Skip to main content

Chloroplast to Leaf

  • Chapter
Photosynthetic Adaptation

Part of the book series: Ecological Studies ((ECOLSTUD,volume 178))

Abstract

Photosynthesis is highly responsive to environmental changes. Even so, fundamental modifications of the photosynthetic processes during the evolution of plant life have been relatively limited in comparison to the enormous variations in climatic conditions that have occurred during this period. This is evidence of the remarkable plasticity within the photosynthetic process allowing plants to adapt to different life conditions and environmental changes. Currently, the earth is experiencing a series of rapidly developing environmental changes, often collectively referred to as global climate change, and predominantly caused by anthropogenic activities. These may positively or negatively affect photosynthesis as well as trigger yet further adaptive responses. The rapidity of these environmental changes is exemplified by the increases in CO2 and CH4 over the last century (Fig. 9.1). It is essential to know if plants have the capacity to adapt to such rapid environmental changes and thereby mitigate the impact on photosynthetic productivity of crops as well as natural plant communities. The effects of global change on photosynthesis can be extremely complex, reflecting not only natural plant biodiversity but also microclimate diversity. As an example, rising atmospheric CO2 rise per se can enhance photosynthetic carbon fixation and incremental plant growth, but this may be counteracted by the associated temperature increase. Higher temperatures might exceed the optimal temperature for photosynthesis as well as enhance photorespiration, an energetically wasteful process that competes with photosynthetic carbon fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, D. J., and Ort, D. R. 2001. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci. 6:36–42.

    Article  CAS  PubMed  Google Scholar 

  • Allen, D. J., Nogués, S., and Baker, N. R. 1998. Ozone depletion and increased UV-B radiation: Is there a real threat to photosynthesis? J. Exp. Bot. 328:1775–1788.

    Article  Google Scholar 

  • Allen, D. J., Ratner, K., Giller, Y. E., Gussakovsky, E. E., Shahak, Y., and Ort, D. R. 2000. An overnight chill induces a delayed inhibition of photosynthesis at midday in mango (Mangifera indica L.). J. Exp. Bot. 51:1893–1902.

    Article  CAS  PubMed  Google Scholar 

  • Anchordoguy, T. J., Rudolph, A. S., Carpenter, J. F., and Crowe, J. H. 1987. Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology. 24: 324–331.

    Article  CAS  PubMed  Google Scholar 

  • Arp, W. J. 1991. Effects of source-sink relations on photosynthetic acclimation to elevated CO2. Plant Cell Environ. 14:869–75.

    Article  CAS  Google Scholar 

  • Asada, K. 1996. Production and scavenging of radicals. In: Advances in Photosynthesis: Photosynthesis and the Environment, Vol. 5. N. R. Baker (ed.), pp. 123–150. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Assmann, S. M., Snyder, J. A., and Lee, Y. R. I. 2000. ABA-deficient (aba1) and ABA-insensitive (abi1-1, abi2-1) mutants of Arabidopsis have a wild-type stomatal response to humidity. Plant Cell Environ. 23:387–395.

    Article  CAS  Google Scholar 

  • Baker, N. R., and Nie, G. Y. 1994. Chilling sensitivity of photosynthesis in maize. In: Biotechnology of Maize. Y. P. S. Bajaj (ed.), pp. 465–481. Berlin: Springer-Verlag.

    Google Scholar 

  • Baker, N. R., and Ort, D. R. 1992. Light and crop photosynthetic performance. In: Crop Photosynthesis: Spatial and Temporal Determinants, N. R. Baker and H. Thomas (eds.), pp. 289–312. Amsterdam: Elsevier Science Publishers.

    Google Scholar 

  • Baker, N. R., East, T. M., and Long, S. P. 1983. Chilling damage to photosynthesis in young Zea mays. II. Photochemical function of thylakoids in vivo. J. Exp. Bot. 34:189–197.

    Article  CAS  Google Scholar 

  • Blumwald, E., Aharon, G. S., and Apse, M. P. 2000. Sodium transport in plant cells. Biochim. Biophys. Acta 1465:140–151.

    Article  CAS  PubMed  Google Scholar 

  • Bray, E. A., Bailey-Serres, J., and Weretilnyk, R. 2000. Responses to abiotic stresses. In: Biochemistry and Molecular Biology of Plants. B. Buchanan, W. Gruissem, and R. Jones (eds.), Rockville: American Society of Plant Physiologists.

    Google Scholar 

  • Bohnert, H. J., Nelson, D. E., and Jensen, R. G. 1995. Adaptations to environmental stresses. Plant Cell 7:1099–1111.

    Article  CAS  PubMed  Google Scholar 

  • Carter, P. J., Nimmo, H. G., Fewson, C. A., and Wilkins, M. B. 1991. Circadian rhythms in the activity of a plant protein kinase. EMBO J. 10:2063–2068.

    CAS  PubMed  Google Scholar 

  • Chatterton, N. J., Carlson, G. E., Hungerford, W. E., and Lee, D. R. 1972. Effect of tillering and cool nights on photosynthesis and chloroplast starch in Pangola. Crop Sci 12:206–208.

    Google Scholar 

  • Cheeseman, J. M. 1991. PATCHY: Simulating and visualizing the effects of stomatal patchiness on photosynthetic CO2 exchange studies. Plant Cell Environ. 14:593–599.

    Article  Google Scholar 

  • Cornic, G. 2000. Drought stress inhibits photosynthesis by decreasing stomatal aperture—not by affecting ATP synthesis. Trends Plant Sci. 5:187–188.

    Article  Google Scholar 

  • Cornic, G., and Briantais, J.-M. 1991. Partitioning of photosynthetic electron flow between CO2 and O2 in a C3 leaf (Phaseolus vulgaris L.) at different CO2 concentrations and during drought stress. Planta 183:178–184.

    Article  CAS  Google Scholar 

  • Cornic, G., and Massacci, A. 1996. Leaf photosynthesis under drought stress. In: Photosynthesis and the Environment. N. Baker (ed.), pp. 347–366. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Cornic, G., Le Gouallec, J. L., Briantais, J.-M., and Hodges, M. 1989. Effect of dehydration and high light on photosynthesis of two C3 plants [Phaseolus vulgaris L. and Elatostema repens (Lour.)]. Hall. Planta 177:84–90.

    Article  CAS  Google Scholar 

  • Crookston, R. K., O’Toole, J., Lee, R., Ozbun, J. L., and Wallace, D. H. 1974. Photosynthetic depression in beans after exposure to cold for one night. Crop Sci. 14:457–464.

    Article  CAS  Google Scholar 

  • Daley, P. F., Raschke, K., Ball, J. T., and Berry, J. A. 1989. Topography of photosynthetic activity of leaves obtained from video images of chlorophyll fluorescence. Plant Physiol. 90:1233–1238.

    Article  CAS  PubMed  Google Scholar 

  • Davies, W. J., and Zhang, J. 1991. Root signals and the regulation of growth and development of plants in drying soil. Annu. Rev. Plant Physiol. 42:55–76.

    Article  CAS  Google Scholar 

  • Delfine, S., Alvino, A., Zacchini, M., and Loreto, F. 1998. Consequences of salt stress on conductance to CO2 diffusion, Rubisco characteristics and anatomy of spinach leaves. Aust. J. Plant Physiol. 25:395–402.

    Article  CAS  Google Scholar 

  • Delfine, S., Alvino, A., Villani, M. C., and Loreto, F. 1999. Restrictions to CO2 conductance and photosynthesis in spinach leaves recovering from salt stress. Plant Physiol. 119:1101–1106.

    Article  CAS  PubMed  Google Scholar 

  • Delfine, S., Loreto, F., and Alvino, A. 2001. Drought-stress effects on physiology, growth and biomass production of rainfed and irrigated bell pepper plants in the Mediterranean region. J. Am. Soc. Hort. Sci. 126:297–304.

    CAS  Google Scholar 

  • Downton, W. J. S., Loveys, B. R., and Grant, W. J. R. 1988. Stomatal closure fully accounts for the inhibition of photosynthesis by abscisic acid. New Phytologist 108:263–266.

    Article  CAS  Google Scholar 

  • Evans, J. R., and Loreto, F. 1999. Acquisition and diffusion of CO2 in higher plant leaves. In: Photosynthesis: Physiology and Metabolism. R. C. Leegood, T. D. Sharkey, and S. von Caemmerer (eds.), pp. 322–351. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Farquhar, G. D., and Sharkey, T. D. 1982. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol. 33:317–345.

    Article  CAS  Google Scholar 

  • Farquhar, G. D., Hubick, K. T., Terashima, I., Condon, A. G., and Richards, R.A. 1987. Genetic variation in the relationship between photosynthetic CO2 assimilation and stomatal conductance to water loss. In: Progress in Photosynthetic Research, Vol. IV. J. Biggins (ed.), pp. 209–212. Dordecht, The Netherlands: Martinus Nijhoff Publishers.

    Google Scholar 

  • Heath, R. L. 1996. The modification of photosynthetic capacity induced by ozone exposure. In: Photosynthesis and the Environment. N. R. Baker (ed.), pp 469–476. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Hutchison, R. S., Groom, Q., and Ort, D. R. 2000. Differential effects of chilling-induced photooxidation on the redox regulation of photosynthetic enzymes. Biochemistry 39:6679–6688.

    Article  CAS  PubMed  Google Scholar 

  • Kaiser, W. M. 1987. Effect of water deficit on photosynthetic capacity. Physiol. Plant. 71:142–149.

    Article  CAS  Google Scholar 

  • Kee, S. C., Martin, B., and Ort, D. R. 1986. The effects of chilling in the dark and in the light on photosynthesis of tomato: Electron transfer reactions. Photosynth. Res. 8:41–51.

    Article  CAS  Google Scholar 

  • Kishitani, S., and Tsunoda, S. 1974. Effect of low and high temperature pretreatment on leaf photosynthesis and transpiration in cultivars of Oryza sativa. Photosynthetica 8:161–167.

    CAS  Google Scholar 

  • Ingram, J., and Bartels, D. 1996. The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:377–403.

    Article  CAS  PubMed  Google Scholar 

  • Izhar, S., and Wallace, D. H. 1967. Effect of night temperature on photosynthesis of Phaseolus vulgaris L. Crop Sci. 7:546–547.

    Article  Google Scholar 

  • Jaglo-Ottosen, K. R., Gilmour, S. J., Zarka, D. G., Schabengerger, O., and Thomashow, M. F. 1998. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106.

    Article  CAS  PubMed  Google Scholar 

  • Jones, T. L., and Ort, D. R. 1997. Circadian regulation of sucrose phosphate synthase activity in tomato by protein phosphatase activity. Plant Physiol. 113:1167–1175.

    CAS  PubMed  Google Scholar 

  • Jones, T. L., Tucker, D. E., and Ort, D. R. 1998. Chilling delays circadian pattern of sucrose phosphate synthase and nitrate reductase activity in tomato. Plant Physiol. 118:149–158.

    Article  CAS  PubMed  Google Scholar 

  • Jordan, B. R. 1996. The effects of UV-B on plants: A molecular perspective. Adv. Bot. Res. 22:97–162.

    Article  CAS  Google Scholar 

  • Laisk, A., and Loreto, F. 1996. Determining photosynthetic parameters from leaf CO2 exchange and chlorophyll fluorescence: Rubisco specificity factor, dark respiration in the light, excitation distribution between photosystems, alternative electron transport rate and mesophyll diffusion resistance. Plant Physiol. 110:903–912.

    CAS  PubMed  Google Scholar 

  • Laisk, A., Oja, V., and Kull, O. 1980. Statistical distribution of stomatal apertures of Vicia faba and Hordeum vulgare and the Spannungs-phase of stomatal opening. J. Exp. Bot. 31:49–58.

    Article  Google Scholar 

  • Laisk, A., Kull, O., and Moldau, H. 1989. Ozone concentration in leaf intercellular air spaces is close to zero. Plant Physiol. 90:1163–1167.

    Article  CAS  PubMed  Google Scholar 

  • Lauer, M. J., and Boyer, J. S. 1992. Internal CO2 measured directly in leaves. Abscisic acid and low leaf water potential cause opposing effects. Plant Physiol. 98:1310–1316.

    Article  CAS  PubMed  Google Scholar 

  • Lauteri, M., Scartazza, A., Guido, M. C., and Brugnoli, E. 1997. Genetic variation in photosynthetic capacity, carbon isotope discrimination and mesophyll conductance in provenances of Castanea sativa adapted to different environments. Funct. Ecol. 11:675–683.

    Article  Google Scholar 

  • Laporte, M. M., and Sharkey, T. D. 1995. Effects of temperature on photosynthesis, partitioning, and growth in SPS transformed tomato plants. Plant Physiol. 108S:56.

    Google Scholar 

  • Lawlor, D. W., and Cornic, G. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ. 25:275–294.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yaaguchi-Shinozaki, K., and Shinozaki, K. 1998. Two transcriptional factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell. 10:1391–1406.

    Article  CAS  PubMed  Google Scholar 

  • Long, S. P., Humphries, S., and Falkowski, P. G. 1994. Photoinhibition of photosynthesis in nature. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45:633–662.

    Article  CAS  Google Scholar 

  • Loreto, F., and Sharkey, T. D. 1990. Low humidity can cause uneven photosynthesis in olive (Olea europea L.) leaves. Tree Physiol. 6:409–415.

    Google Scholar 

  • Loreto, F., Harley, P. C., Di Marco, G., and Sharkey, T. D. 1992. Estimation of the mesophyll conductance to CO2 flux by three different methods. Plant Physiol. 98:1437–1443.

    Article  PubMed  CAS  Google Scholar 

  • Loreto, F., Di Marco, G., Tricoli, D., and Sharkey, T. D. 1994. Measurements of mesophyll conductance, photosynthetic electron transport and alternative electron sinks of field grown wheat leaves. Photosynth. Res. 41:397–403.

    Article  CAS  Google Scholar 

  • Loreto, F., Tricoli, D., and Di Marco, G. 1995. On the relationship between electron transport rate and photosynthesis in leaves of the C4 plant Sorghum bicolor (L.) Moench exposed to water stress, temperature changes and carbon metabolism inhibition. Aust. J. Plant Physiol. 22:885–892.

    Article  CAS  Google Scholar 

  • Martin, B., and Ort, D. R. 1985. The recovery of photosynthesis subsequent to chilling exposure. Photosynth. Res. 6:121–132.

    Article  Google Scholar 

  • Martin, B, Ort, D. R., and Boyer, J. S. 1981. Impairment of photosynthesis by chilling-temperatures in tomato. Plant Physiol. 68:329–334.

    Article  CAS  PubMed  Google Scholar 

  • Martino-Catt, S., and Ort, D. R. 1992. Low temperature interrupts circadian regulation of transcriptional activity in chilling-sensitive plants. Proc. Natl. Acad. Sci. USA 89:3731–3735.

    Article  CAS  PubMed  Google Scholar 

  • Melis, A. 1999. Photosystem-II damage and repair cycle in chloroplasts: What modulates the rate of photodamage in vivo? Trends Plant Sci. 4:130–135.

    Article  PubMed  Google Scholar 

  • Meyer, S., and Genty, B. 1998. Mapping intercellular CO2 mole fraction (ci) in Rosa rubiginosa leaves fed with abscissic acid by using chlorophyll fluorescence imaging. Plant Physiol. 116:947–957.

    Article  CAS  PubMed  Google Scholar 

  • Miyake, C., and Asada, K. 1992. Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbaste radicals in thylakoids. Plant Cell Physiol. 33:541–553.

    CAS  Google Scholar 

  • Miyazawa, S. I., and Terashima, I. 2001. Slow chloroplast development in the evergreen broad-leaved tree species: Relationship between leaf anatomical characteristics and photosynthetic rate during leaf development. Plant Cell Environ. 24:279–291.

    Article  CAS  Google Scholar 

  • Monroy, A. F., Labbe, E., and Dhindsa, R. S. 1997. Low temperature perception in plants: Effects of cold on protein phosphoylation in cell-free extracts. FEBS Lett. 410:206–209.

    Article  CAS  PubMed  Google Scholar 

  • Munns, R. 1993. Physiological processes limiting plant growth in saline soils: Some dogmas and hypotheses. Plant Cell Environ. 16:15–24.

    Article  CAS  Google Scholar 

  • Munns, R., Schachtman, D. P., and Condon, A. G. 1995. The significance of the two-phase growth response to salinity in wheat and barley. Aust. J. Plant Physiol. 22:561–569.

    Article  CAS  Google Scholar 

  • Neumann, P. 1997. Salinity resistance and plant growth revisited. Plant Cell Environ. 20: 1193–1198.

    Article  CAS  Google Scholar 

  • Nie, G.-Y., and Baker, N. R. 1991. Modifications to thylakoid composition during development of maize leaves at low growth temperatures. Plant Physiol. 95:184–191.

    Article  CAS  PubMed  Google Scholar 

  • Nie, G.-Y., Robertson, E. J., Fryer, M. J., Leech, R. M., and Baker, N. R. 1995. Response of the photosynthetic apparatus in maize leaves grown at low temperature on transfer to normal growth temperature. Plant Cell Environ. 18:1–12.

    Article  CAS  Google Scholar 

  • Nobel, P. S. 1991. Physicochemical and environmental plant physiology. San Diego: Academic Press.

    Google Scholar 

  • Nonami, H., and Boyer, J. S. 1990. Primary events regulating stem growth at low water potentials. Plant Physiol. 93:1601–1609.

    Article  PubMed  CAS  Google Scholar 

  • Ogren, W. L. 1994. Energy utilization by photorespiration. In: Regulation of atmospheric 9. Chloroplast to Leaf 259 CO2 and O2 by photosynthetic carbon metabolism. N. E. Tolbert, and J. Preiss (eds.), pp. 115–125. Oxford: Oxford University Press.

    Google Scholar 

  • Ort, D. R., and Baker, N. R. 2002. Photoprotection: The role of electron sinks. Curr. Opin. Plant Biol. 5:193–198.

    Article  CAS  PubMed  Google Scholar 

  • Ort., D. R., Martino, S., Wise, R. R., Kent, J., and Cooper, P. 1989. Changes in protein synthesis induced by chilling and their influence on the chilling sensitivity of photosynthesis. Plant Physiol. Biochem. 27:785–793.

    CAS  Google Scholar 

  • Pasternak, D., and Wilson, G. L. 1972. After-effects of night temperatures on stomatal behavior and photosynthesis of Sorghum. New Phytol. 71:683–689.

    Article  Google Scholar 

  • Pearcy, R. W. 1990. Sunflecks and photosynthesis in plant canopies. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:421–453.

    Article  CAS  Google Scholar 

  • Peeler, T. C., and Naylor, A. W. 1988. A comparison of the effects of chilling on thylakoid electron transfer in pea (Pisum sativum L.) and cucumber (Cucumis sativus L.). Plant Physiol.. 86:147–151.

    Article  CAS  PubMed  Google Scholar 

  • Peoples, T. R., and Koch, D. W. 1978. Physiological response of three alfalfa cultivars to one chilling night. Crop Sci. 18:255–258.

    Article  CAS  Google Scholar 

  • Powles, S. B. 1984. Photoinhibition of photosynthesis induced by visible light. Annu. Rev. Plant Physiol. 35:15–44.

    Article  CAS  Google Scholar 

  • Preston, G. M., Carroll, T. P., Guggino, W. B., and Agre, P. 1992. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385–387.

    Article  CAS  PubMed  Google Scholar 

  • Saccardy, K., Pineau, B., Roche, O., and Cornic, G. 1998. Photochemical efficiency of photosystem II and xanthophylls cycle components in Zea mays leaves exposed to water stress and high light. Photosyn. Res. 56:57–66.

    Article  CAS  Google Scholar 

  • Sassenrath, G. F., Ort, D. R., and Portis, A.R., Jr. 1987. Effect of chilling on the activity of enzymes of the photosynthetic carbon reduction cycle. In: Progress in Photosynthesis Research, Vol. 4, J. Biggins (ed.), pp. 103–106. Dordrecht, The Netherlands: Martinus Nijihoff.

    Google Scholar 

  • Sassenrath, G. F., Ort, D. R., and Portis, A. R., Jr. 1990. Impaired reductive activation of stromal bisphosphatases in tomato leaves following low-temperature exposure at high light. Arch. Biochem. Biophys. 282:302–308.

    Article  CAS  PubMed  Google Scholar 

  • Schulze, E. D., Turner, N. C., Gollan, T., and Schakel, K. A. 1987. Stomatal responses to air humidity and to soil drought. In: Stomatal Function. E. Zeiger, G. D. Farquhar, and I. R. Cowan (eds.), pp. 311–321. Stanford University Press, Stanford, CA.

    Google Scholar 

  • Sellers, P. J., Bounoua, L., Collatz, G. J., Randall, D. A., Dazlich, D. A., Los, S. O., Berry, J. A., Fung, I., Tucker, C. J., Field, C. B., and Jensen, T. G. 1996. Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science 271:1402–1406.

    Article  CAS  Google Scholar 

  • Sellers, P. J., Dickinson, R. E., Randall, D. A., Betts, A. K., Hall, F. G., Berry, J. A., Collatz, G. J., Denning, A. S., Mooney, H. A., Nobre, C. A., Sato, N., Field, C. B., and Henderson-Sellers, A. 1997. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275:502–509.

    Article  CAS  PubMed  Google Scholar 

  • Sharkey, T. D. 1990. Feedback limitation of photosynthesis and the physiological role of ribulose bisphosphate carboxylase carbamylation. Bot. Mag. Tokoyo (special issue 2) 87–105.

    Google Scholar 

  • Smart, L. B., Moskal, W. A., Cameron, K. D., and Bennett, A. B. 2001. MIP genes are down-regulated under drought stress in Nicotiana glauca. Plant Cell Physiol. 42:686–693.

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff, N., Windslow, M. D., and Stewart, G. R. 1985. Nitrate reductase activity in leaves of barley (Hordeum vulgare) and durum wheat (Triticum durum) during field and rapidly applied water deficits. J. Exp. Bot. 36:1200–1208.

    Article  CAS  Google Scholar 

  • Syvertsen, J. P., Lloyd, J., McConchie, C., Kriedemann, P. E., and Farquhar, G. D. 1995. On the relationships between leaf anatomy and CO2 diffusion through the mesophyll of hypostomatous leaves. Plant Cell Environ. 18:149–157.

    Article  Google Scholar 

  • Szabolcs, I. 1994. Soils and salinization. In: Handbook of plant and crop stress. M. Pessarakli (ed.), pp. 3–11. New York: Marcel Dekker.

    Google Scholar 

  • Teramura, A. H., and Ziska, L. H. 1996. Ultraviolet-B radiation and photosynthesis. In: Photosynthesis and the Environment. N. R. Baker (ed.), pp. 435–450. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Terashima, I., Wong, S. C., Osmond, C. B., and Farquhar, G. D. 1988. Characterization of non-uniform photosynthesis induced by abscissic acid in leaves having different mesophyll anatomies. Plant Cell Physiol. 29:385–395.

    CAS  Google Scholar 

  • Terashima, I., and Ono, K. 2002. Effects of HgCl2 on CO2 dependence of leaf photosynthesis: Evidence indicating involvement of aquaporins in CO2 diffusion across the plasma membrane. Plant Cell Physiol. 43:70–78.

    Article  CAS  PubMed  Google Scholar 

  • Tezara, W., Mitchell, V. J., Driscoll, S. P., and Lawlor, D. W. 1999. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401:914–917.

    Article  CAS  Google Scholar 

  • Thomashow, M. F. 1999. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Mol. Biol. 50:571–599.

    Article  CAS  Google Scholar 

  • Tucker, D. E., and Ort, D. R. 2002. Low temperature induces expression of nitrate reductase in tomato that temporarily overrides circadian regulation of activity. Photosynth. Res. 72: 285–293.

    Article  CAS  PubMed  Google Scholar 

  • Uehlein, N., Lovisolo, C., Siefritz, F., and Kaldenhoff, R. 2003. The tobacco aquaporin NtAQP1 is a membrane CO2 transporter with physiological functions. Nature 425: 734–737.

    Article  CAS  PubMed  Google Scholar 

  • Valladares, F., and Pearcy, R. W. 2002. Drought can be more critical in the shade than in the sun: A field study of carbon gain and photoinhibition in a Californian shrub during a dry El Nino year. Plant Cell Environ. 25:749–759.

    Article  Google Scholar 

  • Vass, I., and Styring, S. 1993. Characterization of chlorophyll triplet promoting states in photosystem II sequentially induced during photoinhibition. Biochemistry. 32:3334–3341.

    Article  CAS  PubMed  Google Scholar 

  • Vassey, T. L., and Sharkey, T. D. 1989. Mild water stress of Phaseolus vulgaris plants leads to reduced starch synthesis and extractable sucrose phosphate synthase activity. Plant Physiol. 89:1066–1070.

    Article  CAS  PubMed  Google Scholar 

  • Wise, R. R., Ortiz-Lopez, A., and Ort, D. R. 1992. Spatial distribution of photosynthesis during drought in field-grown and acclimated and nonacclimated growth chambergrown cotton. Plant Physiol. 100:26–32.

    Article  CAS  PubMed  Google Scholar 

  • Wise, R. R. 1995. Chilling-enhanced photooxidation: The production, action and study of reactive oxygen species produced during chilling in the light. Photosynth. Res. 45: 79–97.

    Article  CAS  Google Scholar 

  • Zhong, H. H., Young, J. C., Pease, E. A., Hangarter, R. P., and McClung, C. R. 1994. Interactions between light and the circadian clock in the regulation of CAT2 expression in Arabidopsis. Plant Physiol. 104:889–898.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Inc.

About this chapter

Cite this chapter

Loreto, F., Baker, N.R., Ort, D.R. (2004). Chloroplast to Leaf. In: Smith, W.K., Vogelmann, T.C., Critchley, C. (eds) Photosynthetic Adaptation. Ecological Studies, vol 178. Springer, New York, NY. https://doi.org/10.1007/0-387-27267-4_9

Download citation

  • DOI: https://doi.org/10.1007/0-387-27267-4_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-22079-6

  • Online ISBN: 978-0-387-27267-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics