Skip to main content

The Discovery of Zinc Fingers and Their Practical Applications in Gene Regulation: A Personal Account

  • Chapter
Zinc Finger Proteins

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

An account is given of the discovery of the classical Cys2His2 (C2H2) zinc finger, arising from biochemical studies on the protein transcription factor IIIA found in Xenopus ooctyes, and of subsequent structural studies on its 3D structure and its interaction with DNA. Each finger is a self-contained domain stabilized by a zinc ion ligated to a pair of cysteines and a pair of histidines, and by an inner structural hydrophobic core. This work showed not only a novel protein fold but also a novel principle of DNA recognition. Whereas other DNA binding proteins generally make use of the symmetry of the double helix, zinc fingers can be linked linearly in tandem to recognize nucleic acid sequences of different lengths. This modular design offers a large number of combinatorial possibilities for the specific recognition of DNA (or RNA). It is therefore not surprising that this zinc finger is found widespread in nature, in 3% of the genes of the human genome.

It had long been the goal of molecular biologists to design DNA binding proteins for specific control of gene expression. It has been demonstrated that the zinc finger design is ideally suited for such purposes, discriminating between closely related sequences both in vitro and in vivo. The first example of the potential of the method was in 1994 when a three-finger protein was constructed to block the expression of an oncogene transformed into a mouse cell line. By fusing zinc finger peptides to repression or activation domains, genes can be selectively switched off and on. Several recent applications are described.

After the initial discovery, other types of zinc-binding domains which fold and interact with DNA or RNA in a different way were found, and these have become loosely grouped under the name of zinc finger proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kornberg RD. Structure of chromatin. Ann Rev Biochem 1977; 46:931–954.

    Article  PubMed  CAS  Google Scholar 

  2. Klug A. From macromolecules to biological assemblies. In: The Nobel Foundation 1983; 93–125 Les Prix Nobel en 1982.

    Google Scholar 

  3. Brown DD. The role of stable complexes that repress and activate eukaryotic genes. Cell 1984; 37:359–365.

    Article  PubMed  CAS  Google Scholar 

  4. Picard B, Wegnez M. Isolation of a 7S particle from Xenopus laevis oocytes: A 5S RNA-protein complex. Proc Nat Acad Sci USA 1979; 76:241–245.

    Article  PubMed  CAS  Google Scholar 

  5. Pelham HRB, Brown DD. A specific transcription factor that can bind either the 5S RNA gene or 5S RNA. Proc Nat Acad Sci USA 1980; 77:4170–4174.

    Article  PubMed  CAS  Google Scholar 

  6. Miller J, McLachlan AD, Klug A. Repetitive zinc-binding domains in the protein transcription factor III A from Xenopus oocytes. EMBO J 1985; 4:1609–1614.

    PubMed  CAS  Google Scholar 

  7. Hanas JS, Hazuda DJ, Bogenhagen DF et al. Xenopus transcription factor A requires zinc for binding to the 5S RNA gene. J Biol Chem 1983; 258(14):120–125.

    Google Scholar 

  8. Smith DR, Jackson IJ, Brown DD. Domains of the positive transcription factor specific for the Xenopus 5S RNA gene. Cell 1984; 37:645–652.

    Article  PubMed  CAS  Google Scholar 

  9. Ginsberg AM, King BO, Roeder RG. Xenopus 5S gene transcription factor, TFIIIA: characterisation of a cDNA clone and measurement of RNA levels throughout development. Cell 1984; 39:479–489.

    Article  PubMed  CAS  Google Scholar 

  10. Brown RS, Sander C, Argos P. The primary structure of transcription factor TFIIIA has 12 consecutive repeats. FEBS Lett 1985; 186:271–274.

    Article  PubMed  CAS  Google Scholar 

  11. Diakun GP, Fairall L, Klug A. EXAFS study of the zinc-binding sites in the protein transcription factor IIIA. Nature 1986; 324:698–699.

    Article  PubMed  CAS  Google Scholar 

  12. Tso JY, van den Berg DJ, Korn LT. Structure of the gene for Xenopus transcription factor TFIIIA. Nucl Acids Res 1986; 14:2187–2200.

    Article  PubMed  CAS  Google Scholar 

  13. Vincent A, Colot HV, Rosbash M. Sequence and structure of the serendipity locus of Drosophila melanogaster: A densely transcribed region including a blastoderm-specific gene. J Mol Biol 1985; 185:146–166.

    Google Scholar 

  14. Rosenberg UB, Schröder C, Preiss A et al. Structural homology of the product of the Drosophila Krüppel gene with Xenopus transcription factor IIIA. Nature 1986; 319:336–339.

    Article  CAS  Google Scholar 

  15. Berg JM. Proposed structure for the zinc binding domains from transcription factor IIIA and related proteins. Proc Nat Acad Sci USA 1988; 85:99–102.

    Article  PubMed  CAS  Google Scholar 

  16. Lee MS, Gippert GP, Soman KV et al. Three-dimensional solution structure of a single zinc finger DNA-binding domain. Science 1989; 245:635–637.

    Article  PubMed  CAS  Google Scholar 

  17. Nakaseko Y, Neuhaus D, Klug A et al. Adjacent zinc finger motifs in multiple zinc finger peptides from SW15 form structurally independent flexibly linked domains. J Mol Biol 1992; 228:619–636.

    Article  PubMed  CAS  Google Scholar 

  18. Neuhaus D, Nakaseko Y, Schwabe JW et al. Solution structures of two zinc-finger domains from SWI5 obtained using two-dimensional 1H nuclear magnetic resonance spectroscopy. A zinc-finger structure with a third strand of beta-sheet. J Mol Biol 1992; 228(2):637–651.

    Article  PubMed  CAS  Google Scholar 

  19. Pavletich NP, Pabo CO. Zinc finger-DNA recognition: Crystal structure of a Zif268-DNA complex at 2.1Å. Science 1991; 252:809–817.

    Article  PubMed  CAS  Google Scholar 

  20. Klug A, Jack A, Viswamitra MA et al. A hypothesis on a specific sequence-dependent conformation of DNA and its relation to the binding of the lac-repressor protein. J Mol Biol 1979; 131(4):669–680.

    Article  PubMed  CAS  Google Scholar 

  21. Rhodes D, Klug A. Sequence dependent helical periodicity of DNA. Nature 1981; 292:378–380.

    Article  PubMed  CAS  Google Scholar 

  22. Fairall L, Schwabe JW, Chapman L et al. The crystal structure of a two zinc-finger peptide reveals an extension to the rules for zinc-finger/DNA recognition. Nature 1993; 366(6454):483–487.

    Article  PubMed  CAS  Google Scholar 

  23. Smith GP. Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science 1985; 228:1315–1317.

    Article  PubMed  CAS  Google Scholar 

  24. McCafferty J, Griffiths AD, Winter G et al. Phage antibodies: Filamentous phage displaying antibody variable domains. Nature 1990; 348(6301):552–554.

    Article  PubMed  CAS  Google Scholar 

  25. Choo Y, Klug A. Towards a code for the interactions of zinc fingers with DNA: Selection of randomised fingers displayed on phage. Proc Natl Acad Sci USA 1994; 91:11163–11167.

    Article  PubMed  CAS  Google Scholar 

  26. Choo Y, Klug A. Selection of DNA binding sites for zinc fingers using rationally randomised DNA reveals coded interactions. Proc Natl Acad Sci USA 1994; 91:11168–11172.

    Article  PubMed  CAS  Google Scholar 

  27. Choo Y, Sánchez-García I, Klug A. In vivo repression by a site-specific DNA-binding protein designed against an oncogenic sequence. Nature 1994; 372:642–645.

    Article  PubMed  CAS  Google Scholar 

  28. Isalan M, Choo Y, Klug A. Synergy between adjacent zinc fingers in sequence-specific DNA recognition. Proc Natl Acad Sci USA 1997; 94:5617–5621.

    Article  PubMed  CAS  Google Scholar 

  29. Isalan M, Klug A, Choo Y. A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter. Nat Biotechnol 2001; 19:656–660.

    Article  PubMed  CAS  Google Scholar 

  30. Moore M, Choo Y, Klug A. Design of polyzinc finger peptides with structured linkers. PNAS 2001; 98:1432–1436.

    Article  PubMed  CAS  Google Scholar 

  31. Moore M, Klug A, Choo Y. Improved DNA binding specificity from polyzinc finger peptides by using strings of two-finger units. PNAS 2001; 98:1437–1441.

    Article  PubMed  CAS  Google Scholar 

  32. Reynolds L, Ullman C, Moore M et al. Repression of the HIV-1 5′ LTR promoter and inhibition of HIV-1 replication by using engineered zinc-finger transcription factors. Proc Natl Acad Sci USA 2003; 100(4):1615–1620.

    Article  PubMed  CAS  Google Scholar 

  33. Papworth M, Moore M, Isalan M et al. Inhibition of herpes simplex virus 1 gene expression by designer zinc-finger transcription factors. Proc Natl Acad Sci USA 2003; 100(4):1621–1626.

    Article  PubMed  CAS  Google Scholar 

  34. Liu PQ, Rebar EJ, Zhang L et al. Regulation of an endogenous locus using a panel of designed zinc finger proteins targeted to accessible chromatin regions. Activation of vascular endothelial growth factor A. J Biol Chem 2001; 276(14):11323–11334.

    Article  PubMed  CAS  Google Scholar 

  35. Rebar E, Hung Y, Hickey R et al. Induction of angiogenesis in a mouse model using engineered transcription factors. Nature Med 2002; 8:1427–1432.

    Article  PubMed  CAS  Google Scholar 

  36. Beerli RR, Schopfer U, Dreier B et al. Chemically regulated zinc finger transcription factors. J Biol Chem 2000; 275(42):32617–32627.

    Article  PubMed  CAS  Google Scholar 

  37. Evans RM. The steroid and thyroid hormone receptor superfamily. Science 1988; 240:889–898.

    Article  PubMed  CAS  Google Scholar 

  38. Green S, Chambon P. Nuclear receptors enhance our understanding of transcription regulation. Trends Genet 1988; 4:309–315.

    Article  PubMed  CAS  Google Scholar 

  39. Hard T, Kellenbach E, Boelens R et al. Solution structure of the glucocorticoid receptor DNA-binding domain. Science 1990; 249(4965):157–160.

    Article  PubMed  CAS  Google Scholar 

  40. Schwabe JWR, Neuhaus D, Rhodes D. Solution structure of the DNA-binding domain of the oestrogen receptor. Nature 1990; 348:458–461.

    Article  PubMed  CAS  Google Scholar 

  41. Luisi BF, Xu WX, Otwinowski Z et al. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 1991; 352(6335):497–505.

    Article  PubMed  CAS  Google Scholar 

  42. Schwabe JW, Chapman L, Finch JT et al. The crystal structure of the estrogen receptor DNA-binding domain bound to DNA: How receptors discriminate between their response elements. Cell 1993; 75(3):567–578.

    Article  PubMed  CAS  Google Scholar 

  43. Umesono K, Murakami KK, Thompson CC et al. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 1991; 65(7):1255–1266.

    Article  PubMed  CAS  Google Scholar 

  44. Marmorstein R, Carey M, Ptashne M et al. DNA recognition by GAL4: Structure of a protein-DNA complex. Nature 1992; 356(6368):408–414.

    Article  PubMed  CAS  Google Scholar 

  45. Summers MF, Henderson LE, Chance MR et al. Nucleocapsid zinc fingers detected in retroviruses: EXAFS studies of intact viruses and the solution-state structure of the nucleocapsid protein from HIV-1. Protein Sci 1992; 1(5):563–574.

    Article  PubMed  CAS  Google Scholar 

  46. Klug A, Rhodes D. ‘Zinc fingers’: A novel protein motif for nucleic acid recognition. Trends Biochem 1987; 12:464–469.

    Article  CAS  Google Scholar 

  47. Searles MA, Lu D, Klug A. The role of the central zinc fingers transcription factor IIIA in binding to 5S RNA. J Mol Biol 2000; 301:47–60.

    Article  PubMed  CAS  Google Scholar 

  48. Lu D, Searles MA, Klug A. Crystal structure of a zinc finger RNA complex reveals two modes of molecular recognition. Nature 2003; 426:96–100.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Landes Bioscience/Eurekah.com and Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Klug, A. (2005). The Discovery of Zinc Fingers and Their Practical Applications in Gene Regulation: A Personal Account. In: Iuchi, S., Kuldell, N. (eds) Zinc Finger Proteins. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27421-9_1

Download citation

Publish with us

Policies and ethics