed  CAS  Google Scholar 

  13. Sander TL, Haas AL, Peterson MJ et al. Identification of a novel SCAN box-related protein that interacts with MZF1B: The leucine-rich SCAN box mediates hetero-and homoprotein associations. J Biol Chem 2000; 275:12857–12867.

    Article  PubMed  CAS  Google Scholar 

  14. Schumacher C, Wang H, Honer C et al. The SCAN-domain mediates selective oligomerization. J Biol Chem 2000; 275:17173–17179.

    Article  PubMed  CAS  Google Scholar 

  15. Porsch-Özcürümez M, Langmann T, Heimer S et al. The zinc finger protein 202 (ZNF202) is a transcriptional repressor of ATP binding cassette transporter A1 (ABCA1) and ABCG1 gene expression and a modulator of cellular lipid efflux. J Biol Chem 2001; 276:12427–12433.

    Article  PubMed  Google Scholar 

  16. Lamb P, McKnight SL. Diversity and specificity in transcriptional regulation: The benefits of heterotypic dimerization. Trends Biochem Sci 1991; 11:417–422.

    Article  Google Scholar 

  17. Vinson C, Myakishev M, Acharya A et al. Classification of human B-ZIP proteins based on dimerization properties. Mol Cell Biol 2002; 22:6321–6335.

    Article  PubMed  CAS  Google Scholar 

  18. Zhang MQ. Computational predication of eukaryotic protein-coding genes. Nature Rev Genet 2002; 3:698–702.

    Article  CAS  Google Scholar 

  19. Venter JC, Adams MD, Myers EW et al. The sequence of the human genome. Science 2001; 291:1305–1351.

    Article  Google Scholar 

  20. Lander ES, Linton LM, Birren B et al. Initial sequencing and analysis of the human genome. Nature 2001; 409:860–921.

    Article  PubMed  CAS  Google Scholar 

  21. Nagaoka M, Nomura W, Shiraishi Y et al. Significant effect of linker sequence on DNA recognition by multi-zinc finger protein. Biochem Biophys Res Comm 2001; 282:1001–1007.

    Article  PubMed  CAS  Google Scholar 

  22. Desjarlais JR, Berg JM. Toward rules relating zinc finger protein sequences and DNA binding site preferences. Proc Natl Acad Sci USA 1992; 89:7345–7349.

    Article  PubMed  CAS  Google Scholar 

  23. Suzuki M, Gerstein M, Yagi N. Stereochemical basis of DNA recognition by Zn fingers. Nucleic Acids Res 1994; 22:3397–3405.

    Article  PubMed  CAS  Google Scholar 

  24. Iuchi S. Three classes of C2H2 zinc finger proteins. Cell Mol Life Sci 2001; 58:625–635.

    Article  PubMed  CAS  Google Scholar 

  25. Makay JP, Crossley M. Zinc fingers are sticking together. Trends Biochem Sci 1998; 23:1–4.

    Article  Google Scholar 

  26. Margolin JF, Friedman JR, Meyer WK et al. Krüppel-associated boxes are potent transcriptional repression domains. Proc Natl Acad Sci USA 1994; 91:4509–4513.

    Article  PubMed  CAS  Google Scholar 

  27. Witzgall R, O’Leary E, Leaf A et al. The Kruppel-associated box-A (KRAB-A) domain of zinc finger proteins mediates transcriptional repression. Proc Natl Acad Sci USA 1994; 91:4514–4518.

    Article  PubMed  CAS  Google Scholar 

  28. Friedman JR, Fredericks WJ, Jensen DE et al. KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev 1996; 10:2067–2078.

    PubMed  CAS  Google Scholar 

  29. Kim SS, Chen YM, O’Leary E et al. A novel member of the RING finger family, KRIP-1, associates with the KRAB-A transcriptional repressor domain of zinc finger proteins. Proc Natl Acad Sci USA 1996; 93:15299–15304.

    Article  PubMed  CAS  Google Scholar 

  30. Moosmann P, Georgiev O, Le Douarin B et al. Transcriptional repression by RING finger protein TIF1β that interacts with the KRAB repressor domain of KOX1. Nucleic Acids Res 1996; 24:4859–4867.

    Article  PubMed  CAS  Google Scholar 

  31. Ryan RF, Schultz DC, Ayyanathan K et al. KAP-1 corepressor protein interacts and colocalizes with heterochromatic and euchromatic HP1 proteins: A potential role for Krüppel-associated box-zinc finger proteins in heterochromatin-mediated gene silencing. Mol Cell Biol 1999; 19:4366–4378.

    PubMed  CAS  Google Scholar 

  32. Lechner MS, Begg GE, Speicher DW et al. Molecular determinants for targeting heterochromatin protein 1-mediated gene silencing: Direct chromoshadow domain-KAP-1 corepressor interaction is essential. Mol Cell Biol 2000; 20:6449–6465.

    Article  PubMed  CAS  Google Scholar 

  33. Schultz DC, Friedman JR, Rauscher III FJ. Targeting histone deacetylase complexes via KRAB-zinc finger proteins: The PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-2a subunit of NuRD. Genes Dev 2001; 15:428–443.

    Article  PubMed  CAS  Google Scholar 

  34. Schultz DC, Ayyanathan K, Negorev D et al. SETDB1: A novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev 2002; 16:919–932.

    Article  PubMed  CAS  Google Scholar 

  35. Underhill C, Qutob MS, Yee SP et al. A novel nuclear receptor corepressor complex, N-CoR, contains components of the mammalian SWI/SNF complex and the corepressor KAP-1. J Biol Chem 2000; 275:40463–40470.

    Article  PubMed  CAS  Google Scholar 

  36. Mark C, Åbrink M, Hellman L. Comparative analysis of KRAB zinc finger proteins in rodents and man: Evidence for several evolutionarily distinct subfamilies of KRAB zinc finger genes. DNA Cell Biol 1999; 18:381–396.

    Article  PubMed  CAS  Google Scholar 

  37. Murai K, Murakami H, Nagata S. A novel form of the myeloid-specific zinc finger protein (MZF-2). Genes to Cells 1997; 2:581–591.

    Article  PubMed  CAS  Google Scholar 

  38. Gill G. Post-translational modification by the small ubiquitin-related modifier SUJO has big effects on transcription factor activity. Curr Opin Genetics Dev 2003; 12:108–113.

    Article  CAS  Google Scholar 

  39. Rodriguez MS, Dargemont C, Hay RT. SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem 2001; 276:12654–12659.

    Article  PubMed  CAS  Google Scholar 

  40. Ross S, Best JL, Zon LI et al. SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol Cell 2002; 10:831–842.

    Article  PubMed  CAS  Google Scholar 

  41. Collins T, Stone JR, Williams AJ. All in the family: The BTB/POZ, KRAB, and SCAN domains. Mol Cell Biol 2001; 21:3609–3615.

    Article  PubMed  CAS  Google Scholar 

  42. Hromas R, Davis B, Rauscher 3rd FJ et al. Hematopoietic transcriptional regulation by the myeloid zinc finger gene, MZF-1. Curr Top Microbiol Immunol 1996; 211:159–64.

    PubMed  CAS  Google Scholar 

  43. Gaboli M, Kotsi PA, Gurrieri C et al. Mzf1 controls cell proliferation and tumorigenesis. Genes Dev 2001; 15:1625–1630.

    Article  PubMed  CAS  Google Scholar 

  44. Peterson MJ, Morris JL. Human myeloid zinc finger gene MZF produces multiple transcripts and encodes a SCAN box protein. Gene 2000; 254:105–18.

    Article  PubMed  CAS  Google Scholar 

  45. Murai K, Murakami H, Nagata S. Myeloid-specific transcriptional activation by murine myeloid zinc-finger protein 2. Proc Natl Acad Sci USA 1998; 95:3461–3466.

    Article  PubMed  CAS  Google Scholar 

  46. Ogawa H, Murayama A, Nagata S et al. Regulation of myeloid zinc finger protein 2A (MZF-2A) transactivation activity through phosphorylation by MAP kinases. J Biol Chem 2003a; 278:2921–2927.

    Article  PubMed  CAS  Google Scholar 

  47. Ogawa H, Ueda T, Aoyama T et al. A SW12/SNF2-type ATPase/helicase protein, mDomino, interacts with myeloid zinc finger protein 2A (MZF-2A) to regulate its transcriptional activity. Genes to Cells 2003b; 8:235–329.

    Article  Google Scholar 

  48. Morris JF, Hromas R, Rauscher FJ. Characterization of the DNA-binding properties of the myeloid zinc finger protein MZF1: Two independent DNA-binding domains recognize two DNA consensus sequences with a common G-rich core. Mol Cell Biol 1994; 14:1786–1795.

    PubMed  CAS  Google Scholar 

  49. Morris JF, Rauscher FJ, Davis B et al. The myeloid zinc finger gene, MZF-1, regulates the CD34 promoter in vitro. Blood 1995; 86:3640–3647.

    PubMed  CAS  Google Scholar 

  50. Fujimoto K, Kyo S, Takakura M et al. Identification and characterization of negative regulatory elements of the human telomerase catalytic subunit (hTERT) gene promoter: Possible role of MZF-2 in transcriptional repression of hTERT. Nucleic Acids Res 2000; 28:2557–2562.

    Article  PubMed  CAS  Google Scholar 

  51. Takahashi K, Nishiyama C, Hasegawa M et al. Regulation of the high affinity IgE receptor β-chain gene expression via an intronic element. J Immunol 2003; 171:2478–2484.

    PubMed  CAS  Google Scholar 

  52. Kort EN, Ballinger DG, Ding W et al. Evidence of linkage of familial hypoalphalipoproteinemia to a novel locus on chromosome 11q23. Am J Hum Genet 2000; 66:1845–1856.

    Article  PubMed  CAS  Google Scholar 

  53. Wagner S, Hess MA, Ormonde-Hanson P et al. A broad role for the zinc finger protein ZNF202 in human lipid metabolism. J Biol Chem 2000; 275:15685–15690.

    Article  PubMed  CAS  Google Scholar 

  54. Langmann T, Schumacher C, Morham SG et al. ZNF202 is inversely regulated with its target genes ABCA1 and apoE during macrophage differentiation and foam cell formation. J Lipid Res 2003; 44:968–977.

    Article  PubMed  CAS  Google Scholar 

  55. Castillo G, Brun RP, Rosenfield JK et al. An adipogenic cofactor bound by the differentiation domain of PPARgamma. EMBO J 1999; 18:3676–3687.

    Article  PubMed  CAS  Google Scholar 

  56. Babb R, Bowen BR. SDP1 is a peroxisome-proliferator-activated receptor gamma 2 coactivator that binds through its SCAN domain. Biochem J 2003; 270:719–727.

    Article  Google Scholar 

  57. Suzawa M, Takada I, Yanagisawa J et al. Cytokines suppress adipogenesis and PPAR-gamma function through the TAK1/TAB1/NIK cascade. Nat Cell Biol 2003; 5:224–230.

    Article  PubMed  CAS  Google Scholar 

  58. Sander TL, Morris JF. Characterization of the SCAN box encoding RAZ1 gene: Analysis of cDNA transcripts, expression, and cellular localization. Gene 2002; 293:53–64.

    Article  Google Scholar 

  59. Safran M, Kaelin WG. HIF hydroxylation and the mammalian oxygen-sensing pathway. J Clin Invest 2003; 111:779–783.

    Article  PubMed  CAS  Google Scholar 

  60. Li Z, Wang D, Na X et al. The VHL protein recruits a novel KRAB-A domain protein to repress HIF-1alpha transcriptional activity. EMBO J 2003; 22:1857–1867.

    Article  PubMed  CAS  Google Scholar 

  61. Gonsky R, Knauf JA, Elisei R et al. Identification of rapid turnover transcripts overexpressed in thyroid tumors and thyroid cancer cell lines: Use of a targeted differential RNA display method to select for mRNA subsets. Nucleic Acids Res 1997; 25:3823–3831.

    Article  PubMed  CAS  Google Scholar 

  62. Wang MM, Reed RR. Molecular cloning of the olfactory neuronal transcription factor Olf-1 by genetic selection in yeast. Nature 1993; 364:121–126.

    Article  PubMed  CAS  Google Scholar 

  63. Adachi H, Tsujimoto M. Characterization of the human gene encoding the scavenger receptor expressed by endothelial cell and its regulation by a novel transcription factor, endothelial zinc finger protein-2. J Biol Chem 2002; 277:24014–240212.

    Article  PubMed  CAS  Google Scholar 

  64. Tanaka K, Tsumaki N, Kozak C et al. A kruppel-associated box-zinc finger protein, NT2, represses cell-type-specific promoter activity of the α2(XI) collagen gene. Mol Cell Biol 2002; 22:4256–4267.

    Article  PubMed  CAS  Google Scholar 

  65. Albanese V, Biguet NF, Kiefer H et al. Quantitative effects of gene silencing by allelic variation at a tetranucleotide microsatellite. Hum Mol Genet 2001; 10:1785–1792.

    Article  PubMed  CAS  Google Scholar 

  66. Weinmann AS, Farnham PJ. Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation. Methods 2002; 26:37–47.

    Article  PubMed  CAS  Google Scholar 

  67. Imreh S, Klein G, Zabarovsky ER. Search for unknown tumor-antagonizing genes. Genes Chromosomes Cancer 2003; 38:307–321.

    Article  PubMed  CAS  Google Scholar 

  68. Hoffman SM, Hromas R, Amemiya C et al. The location of MZF-1 at the telomere of human chromosome 19q makes it vulnerable to degeneration in aging cells. Leuk Res 1996; 20:281–283.

    Article  PubMed  CAS  Google Scholar 

  69. Dehal P, Predki P, Olsen AS et al. Human chromosome 19 and related regions in mouse: Conservation and lineage-specific evolution. Science 2001; 293:104–111.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tucker Collins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Landes Bioscience/Eurekah.com and Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Collins, T., Sander, T.L. (2005). The Superfamily of SCAN Domain Containing Zinc Finger Transcription Factors. In: Iuchi, S., Kuldell, N. (eds) Zinc Finger Proteins. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27421-9_22

Download citation

Publish with us

Policies and ethics